EXHIBIT 58

	Page 6		Page 7
1	-------------- E X H I B I T S ------------	1	------------- E X H I B I T S ------------
2	NUMBER MARKED	2	NUMBER MARKED
3	Exhibit 19-7 Eriksson Study 155	3	Exhibit 19-20 Heltshe Study 363
4	Exhibit 19-8 Hardell Study 156	4	Exhibit 19-21 Alavanja Study 386
5	Exhibit 19-9 Rebuttal Expert Witness 166	5	
6	Report of Beate Ritz,	6	
7	MD, PhD	7	
8	Exhibit 19-10 Cantor Study 178	8	
9	Exhibit 19-11 Letter from United 200	9	RECORD MARKED
10	States Environmental	10	PAGE LINE
11	Agency, dated 12/22/75	11	12520
12	Exhibit 19-12 De Roos Study 204	12	22015
13	Exhibit 19-13 Zahm Study 223	13	22023
14	Exhibit 19-14 Lee Study 235	14	22511
15	Exhibit 19-15 McDuffie Study 243	15	23724
16	Exhibit 19-16 North American Pooled 277	16	2395
17	Project PowerPoint	17	2424
18	Exhibit 19-17 Introduction to Cohort 313	18	25911
19	Studies	19	26913
20	Exhibit 19-18 De Roos 2005 Study 318	20	27012
21	Exhibit 19-19 Draft Lymphoma Risk and 349	21	36115
22	Pesticide Use in the	22	
23	Agricultural Health	23	
24	Study	24	
25		25	
	Page 8		Page 9
1	LOS ANGELES, MONDAY, SEPTEMBER 18, 2017	1	the plaintiffs with Andrus
2	9:05 A.M.	2	Wagstaff.
3		3	MR. BAUM: Michael Baum for
4	THE VIDEOGRAPHER: Good morning.	4	plaintiffs.
5	This is the start of tape labeled 09:04	5	MR. WISNER: Brent Wisner for
6	number 1 of the videotaped deposition of	6	plaintiffs.
7	Dr. Beate Ritz in the matter of Roundup	7	MR. ESFANDIARY: Pedram Esfandiary
8	Products Liability Litigation. This	8	for plaintiffs.
9	case is before the United States	9	MR. McHENRY: Leemon McHenry for
10	District Court for the Northern District 09:04	10	plaintiffs.
11	of California bearing MDL Number 2741	11	THE VIDEOGRAPHER: On the phone?
12	and Case Number 16-MD-02741-VC. This	12	MS. FLAHERTY: Yvonne Flaherty,
13	deposition is being held at 12100	13	Lockridge, Grindal Nauen for plaintiffs.
14	Wilshire Boulevard in Los Angeles,	14	THE REPORTER: And the other two
15	California. Today's date is 09:05	15	counsel for the record on the phone?
16	September 18, 2017. The time is	16	MS. FORGIE: Jeff, Mike, you guys?
17	approximately 9:05 a.m.	17	Are you there?
18	My name is Scott McNair from TSG	18	THE REPORTER: Can you please
19	Reporting, Incorporated. I'm the legal	19	identify yourselves for the video
20	video specialist. The court reporter 09:05	20	record?
21	today is Lisa Moskowitz also in	21	MR. MILLER: Michael Miller and
22	association with TSG Reporting.	22	Jeff Travers.
23	Will counsel please identify	23	MS. FORGIE: For plaintiffs.
24	yourselves for the record.	24	MR. LASKER: Eric Lasker for
25	MS. FORGIE: Kathryn Forgie for 09:05	25	Monsanto, Hollingsworth, LLP.

	Page 10		Page 11
1	MS. SHIMADA: Elyse Shimada for	1	the court reporter's benefit, although I'm
2	Monsanto, Hollingsworth, LLP.	2	not very good at that. I'll warn you. And
3	THE VIDEOGRAPHER: Thank you.	3	if we can just wait for the question to be
4	Will the court reporter please	4	completed before you answer, that makes it
5	swear in the witness. 09:06	5	easier for the court reporter. Okay? 09:07
6		6	A. Yes.
7	Beate Ritz, MD, PhD,	7	Q. If you have any uncertainties about
8	called as a witness, having been	8	my question or my question is poorly worded,
9	duly sworn, was examined and	9	just let me know. Okay? Great.
10	testified as follows:	10	Let's start by marking your CV. 09:07
11		11	This will be Exhibit 19-1.
12	EXAMINATION	12	(Exhibit Number 19-1 was marked
13	BY MR. LASKER:	13	for identification.)
14	Q. Good morning, Dr. Ritz.	14	BY MR. LASKER:
15	A. Good morning. 09:07	15	Q. So Dr. Ritz, you received your 09:08
16	Q. As you just heard, my name is Eric	16	medical training in Germany; correct?
17	Lasker. I represent Monsanto. I'll be	17	A. Correct.
18	asking you some questions today.	18	Q. And you received what is identified
19	Have you had your deposition taken	19	on your CV as a medical certificate and then
20	before? 09:07	20	a doctoral degree in medical sociology. 09:08
21	A. Once in, I don't know, 1991 or '2.	21	A. Correct.
22	Q. I'm sure your attorneys have told	22	Q. I'm just trying to understand the
23	you the process, but your deposition is	23	terminology here. What is a doctoral degree
24	being videotaped, and we have a court	24	in medical sociology?
25	reporter. I will try and speak slowly for 09:07	25	A. It's a PhD equivalent. 09:08
	Page 12		Page 13
1	Q. What was your specialty? What was	1	Q. And that was somewhere around 1982?
2	your area --	2	A. '3.
3	A. Medical sociology which includes	3	Q. '83.
4	occupational health. So mine was in	4	Other than that, have you provided
5	occupational health. 09:08	5	clinical care for patients with cancer? 09:09
6	Q. Okay. And the medical certificate,	6	A. No.
7	is that --	7	Q. You're not an oncologist; correct?
8	A. That licenses you to be a	8	A. No.
${ }^{9}$	physician.	9	Q. You came to UCLA in 1991 to pursue
10	Q. Okay. Did you ever -- have you 09:08	10	a master's degree and then a PhD in 09:09
11	ever practiced as a clinical physician?	11	epidemiology; correct?
12	A. Yes.	12	A. No. 1989.
13	Q. Where did you practice?	13	Q. 1989. Thank you.
14	A. At the University Hospital Hamburg	14	In 1995, you became an assistant
15	psychiatric department. 09:09	15	professor of epidemiology at UCLA; correct? 09:09
16	Q. Have you ever provided medical care	16	A. Correct.
17	for patients with -- well, did you ever	17	Q. One of your responsibilities in
18	provide medical care for cancer in patients	18	that position was advising and mentoring
19	with cancer?	19	doctoral students; correct?
20	A. Yes. 09:09	20	A. Correct. 09:10
21	Q. When was that?	21	Q. The first doctoral student you
22	A. That was during my final year in	22	mentored was Kurt Straif; correct?
23	medical school at the University of Hamburg	23	A. Correct.
24	pediatrics ward that was filled with	24	Q. Had you known Dr. Straif before you
25	children with leukemia and brain tumors. 09:09	25	became his mentor in 1997? 09:10

	Page 14		Page 15
1	A. I knew him as a student. He was a	1	A. Yeah.
2	student in the epi department, and he was	2	Q. Beyond -- first of all, just so the
3	actually mentored by a different faculty,	3	record is clear, Dr. Straif is now the head
4	Dr. Krause, who left UCLA and because of	4	of the IARC Monograph program; correct?
5	that, Dr. Straif had to be reassigned to 09:10	5	A. As far as I understand, yes. 09:11
6	another advisor.	6	Q. Was he the head of the Monograph
7	Q. Had you known Dr. Straif back in	7	program when he invited you to become a
8	Germany?	8	visiting scientist at IARC?
9	A. No.	9	A. No.
10	Q. Did you continue to have a 09:10	10	Q. What was his position then? 09:11
11	professional relationship with Dr. Straif	11	A. He was a senior scientist in the
12	after he received his PhD ?	12	program, as far as I remember. And he was
13	A. Not a professional relationship but	13	not the official person inviting me. He
14	a personal one.	14	just recommended to me that I should come to
15	Q. Okay. So you and Dr. Straif are 09:10	15	IARC, and it was Dr. Boffetta who invited me 09:11
16	friends?	16	officially.
17	MS. FORGIE: Objection.	17	Q. What did you do as a visiting
18	THE WITNESS: I don't know how you	18	scientist at IARC?
19	would characterize it, but we're	19	A. Well, my role was to work with --
20	collegially affiliated. So he invited 09:11	20	to mentor and work with junior colleagues 09:11
21	me, for example, to spend a visiting	21	who were in the epidemiology program.
22	year at IARC.	22	Actually, one of the senior scientists -- we
23	BY MR. LASKER:	23	have a very regular exchange of doctoral
24	Q. Okay. That's where I was going	24	students who go for internships to IARC.
25	next; so you anticipated that. 09:11	25	That is actually under the -- not my own 09:12
	Page 16		Page 17
1	students but the students of our cancer	1	Q. So when would that -- a year, what
2	research are at UCLA, Dr. Zhang, and one of	2	year would that program have started?
3	his former students was actually a member of	3	A. 1997.
4	the epidemiology group at IARC at the time,	4	Q. Does that continue to the present?
5	Mia Hashibe, and she was the one who was 09:12	5	A. I don't believe so because 09:13
6	helping all the students integrate into the	6	Dr. Hashibe left IARC, and Dr. Zhang is not
7	IARC program, and my role as visiting	7	very active anymore in terms of research.
8	scientist was to actually help her but also	8	Q. Were you paid for your work as a
9	mentor a lot of junior scientists there	9	visiting scientist at IARC?
10	because, at the time, I was considered a 09:12	10	A. I got a stipend that helped me pay 09:13
11	senior scientist.	11	for rent. It was not considered pay.
12	Q. So I didn't understand this. UCLA	12	Q. Did you continue to receive pay
13	and IARC have a --	13	from UCLA during that period?
14	A. A mentorship program.	14	A. I was on a sabbatical officially,
15	MS. FORGIE: Wait for him to get 09:12	15	and yes, during that sabbatical, you're 09:13
16	the question out before you answer,	16	entitled to payment.
17	please.	17	Q. How long did you work as a visiting
18	BY MR. LASKER:	18	scientist at IARC?
19	Q. And how long has UCLA had this	19	A. I started, I think, in August of
20	mentoring program with IARC? 09:13	20	2006, and I left to go back to UCLA in July 09:14
21	A. I believe it is as long as	21	of the next year, 2007.
22	Dr. Zhang was a faculty member at UCLA	22	Q. I've seen some documents that
23	because he came -- he had a time where he,	23	identify you as also serving during this
24	in his own professional career, actually	24	period as a member of the IARC secretariat;
25	spent time at IARC. 09:13	25	is that right? 09:14

	Page 18		Page 19
1	A. Not that I recall that that was an	1	Are you familiar with that?
2	official title, however, I was an	2	A. No.
3	observer -- a member of the group that was	3	Q. Did you have any dealings with
4	in charge of putting the 100 s volume	4	Dr. Portier when you were at IARC?
5	together or the ideas for the 100s volume, 09:14	5	A. None. 09:15
6	and I was an observer at several events that	6	Q. Do you have any professional
7	were led by the Monograph group.	7	relationship with Dr. Portier?
8	They always have observers from	8	A. None.
9	visiting professors, junior scientists, but	9	Q. Do you have any collegial
10	I was not a member of any of the groups. 09:14 Q. And the Volume 100, what is that?	10	relationship? If that's the word we use -- 09:15
11		11	A. I don't.
12	A. That is -- that was a special	12	MS. FORGIE: Careful there.
13	memorial volume in which they decided which	13	MR. LASKER: I'm using her word.
14	agents to re-review that they had previously	14	Trying to find the right word there.
15	reviewed. So the 100 carcinogenic compounds 09:15	15	BY MR. LASKER: 09:16
16	and groups that were previously reviewed in	16	Q. I take it you did not work on any
17	the 100s volume they decided what to	17	of the amendments to the IARC preamble?
18	re-review.	18	A. No.
19	Q. Gotcha.	19	Q. Now, I was looking at your CV, and
20	You were working for IARC during 09:15 the same years that one of the other	20	I don't see it. Maybe it's just an 09:16
21		21	oversight, your work for IARC on your CV.
22	plaintiffs experts Christopher Portier was	22	Is that listed here, and I just
23	also over at IARC, I believe, working on an advisory group to recommend amendments to	23	missed it?
24		24	A. That was a sabbatical. I don't
25	the preamble. 09:15	25	list every sabbatical I take. 09:16
	Page 20		Page 21
1	Q. Okay. So I didn't miss it. It's	1	Q. When was the last time that
2	not on your CV?	2	committee met?
3	A. No.	3	A. I think I was the chair once; so it
4	Q. Okay.	4	must have been in 2006 or '7.
5	A. There may be some talk -- no. I 09:16	5	Q. Okay. How did you first get 09:17
6	don't know.	6	appointed to the advisory committee?
7	Q. Have you had any discussion with	7	A. I was approached, as far as I
8	Dr. Straif about IARC's review of	8	recall, by Dr. Alavanja at a professional
9	glyphosate?	9	meeting, and he asked me whether I would be
10	A. None. 09:16	10	interested in this kind of appointment. 09:17
11	Q. Have you had any discussion with	11	Q. How were you selected in 2005 to
12	Dr. Straif about any of your work as a	12	become the chair of the committee?
13	plaintiff's expert in this litigation?	13	A. Because the chair stepped down, and
14	A. None.	14	they thought they needed somebody else to
15	Q. Your CV mentions that you are a $09: 16$	15	chair. So they asked me, but it was, at the 09:17
16	external advisory committee for the	16	time, already not clear whether this
17		17	advisory panel would really have much to do
18	Agricultural Health Study and then in 2005,	18	in the future.
19	you became the chair of that committee;	19	That was one reason why I said yes
20	correct? 09:17	20	because I knew it wouldn't be much work. 09:17
21	A. Correct.	21	Q. For the period 2001 to 2005 then,
22	Q. And you're currently still serving	22	was that a period where there was more work
23	as the chair of the AHS --	23	on the advisory committee?
24	A. Normally but that committee hasn't	24	A. Yes.
25	met since. 09:17	25	Q. What was the role of the advisory 09:18

	Page 22		Page 23
1	committee during that period of time?	1	A. Correct.
2	A. That was a very active time for the	2	Q. In your role on the advisory
3	cohort because they were in the second phase	3	committee, would you, then, have received
4	of going out there and interviewing and	4	the initial results of that analysis? Have
5	trying to interact with the farmers. 09:18	5	that presented to you for discussion? 09:19
6	And so from year to year, they	6	A. Not necessarily. That was actually
7	would present their progress, but at the	7	up to the authors and depended on whether
8	same time, they were also using the baseline	8	they wanted input from the advisory panel or
9	data that they had collected between 1993	9	certain members of the advisory panel, and I
10	and 1997 to do the first analyses and 09:18	10	can't remember seeing that manuscript. 09:19
11	produce the first results that came out of	11	Q. Would the advisory committee review
12	this cohort.	12	the publications that came out of the AHS
13	So it was a very, very busy time of	13	after they appeared in the --
14	investigators presenting first results,	14	A. That was not our task. Our task
15	presenting first ideas on how to do exposure 09:18	15	was really to be there for those who wanted 09:20
16	assessments and to bang ideas around, and	16	a pre-review.
17	that's what the advisory committee was	17	Q. Did the advisory committee consult
18	charged to do, which is to not only follow	18	on the methodologies that were being used by
19	the fieldwork and make recommendations that	19	the Agricultural Health Study group during
20	was ongoing but also to evaluate those first 09:19	20	that period in preparing their analyses for 09:20
21	analyses and results coming out of the	21	publication?
22	study.	22	MS. FORGIE: Objection.
23	Q. So this was during the period of	23	You can answer.
24	time when the De Roos 2005 publication came	24	THE WITNESS: There was not one
25	out which looked at glyphosate; correct? 09:19	25	publication that we would ever review. 09:20
	Page 24		Page 25
1	Part of what was done at the advisory	1	mean, we are in a room with 35 , 50 people,
2	panel meetings was present to us studies	2	and, you know, if you can get your hand up
3	within the Agricultural Health Study	3	fast enough, you can ask a question.
4	that helped us evaluate the exposure	4	Q. Do you recall during that meeting
5	assessment methods. 09:20	5	whether anybody raised, from the advisory 09:21
6	I remember presentations by	6	committee, raised any concerns about the
7	Dr. Curwin, by the NIOSH group that went	7	validity or reliability of the analysis this
8	out and did field measurements, and I	8	Dr. Acquavella was conducting?
9	also remember presentations by	9	MS. FORGIE: Objection.
10	Dr. Acquavella from Monsanto. They had 09:20	10	THE WITNESS: I do not. I cannot 09:21
11	a relatively close relationship during	11	remember.
12	that time in trying to evaluate	12	BY MR. LASKER:
13	exposures in the field.	13	Q. So that -- you mentioned that was
14	BY MR. LASKER:	14	from the period before 2005, and you have
15	Q. Do you recall then did you review 09:21	15	one meeting that you recall after 2005, 09:22
16	Dr. Acquavella's analyses of urinary	16	sometime in 2006 and 2007. Have you had any
17	biomarkers for glyphosate in other	17	activity as a member of or as a chair of the
18	pesticides?	18	external advisory group for AHS since that
19	A. We did not review it, but we were	19	time?
20	made aware of it. 09:21	20	A. What would happen is from time to 09:22
21	Q. Did you actually have the	21	time we would get a small report of
22	opportunity to question Dr. Acquavella	22	activities that are ongoing in writing. We
23	about his -- and his team about their	23	would have maybe one or two conference calls
24	analyses?	24	where we could ask questions about the
25	A. Maybe one or two questions. I 09:21	25	ongoing activities, and I've been informed 09:22

	Page 26		Page 27
1	that there will be a two-day meeting coming	1	about the response rate for the exposure
2	up in February, but I can't attend it	2	assessment for the AHS and how the AHS group
3	because I'm teaching.	3	has addressed that in their studies.
4	Q. Did you have, during that time	4	Were there any discussions with
5	period, calls addressing the second phase 09:22	5	your group about methods that could be used 09:23
6	questionnaire to gather more information on	6	to address the issue of non-responders in
7	exposure information from the cohort?	7	phase 2?
8	MS. FORGIE: Object to form.	8	A. Only insofar as they were trying to
9	THE WITNESS: That was done. There	9	come up with field methods to get more
10	was no more questions about that. 09:23	10	people to respond. 09:24
11	BY MR. LASKER:	11	Q. Have you had any discussions with
12	Q. So during the period -- that would	12	any of the Agricultural Health Study
13	have been completed in 2003 or 2004.	13	scientists regarding any study data on
14	A. Yeah, yeah.	14	glyphosate and non-Hodgkin's lymphoma?
15	Q. Were you advising, or was your 09:23	15	A. No. 09:24
16	committee advising the AHS on the procedures	16	Q. Have you had any discussions with
17	to use during the second phase in gathering	17	anyone at the AHS regarding research into
18	additional information from the cohort?	18	pesticides more generally?
19	A. Well, that was already decided	19	A. Oh, yes.
20	prior to them going out in the field; so 09:23	20	Q. What discussions -- I know this may 09:24
21	there was nothing you could change. You	21	be a broad topic. I don't know exactly how
22	don't change methods in the middle of	22	to break this down. What discussions have
23	assessments in the field because you get in	23	you had with the AHS group about conducting
24	trouble.	24	pesticide cancer epidemiology? I assume
25	Q. We'll be talking a little bit later 09:23	25	that's the general category. 09:24
	Page 28		Page 29
1	A. That's --	1	necessarily expect selection bias. We would
2	MS. FORGIE: Wait for the question.	2	expect selection to -- well, we would
3	THE WITNESS: That's very broad; so	3	suspect loss to follow-up only if we cannot
4	the discussions would have been quite	4	find cancer cases in the registries that
5	broad. 09:25	5	were being searched for, and that was 09:26
6	BY MR. LASKER:	6	actually part of the assessments in the --
7	Q. I realized that as I was asking the	7	when I was in the room at those meetings was
8	question. Have you had conversations with	8	what search algorithms they were using
9	the AHS scientists about how to conduct	9	broadly to find cancer cases, and they
10	their dose response analyses of pesticides 09:25	10	included not only the cancer registries in 09:26
11	and non-Hodgkin's lymphoma?	11	the States but mortality registries and
12	A. No.	12	other means including following up with the
13	Q. Have you had discussions	13	participants. So in terms of cancer, we
14	regarding -- with the AHS scientists about	14	would expect them to have been able to find
15	how to deal with issues of selection -- 09:25	15	all the cancers. 09:26
16	potential selection bias in the -- if there	16	Q. Did you have any discussions with
17	is any in the AHS study?	17	AHS scientists about the possibility of
18	MS. FORGIE: Object to form.	18	misclassification -- exposure
19	THE WITNESS: Selection bias would	19	misclassification bias in the study?
20	be a differential bias due to loss to 09:25	20	A. The study is a very broad term. 09:27
21	follow-up. Are we talking about cancer,	21	The study has many, many sub studies
22	or are we talking any outcome?	22	including a Parkinson's study I'm very
23	BY MR. LASKER:	23	interested in because that's what I do. And
24	Q. Cancer.	24	yes, there could be selection bias in that
25	A. In terms of cancer we would not 09:25	25	Parkinson's study, and it could be very 09:27

	Page 30		Page 31
1	severe so I'm sure we've had a lot of	1	rather easy to recall for the women, or you
2	discussion around that.	2	can even sample urine every month from a
3	Q. Let me back up because you used	3	pregnant woman. You cannot sample urine
4	selection bias, and I thought we were	4	over lifetime from the farming population of
5	talking about something different but maybe 09:27	5	the size of the AHS. So it's an ongoing 09:28
6	I misstated. I was talking about exposure	6	debate.
7	and misclassification bias. That's a	7	Q. It would be fair to say that the
8	separate issue than selection bias.	8	Agricultural Health Study has made
9	A. Yes.	9	significant efforts through the way it
10	MS. FORGIE: Wait for a question. 09:27	10	interacts with the cohort and the way that 09:28
11	BY MR. LASKER:	11	it formulates the questionnaires, including
12	Q. Have you had conversations with AHS	12	with advice from your committee to minimize
13	scientists about exposure misclassification	13	the potential for exposure misclassification
14	bias particularly with respect to	14	bias?
15	pesticides? 09:27	15	MS. FORGIE: Object to form. 09:28
16	A. That was an ongoing discussion that	16	THE WITNESS: That's a very
17	we had at just about every meeting because	17	relative term. Again, when it comes to
18	in pesticide epidemiology, we are generally	18	lifelong exposures, misclassification of
19	aware that that's a big problem. Exposure	19	exposure gets more and more -- to be
20	misclassification is always a problem with 09:28	20	more and more problem the older the 09:29
21	when you have time varying exposures, and	21	enrollees are and the longer back they
22	you have lifelong exposure periods that you	22	have to recall. It also is a big
23	have to evaluate. So it's not like, for	23	problem if you're not reassessing
24	example, I do a lot of pregnancy studies.	24	exposures every single year.
25	You have a nine months period, and that's 09:28	25	///
	Page 32		Page 33
1	BY MR. LASKER:	1	candidate for faculty at UCLA, I have
2	Q. Did the advisory committee make	2	been very interested in her publication;
3	recommendations to the AHS scientists on	3	so I'm very aware of her publications.
4	methods to address exposure	4	BY MR. LASKER:
5	misclassification or potential for exposure 09:29	5	Q. When was Dr. De Roos being 09:30
6	misclassification that the AHS scientists	6	considered for a faculty position at UCLA?
7	did not accept?	7	A. A few years ago. Two or three
8	A. I can't recall.	8	years ago right before she went to Drexel.
9	Q. Dr. Matthew Ross of Mississippi	9	Q. And through that process, I take it
10	State is also a member of your advisory 09:29	10	you then reviewed all of her studies for -- 09:30
11	committee for the AHS group; correct?	11	A. More or less, yes. Especially the
12	A. As far as I remember, yes.	12	ones I'm familiar with.
13	Q. Have you had any conversation with	13	Q. What different exposures or risk
14	Dr. Ross about glyphosate?	14	factors has the AHS through its research
15	A. No. 09:29	15	associated with non-Hodgkin's lymphoma that 09:31
16	Q. Have you followed the AHS outside	16	you can recall?
17	of this litigation -- have you followed the	17	A. It has found diesel, and it has --
18	AHS's findings with respect to potential	18	there's a small risk increase in certain
19	risk factors in the agricultural community	19	animal husbandry and solvent exposures, but
20	for non-Hodgkin's lymphoma? 09:30	20	the one that I recall the most is diesel 09:31
21	MS. FORGIE: Object to form.	21	exposures.
22	THE WITNESS: I have been following	22	Q. Your CV also mentions that you are
23	the AHS over many years. The focus for	23	a Fellow at the Collegium Ramazzini. I
24	me was always my Parkinson's interest.	24	guess you became that in 2007; correct?
25	However, since Dr. De Roos was a 09:30	25	A. Correct. 09:31

	Page 34		Page 35
1	Q. What is a Collegium Ramazzini?	1	A. I'm not sure they even have any
2	A. It's a boys' club. That's one	2	scientific endeavors, and I wouldn't know
3	reason why I'm not often there. It is a	3	where they're getting their funding from,
4	group of occupational and environmentally	4	but certainly they are not paying you to go
5	interested health professionals who are 09:32	5	there. 09:33
6	meeting once a year in a small place near	6	Q. Are you aware of that the Collegium
7	Bologna in Italy. Ramazzini was 1700's the	7	Ramazzini has announced the intention to
8	first occupational physician credited with	8	conduct research into glyphosate?
9	finding several occupational disorders or	9	MS. FORGIE: Objection.
10	diagnosing them for the first time. So in 09:32	10	THE WITNESS: I have no -- I have 09:33
11	his honor, this is a society. You can only	11	not followed them for a while.
12	be invited to become a member, and it has a	12	BY MR. LASKER:
13	limited number of members. So only when a	13	Q. So the answer is no?
14	member expires or leaves can a new one be	14	A. No.
15	inducted. 09:32	15	MS. FORGIE: Objection. 09:33
16	BY MR. LASKER:	16	BY MR. LASKER:
17	Q. What is the numerical limit?	17	Q. Dr. Straif is a Fellow of the
18	A. It think it is 189 for some reason.	18	Collegium Ramazzini; correct?
19	Q. Do you know who invited you for	19	A. I think he is, but I'm not really
20	membership? 09:32	20	certain. I've never met him there. 09:33
21	A. Yes. It was Dr. Phillip Grandjean	21	Q. Dr. Blair is a Fellow of the
22	from Denmark.	22	Collegium Ramazzini; correct?
23	Q. Where does -- to the extent that	23	A. I think that's true. Again, I
24	you know the Collegium Ramazzini receive	24	don't recall seeing him there.
25	funding for its scientific endeavors? 09:32	25	Q. And Dr. Portier is a fellow of the 09:33
	Page 36		Page 37
1	Collegium Ramazzini; correct?	1	trying to help the conference organizers in
2	A. I wouldn't know that.	2	every way we can. And we have guidelines
3	Q. In 2009, you were elected as a	3	for conference organizers. So that's pretty
4	counselor for the International Society for	4	much it
5	Environmental Epidemiology; correct? 09:33	5	Q. Okay. In your expert report, you 09:34
6	A. Correct.	6	discuss what you describe as some of the
7	Q. What is the role of a counselor for	7	peer review that's conducted in connection
8	the ISEE?	8	with abstracts and presentations at the ISEE
9	A. Well, that's kind of like a board	9	conferences; correct?
10	member, and what you do is you're on a phone 09:34	10	A. Correct. 09:35
11	call once a month with all the other members	11	Q. Can you describe that peer review
12	including the president and the president	12	process?
13	elect and the treasurer, and you're	13	A. Yes. Every year when the
14	conducting business of the society.	14	conferences are being conducted, we elicit
15	Q. One of the things that you've done 09:34	15	peer reviewers from among the council as 09:35
16	-- at least I see from your CV -- is that	16	well as from the membership. So we have a
17	you have been a member of the ISEE's	17	call for the membership out to nominate peer
18	conference organizing committee.	18	viewers for the abstracts and then we
19	A. That's correct.	19	appoint the -- the council appoints these
20	Q. What does that committee do? I 09:34	20	peer reviewers with the help of the 09:35
21	think it's halfway self-evident but . . .	21	conference organizers, and they then are
22	A. Yes, it is self-evident. So we are	22	tasked with peer reviewing the abstracts.
23	the ones who are reviewing the applications	23	And there are guidelines for that. There is
24	that come in from members for conducting the	24	a point system for that, and it's always at
25	conference every year, and we also are 09:34	25	least three reviewers who review, and then 09:35

	Page 38		Page 39
1	it's being summarized and discussed in the	1	or any of the presentations of the NAPP
2	conference committee or better with the	2	investigators?
3	conference organizers.	3	A. Unfortunately not.
4	Q. So the abstract obviously is going	4	Q. Dr. Ritz, let's talk about some
5	to be a fairly short document. Does the 09:36	5	of -- let's get your expert report as the 09:37
6	peer review process involve reaching out and	6	next document. I don't know that we'll be
7	talking to the investigators about their	7	dealing much with your CV so you can set
8	work? What actually is done as part of that	8	that aside.
9	peer review?	9	(Exhibit Number 19-2 was marked
10	MS. FORGIE: Object to form. 09:36	10	for identification.) 09:37
11	THE WITNESS: What we're trying to	11	BY MR. LASKER:
12	do is match the abstracts with people in	12	Q. So this will be Exhibit 19-2.
13	the specific areas of knowledge so that	13	Dr. Ritz, on page -- you address some of the
14	we have expertise in terms of the	14	methodological issues with epidemiology and
15	outcomes assessed, the exposures 09:36	15	epidemiological studies in your report; 09:38
16	assessed, the type of studies conducted.	16	correct?
17	So the peer reviewers are not reaching	17	A. Yes.
18	out, but they are to evaluate whether	18	Q. I'd like to take you to page 6 and
19	there is enough information to make this	19	carrying over to page 7 you're discussing
20	a scientifically solid abstract. 09:36	20	what you identify as the null hypothesis; 09:38
21	BY MR. LASKER:	21	correct?
22	Q. And did you attend the ISEE	22	A. Yes.
23	conference in Brazil in 2015?	23	Q. The null hypothesis is an essential
24	A. I did.	24	concept in scientific methodology not only
25	Q. Did you sit in on the presentation 09:36	25	in epidemiology but in all areas of 09:38
	Page 40		Page 41
1	scientific endeavor seeking to analyze cause	1	ways of specifying that difference in terms
2	and effect; correct?	2	of size or extent so that people can't
3	MS. FORGIE: Object to form.	3	easily agree to that kind of hypothesis.
4	THE WITNESS: Yes, we generally	4	But one in science could decide to
5	formulate something of a null hypothesis 09:38	5	hypothesize something that's not a null 09:39
6	in science, yes.	6	hypothesis, but the convention is to start
7	BY MR. LASKER:	7	with a null hypothesis.
8	Q. The scientific method is based upon	8	Q. If we are using a null hypothesis,
9	generating a hypothesis and then testing to	9	the process of a scientific method is to
10	see if they can falsify -- if that 09:39	10	generate a hypothesis to see if that null 09:40
11	hypothesis can be found to be not true;	11	hypothesis could be shown to be not true;
12	correct?	12	correct?
13	MS. FORGIE: Object to form.	13	A. I would not state it that way. We
14	THE WITNESS: Actually a null	14	are starting with a null hypothesis, and
15	hypothesis is one specific hypothesis. 09:39	15	then we are trying to provide data that 09:40
16	It's the hypothesis that there's no	16	either confirms or refutes the null
17	difference.	17	hypothesis.
18	BY MR. LASKER:	18	Q. Got it. Better.
19	Q. Right.	19	In epidemiology and in cancer
20	A. And that is actually in scientific 09:39	20	epidemiology, for example, the null 09:40
21	circles being discussed as probably not the	21	hypothesis would be that an exposure being
22	best way to go about science all the time.	22	studied is not a cause of cancer; correct?
23	Sometimes you actually want to specify a	23	MS. FORGIE: Object to form.
24	hypothesis of a certain type of difference.	24	THE WITNESS: We would, yes. A
25	However, there is a multitude more 09:39	25	null hypothesis we would state as no 09:40

	Page 42		Page 43
1	difference in risk.	1	Q. Correct. In epidemiologic studies,
2	BY MR. LASKER:	2	the null hypothesis is reflected in an odd
3	Q. Epidemiologists will then design	3	ratio or risk ratio of 1.0; correct?
4	studies to test that null hypothesis;	4	MS. FORGIE: Object to form.
5	correct? 09:41	5	THE WITNESS: Well, that is one 09:42
6	A. Well, we are testing the hypothesis	6	measure. We are using different
7	whether or not that agent contributes to the	7	measures: odds ratio, risk ratios, rate
8	disease. The null hypothesis would be that	8	ratios. And these ratios have point
9	it doesn't.	9	estimates and confidence intervals. The
10	Q. And when you design an 09:41	10	null hypothesis is that, yes, there's no 09:42
11	epidemiological study, you are designing the	11	difference in the risk among the exposed
12	study to be able to test that null	12	compared to the risk among the unexposed
13	hypothesis; correct?	13	or the rate in the exposed compared to
14	A. We can't really -- as I said, we	14	the rate in the unexposed. And since
15	are testing whether an agent adheres or 09:41	15	the ratio measure when there's no 09:42
16	whether the exposure to an agent falls under	16	difference is one, that would be
17	the null hypothesis, or we can generate data	17	considered no effect.
18	that refutes that null hypothesis, yes.	18	BY MR. LASKER:
19	Q. All right. So in designing an	19	Q. Epidemiologists will then analyze
20	epidemiologic study, you are designing the 09:41	20	the data to determine whether that null 09:42
21	study to try and generate data that would at	21	hypothesis can be rejected from that data;
22	least -- would allow you to test the null	22	correct?
23	hypothesis?	23	MS. FORGIE: Object to the form.
24	A. That would allow me to test whether	24	THE WITNESS: Modern
25	there is a difference or not. 09:41	25	epidemiologists would not go out to test 09:43
	Page 44		Page 45
1	a null hypothesis or that kind of null	1	the exposed compared to the risk in the
2	hypothesis in the term of statistical	2	unexposed. Along with that goes
3	testing. What we're trying to do is	3	statistics, but, in essence, we are
4	estimate parameters. So we estimate the	4	estimating parameters.
5	parameter of interest which in this case 09:43	5	BY MR. LASKER: 09:44
6	is the relative risk, the risk ratio, or	6	Q. The process of estimating
7	the odds ratio.	7	parameters in epidemiologic study is to
8	BY MR. LASKER:	8	determine whether that data would provide
9	Q. We'll be talking about exactly how	9	evidence against a null hypothesis; correct?
10	to test that. I'm not talking about how 09:43	10	MS. FORGIE: Object to form and 09:44
11	they would test it, but as a threshold	11	asked and answered.
12	epidemiologists using whatever approach --	12	THE WITNESS: Again, I would want
13	and we'll talk about this in a moment. But	13	to estimate this parameter and then also
14	epidemiologists will analyze the data from	14	see in statistical terms how informative
15	their study to determine whether the null 09:43	15	this parameter is. 09:44
16	hypothesis can be rejected; correct?	16	BY MR. LASKER:
17	MS. FORGIE: Objection. Asked and	17	Q. Right. And the -- what you're
18	answered.	18	looking for with respect to that parameter
19	You can answer it again.	19	is whether or not the data you are analyzing
20	THE WITNESS: Again, I would not 09:43	20	would exclude the null hypothesis, if you're 09:44
21	formulate it in this way. It's an	21	going to reach a causation opinion; correct?
22	estimation problem. We are trying to	22	MS. FORGIE: Object to form, asked
23	estimate a relative risk, a rate ratio,	23	and answered.
24	or an odds ratio which are parameters	24	THE WITNESS: There's a lot more to
25	that tell me something about the risk in 09:43	25	that than just a null hypothesis. 09:44

	Page 46		Page 47
1	There's a lot more that we're doing in	1	parts as well -- is to determine whether or
2	epidemiology to convince ourselves that	2	not at that step the null hypothesis of 1.0
3	there is causation.	3	is at least not due to chance. Is that
4	BY MR. LASKER:	4	fair?
5	Q. That's fair enough. One step in 09:45	5	MS. FORGIE: Objection. Wait. 09:46
6	the process to determine whether or not	6	Object to form and asked and answered.
7	there is causation through an epidemiologic	7	You can do it again.
8	study is whether or not the data is --	8	THE WITNESS: Chance is one -- is
9	allows one to exclude the null hypothesis;	9	just one criterion we are considering as
10	correct? 09:45	10	epidemiologists, and I teach bias 09:46
11	MS. FORGIE: Object to form, asked	11	analysis in the basic methods class at
12	and answered.	12	UCLA. What I teach my students is that
13	You can answer it again.	13	what we have to make sure is that
14	THE WITNESS: Again, we are trying	14	there's no bias and that before
15	to estimate parameters. These 09:45	15	everything else we are ever considering. 09:46
16	parameters have point and interval --	16	So I would not even consider data unless
17	point and interval estimates, and a lot	17	we would go through a rigorous analysis
18	more goes into evaluating the validity	18	of all the biases.
19	of that parameter.	19	BY MR. LASKER:
20	BY MR. LASKER: 09:45	20	Q. Fair enough. In your analysis of 09:46
21	Q. I agree with that, and we'll be	21	the issues of chance, the issues of bias,
22	talking about that. But the purpose of	22	the issues of confounding, when you're
23	determining the point estimate and the	23	looking at all of those issues together,
24	parameters for the statistical analysis part	24	what you are trying to, as an
25	of that -- and we'll talk about the other 09:45	25	epidemiologist, is to determine whether or 09:47
	Page 48		Page 49
1	not those factors can be at least addressed	1	the study design, that you start with
2	efficiently so that together that would	2	the exposure assessment validity, that
3	allow you to determine that the null	3	you start with the outcome assessment
4	hypothesis has been rejected in that study.	4	validity, that you then go into a sample
5	Is that fair? 09:47	5	size, exposure prevalence, any kind of 09:48
6	MR. LASKER: Object to form.	6	bias you can think of, and once you have
7	THE WITNESS: I do not formulate my	7	wrapped it all together, that's when
8	research ever in that way. I'm	8	you're doing a lot of sensitivity
9	estimating parameters, and I'm assessing	9	analyses in your data to convince
10	validity of studies. 09:47	10	yourself that no way -- no matter how 09:48
11	BY MR. LASKER:	11	you look at your data, there is a
12	Q. What would you need to -- what	12	signal.
13	steps would you need to go through then in	13	BY MR. LASKER:
14	an epidemiological study in analyzing the	14	Q. And I think that you mentioned
15	issues of chance and bias and confounding to 09:47	15	this -- you may have mentioned it in your 09:48
16	reach a conclusion in your mind that that	16	report. I know you mentioned it in some of
17	study demonstrates a positive association	17	your class materials -- that the fundamental
18	between the exposure at interest and the	18	question that an epidemiologist must ask
19	outcome at interest?	19	before reaching a causation opinion is is
20	MS. FORGIE: Objection to form. 09:48	20	there any other way of explaining the set of 09:49
21	THE WITNESS: That is a very long	21	facts before us, is there any other answer
22	lecture. I don't know whether we want	22	that is equally or more likely than cause
23	to have it here. It takes me ten weeks	23	and effect; correct?
24	and four hours a week to do that. So	24	MS. FORGIE: Object to form.
25	the short form is that you start with 09:48	25	THE WITNESS: We generally like to 09:49

	Page 50		Page 51
1	challenge each other. Epidemiologists		you are looking for then is just as
2	are extremely critical of their own work	2	consistent a pattern that would explain
3	and that of their colleagues. So we are	3	everything else.
4	asking many, many questions trying to	4	Q. And if you are not -- if you find
5	debunk a positive result that we might 09:49	5	that there is some other explanation that 09:50
6	be seeing in a study. We're coming up	6	could explain the findings, then you would
7	with causal models, with -- yeah, bias	7	not be able to reach an opinion of cause and
8	analyses, sensitivity analyses, and	8	effect. Is that fair?
9	after we've done all of that, there	9	MS. FORGIE: Object to form.
10	might be a positive association; there 09:49	10	THE WITNESS: That would depend. 09:50
11	might not be a positive association.	11	So I would want to see that -- there
12	Whether that's causal, we would usually	12	could be an alternative explanation in
13	want more than one study to decide.	13	one study but not in another. So what
14	BY MR. LASKER:	14	we would like to see is studies done on
15	Q. And the underlying -- the 09:50	15	different continents, in different 09:51
16	fundamental question that you're trying to	16	counties, by different investigators
17	answer when you look at an epidemiologic	17	with different methods. If they all
18	study or a body of epidemiologic literature	18	show the same results, then I'm pretty
19	is whether there is any other way of	19	happy because there's probably not one
20	explaining the facts before you other than 09:50	20	explanation that explains it away. 09:51
21	cause and effect; correct?	21	BY MR. LASKER:
22	A. That would be any one way because	22	Q. The null hypothesis in this case is
23	there's always one way or another in any	23	that glyphosate is not associated with
24	type of study that I can think of that you	24	non-Hodgkin's lymphoma; correct?
25	can find alternative explanations, but what 09:50	25	A. It's either glyphosate or 09:51
	Page 52		Page 53
1	glyphosate-related formulations.	1	the studies included in the IARC review";
2	Q. For epidemiology, it would actually	2	correct?
3	be glyphosate-based herbicides; correct?	3	A. Yes, that's what it says.
4	A. Correct.	4	Q. Okay. And that's the opinion that
5	Q. There are no epidemiology studies 09:51	5	you are -- you'll be presenting in this 09:53
6	that are just pure glyphosate. It's all the	6	litigation; correct?
7	formulate herbicide product?	7	A. I will be presenting my own
8	A. Epidemiology is done in the real	8	conclusions.
9	world. So what is out in the real world is	9	Q. And your own conclusions concur
10	what we're studying. 09:51	10	with the IARC's conclusions; correct? 09:53
11	Q. Okay. And the question, then, on	11	MS. FORGIE: Object to form.
12	to the scientific method and the question	12	THE WITNESS: It concurs with the
13	for you, I take it, in this case is whether	13	overall IARC conclusions.
14	the epidemiologic studies provide data that	14	BY MR. LASKER:
15	would allow you to exclude -- well, strike 09:52	15	Q. And just to be clear, when you're 09:53
16	that.	16	talking about the IARC's conclusions in your
17	You have reviewed, as part of your	17	report, you're talking about IARC's
18	work in this case, IARC's assessment of the	18	conclusions with regard to epidemiology;
19	glyphosate epidemiology; correct?	19	correct?
20	A. I have read that monograph, yes. 09:52	20	MS. FORGIE: Object to form. 09:53
21	Q. And in your expert report -- I	21	THE WITNESS: I am meaning the
22	think it's on page 16 -- it's actually the	22	overall IARC conclusions.
23	last sentence on page 16, you state that you	23	BY MR. LASKER:
24	"concur with the IARC conclusions after	24	Q. Okay. In this section in your
25	conducting my own independent analysis of 09:52	25	report where you state that you concur with 09:53

	Page 54		Page 55
1	IARC's conclusions after conducting your own	1	did.
2	independent analysis of the studies, first	2	Q. That's not your area of expertise,
3	of all, what studies did you review in	3	I take it?
4	connection with your work on this case?	4	MS. FORGIE: Objection. Object to
5	A. What studies did IARC review? 09:53	5	form. 09:54
6	Q. No, did you review. Because you	6	THE WITNESS: Well, in effect, I'm
7	state, "After conducting my own independent	7	a member of the interdisciplinary
8	analysis of the studies included in the IARC	8	program in molecular toxicology at UCLA.
9	review," which studies are we talking about	9	So I teach toxicologists. So yes, I do
10	there? 09:54	10	know how to read toxicology literature. 09:55
11	A. That overlap with IARC's? They	11	BY MR. LASKER:
12	should be all in IARC plus I looked at	12	Q. With respect to the conclusions
13	several others.	13	that can be reached with respect to the
14	Q. But IARC looked at studies dealing	14	animal toxicology studies, would you defer
15	with genotoxicity and dealing with 09:54	15	to the other experts that have been put 09:55
16	toxicology and all the like.	16	forth by the plaintiff's counsel on those
17	A. Yes.	17	issues?
18	Q. Did you review the genotoxicology	18	MS. FORGIE: Object to form.
19	studies that IARC reviewed?	19	THE WITNESS: I'm sure that a
20	A. I did review several papers on 09:54	20	toxicologist can read these papers in 09:55
21	genotoxicity as well as animal studies, yes.	21	different ways, but since I am -- I have
22	Q. And did you conduct an analysis,	22	been working with toxicologists for
23	your own independent analysis of the animal	23	25 years. I'm a member of this teaching
24	toxicology studies?	24	program, I would say that I have a
25	A. As far as I'm able to do that, I 09:54	25	certain ability to draw my own 09:55
	Page 56		Page 57
1	conclusions. Plus I'm medically	1	MS. FORGIE: Object to form.
2	trained, and I know animal pathology	2	THE WITNESS: Well, as a scientist,
3	because it's very close to human	3	you read everything, and as a scientist,
4	pathology.	4	I did go back to the toxicology and
5	BY MR. LASKER: 09:55	5	genotoxicity literature, and I did read 09:56
6	Q. So if I were to ask you questions	6	the IARC Monograph on that. So when I
7	about the Sugimoto rodent study, would you	7	come to a conclusion, it's in the
8	be in a position to answer those questions	8	totality of everything I have reviewed.
9	here today?	9	BY MR. LASKER:
10	MS. FORGIE: Object to form. 09:56	10	Q. I understand that, but your expert 09:57
11	THE WITNESS: You would have to	11	report in discussing the IARC conclusions
12	show me those papers, and I would tell	12	that you concur with, the only conclusions
13	you.	13	that you discussed up to this point in your
14	BY MR. LASKER:	14	report are IARC's conclusions with respect
15	Q. In your expert report up until the 09:56	15	to the epidemiology; correct? 09:57
16	line -- up until page 16, you do not discuss	16	MS. FORGIE: Object to form. Asked
17	any studies other than the epidemiologic	17	and answered.
18	studies; correct?	18	You can answer it again.
19	A. Correct.	19	THE WITNESS: Again, I cannot
20	Q. And in your discussion on page 16 09:56	20	exclude what I know and what I've read 09:57
21	when you're talking about the conclusions	21	and what I've evaluated. So even if I
22	that IARC reached, you are talking about	22	just refer in this report to the
23	IARC's -- the only thing you discussed is	23	epidemiology, which, of course, I
24	IARC's conclusion with regard to the	24	consider myself most an expert, when I
25	epidemiology; correct? 09:56	25	make that comment, I'm referring to the 09:57

	Page 58		Page 59
1	whole IARC conclusion which included the	1	here with the overall IARC conclusion.
2	toxicology and the genotoxicity.	2	BY MR. LASKER:
3	BY MR. LASKER:	3	Q. I understand that, but that's not
4	Q. Do you concur with IARC's	4	my question.
5	conclusions with respect to the 09:57	5	MS. FORGIE: Wait, wait. 09:58
6	epidemiology?	6	BY MR. LASKER:
7	MS. FORGIE: Object to form.	7	Q. When you state here that you are
8	THE WITNESS: Well, IARC's	8	concurring with the IARC's conclusions, you
9	conclusions are IARC's conclusions.	9	state that at page 16 of your expert report,
10	They are very categorical. As a 09:57	10	after talking to the epidemiological 09:58
11	scientist, I wish it wasn't as	11	literature, my question to you is: Do you
12	categorical, and I may or may not confer	12	concur with the IARC's conclusions regarding
13	with the way they are drawing these	13	the glyphosate epidemiology?
14	categorical conclusions. I think the	14	MS. FORGIE: Object to form, asked
15	epidemiology is quite strong. 09:58	15	and answered twice before. 09:58
16	BY MR. LASKER:	16	You can answer it again.
17	Q. Let me be clear, though. When you	17	THE WITNESS: IARC drew conclusions
18	state in your expert report on page 16 that	18	based on three criteria. I read the
19	you concur with the IARC's conclusions, do	19	IARC Monograph. I went back to some of
20	you concur with IARC's conclusions with 09:58	20	the literature on the genotoxicity and 09:59
21	respect to the epidemiology?	21	on the animal studies, and I concur with
22	MS. FORGIE: Object to form and	22	IARC's conclusions.
23	asked and answered.	23	BY MR. LASKER:
24	You can answer it again.	24	Q. Okay. Again, I want to be clear
25	THE WITNESS: Well, I'm concurring 09:58	25	for the record so that the court understands 09:59
	Page 60		Page 61
1	and the answer can be yes or no. That's	1	epidemiologist or the epidemiologist
2	obviously your answer.	2	group and vice versa. But --
3	With respect to IARC's conclusions,	3	BY MR. LASKER:
4	with respect to the epidemiological	4	Q. I understand --
5	literature of glyphosate, and you know that 09:59	5	MS. FORGIE: Wait let her finish, 10:00
6	IARC separately analyzed the epidemiology;	6	please.
7	correct?	7	THE WITNESS: In the end, they have
8	MS. FORGIE: Object to form.	8	to come together with a conclusion, and
9	THE WITNESS: IARC has several	9	the conclusions are very categorical,
10	groups that are evaluating pieces of 09:59	10	and they are balance of evidence type of 10:00
11	science. One is an epidemiology group.	11	conclusions.
12	One is a genotoxicity -- one is a	12	BY MR. LASKER:
13	mechanistic group. Genotoxicity is part	13	Q. I understand that. But my question
14	of it. One is an animal group. Each of	14	to you is specific to the epidemiology
15	them evaluate the literature 09:59	15	subgroup in IARC, and they reached a 10:00
16	independently, come up with conclusions,	16	conclusion with respect to the
17	but then they are meeting together and	17	epidemiological literature; correct?
18	discussing with each other the	18	MS. FORGIE: Objection. Asked and
19	literature and possible conclusions from	19	answered.
20	it. 10:00	20	You can answer it again. 10:00
21	So every scientist in the room gets	21	THE WITNESS: Actually, the
22	to know what the other group is doing	22	epidemiology group alone isn't who comes
23	and how they are reaching possible	23	up with these conclusions. It is
24	conclusions, and they may disagree. A	24	everybody in the room at the overall
25	toxicologist may disagree with an 10:00	25	meetings who agrees on these. 10:00

	Page 62		Page 63
1	BY MR. LASKER:	1	their conclusion. I make my own
2	Q. Okay. And everybody in the room	2	conclusion, but my conclusion as a
3	came to a conclusion with respect to the	3	scientist is based on reviewing all of
4	epidemiologic literature; correct?	4	the literature. I'm more than an
5	MS. FORGIE: Object to form. 10:01	5	epidemiologist. I have medical 10:02
6	THE WITNESS: They came to a	6	training, and I have been working with
7	balanced evaluation that then was put	7	toxicologists and animal
8	into the Monograph and got a category	8	experimentalists for 25,30 years.
${ }^{9}$	number which is 2A possible carcinogen.	9	BY MR. LASKER:
10	BY MR. LASKER: 10:01	10	Q. Right. I understand all of that, 10:02
11	Q. Okay. And that is the overall	11	but my question for you is specific to the
12	assessment of glyphosate. I understand	12	epidemiology. The IARC working group came
13	that. There is also a separate assessment	13	to a conclusion that the glyphosate
14	in the Monograph for the epidemiology, and	14	epidemiology with respect to non-Hodgkin's
15	there's a separate assessment for the animal 10:01	15	lymphoma fit into their category of limited. 10:02
16	toxicology, and there is a separate	16	You understand that; correct?
17	assessment for the mechanisms; correct?	17	MS. FORGIE: Object to form. Asked
18	A. Yes.	18	and answered.
19	Q. What I am asking you is specific to	19	You can answer it again.
20	the conclusion that IARC reached with 10:01	20	THE WITNESS: I understand the 10:02
21	respect to the epidemiology. Okay?	21	categories that IARC is using, and they
22	MS. FORGIE: Objection.	22	have some unfortunate language including
23	THE WITNESS: Again, the	23	the word "limited" because it's not --
24	epidemiology group made their	24	it's a common language word that is very
25	conclusion. I'm not going to question 10:01	25	easy to misunderstand. 10:02
	Page 64		Page 65
1	BY MR. LASKER:	1	BY MR. LASKER:
2	Q. Okay. Well, let's just be clear on	2	Q. Okay. Let's just be clear about
3	what IARC means by "limited" with respect to	3	this. 2 A is the overall assessment. We're
4	epidemiology.	4	talking about the epidemiologic studies.
5	IARC defines limited as: "A 10:02	5	A. Uh-huh. 10:03
6	positive association has been observed	6	MS. FORGIE: Wait for a question.
7	between glyphosate" -- "between exposure to	7	BY MR. LASKER:
8	glyphosate in this instance and NHL for	8	Q. With respect to the epidemiologic
9	which a causal interpretation is credible	9	studies, IARC concluded for glyphosate and
10	but chance, bias, or confounding cannot be 10:03	10	non-Hodgkin's lymphoma that a positive 10:03
11	ruled out with reasonable confidence."	11	association has been observed for which a
12	Correct?	12	causal interpretation is credible but
13	A. Correct.	13	chance, bias, or confounding cannot be ruled
14	MS. FORGIE: Object to form.	14	out with reasonable confidence; correct?
15	BY MR. LASKER: 10:03	15	MS. FORGIE: Object to form, asked 10:04
16	Q. And IARC determined that the	16	and answered.
17	glyphosate epidemiology -- epidemiologic	17	You can answer it again, but you're
18	literature fit within that definition;	18	getting --
19	correct?	19	THE WITNESS: That is --
20	MS. FORGIE: Object to form, asked 10:03	20	MS. FORGIE: Wait, let me finish. 10:04
21	and answered.	21	You're getting to a point where
22	You can answer it again.	22	you're badgering the witness.
23	THE WITNESS: The working group	23	THE WITNESS: That's the IARC
24	gave the label 2A which is this kind of	24	definition.
25	definition, yes. 10:03	25	I/I

	Page 66		Page 67
1	BY MR. LASKER:	1	report to mean, the question to you is very
2	Q. And you state in your expert	2	simple. Do you agree with IARC in its
3	report -- and I'm just trying to understand	3	classification of the epidemiological
4	what this means -- you state in your expert	4	literature for glyphosate and non-Hodgkin's
5	report that you concur with the IARC 10:04	5	lymphoma that a positive association has 10:05
6	conclusions.	6	been observed for which a causal
7	My question to you -- and the	7	interpretation is credible but chance, bias,
8	swer can be yes or no -- is whether you	8	or confounding cannot be ruled out with
9	concur with IARC that for glyphosate and	9	reasonable confidence?
10	non-Hodgkin's lymphoma and the 10:04	10	MS. FORGIE: Object to the form, 10:05
11	epidemiological studies, a positive	11	asked and answered. Also you're
12	association has been observed for which a	12	deliberately misreading the IARC
13	causal interpretation is credible but	13	categories.
14	chance, bias, or confounding cannot be ruled	14	THE WITNESS: Again, IARC has
15	out with reasonable confidence? 10:04	15	unfortunate wording in their categories. 10:05
16	MS. FORGIE: Object to form. Asked	16	One of the unfortunate words is
17	and answered. Also mischaracterizes the	17	"limited." They are expanding on it in
18	IARC, as you know, the IARC categories.	18	a way that to non-epidemiologists is
19	THE WITNESS: Again, on page 16 of	19	problematic, and I'm not going to argue
20	my document what I'm referring to is the 10:04	20	with IARC about this. 10:05
21	overall IARC conclusion.	21	BY MR. LASKER:
22	BY MR. LASKER:	22	Q. My question is not about use of the
23	Q. My question to you is, independent	23	word "limited" or whatever word they use.
24	of whatever you mean or you're interpreting	24	My question is the substance of what IARC
25	the sentence on page 16 in your expert 10:05	25	concluded, and you may agree or you may 10:06
	Page 68		Page 69
1	disagree, but you haven't told me yet which	1	of wording they are using. I think the
2	of those things it is. That's all I'm	2	epidemiology is extremely strong.
3	trying to find out. It's a simple question,	3	BY MR. LASKER:
4	and if we need to mark this and the judge	4	Q. Do you believe based upon your
5	can answer, that's fine. We'll do that. 10:06	5	review of the epidemiological literature for 10:07
6	But it's a simple question, yes or no.	6	glyphosate and non-Hodgkin's lymphoma that a
7	Do you agree with IARC in its	7	positive association has been observed for
8	review of the glyphosate and Roundup	8	which a causal interpretation is credible
9	epidemiological literature for non-Hodgkin's	9	but chance, bias, or confounding could not
10	lymphoma that a positive association has 10:06	10	be ruled out with reasonable confidence? 10:07
11	been observed for which a causal	11	MS. FORGIE: Object to form. Asked
12	interpretation is credible but chance, bias,	12	and answered.
13	or confounding could not be ruled out with	13	You can answer it again.
14	reasonable confidence?	14	THE WITNESS: My reading of the
15	MS. FORGIE: Objection. Object to 10:06	15	literature is that the epidemiology is 10:07
16	the form. You're mischaracterizing and	16	very strong especially since there was
17	misreading the categories of IARC, as	17	additional literature since IARC
18	you know, and it's been asked and	18	conferred in 2015.
19	answered at least five or six times now.	19	BY MR. LASKER:
20	You may answer it again. 10:06	20	Q. Okay. Is your analysis, then, of 10:07
21	THE WITNESS: Again, IARC does	21	the epidemiological literature, your
22	their evaluation the way they do. I'm a	22	conclusions, informed by epidemiological
23	scientist. I did my independent	23	data that has come out subsequent to the
24	evaluation. I used my words. They used	24	IARC working group meeting?
25	theirs. I may not agree with the kind 10:07	25	A. I reviewed the NAPP, yes. 10:08

	Page 70		Page 71
1	Q. Okay. And so in reaching your	1	You can answer it again.
2	conclusions about the strength of the	2	THE WITNESS: Again, I think that a
3	epidemiology for glyphosate and	3	causal association is quite credible,
4	non-Hodgkin's lymphoma -- strike that.	4	and I, as a scientist who is not just an
5	Let me just circle back. Including 10:08	5	epidemiologist, put this in context with 10:09
6	your analysis of the glyphosate literature	6	everything I know, and I agree with IARC
7	and the NAPP data, do you believe that a	7	that it's a 2A.
8	positive association has been observed	8	BY MR. LASKER:
9	between exposure to Roundup and	9	Q. My question, though, is with
10	non-Hodgkin's lymphoma for which a causal 10:08	10	respect to the epidemiologic literature. 10:09
11	interpretation is credible but chance, bias,	11	With respect to the epidemiologic literature
12	or confounding could not be ruled out with	12	for the glyphosate and non-Hodgkin's
13	reasonable confidence?	13	lymphoma, do you think that chance, bias, or
14	MS. FORGIE: Object to form. Asked	14	confounding can be ruled out with reasonable
15	and answered. 10:08	15	confidence? 10:09
16	You can answer it again.	16	MS. FORGIE: Object to form, asked
17	THE WITNESS: I believe there's a	17	and answered. This is like the tenth
18	positive association for which causal	18	time.
19	association is quite credible.	19	You can answer it again.
20	BY MR. LASKER: 10:08	20	THE WITNESS: Okay. I think the 10:09
21	Q. Do you believe that chance, bias,	21	epidemiology is quite strong. I think
22	and confounding can be ruled out with	22	that there is enough reason to make
23	reasonable confidence?	23	causal associations. However, I put
24	MS. FORGIE: Objection. Asked and	24	this in the context of the animal data
25	answered. 10:09	25	and the mechanistic data. As a 10:09
	Page 72		Page 73
1	scientist, I cannot split my mind into	1	BY MR. LASKER:
2	three different parts, and that's also	2	Q. Hello, Dr. Ritz. During the break
3	not what IARC does.	3	I was looking through your expert report,
4	IARC sits in a room and discusses	4	and I did not see any mention in your report
5	this with everyone and comes to their 10:10	5	about any of the animal cancer bioassays 10:29
6	conclusion overall. However, there's	6	regarding glyphosate. Am I correct that
7	additional data that came out since IARC	7	there's no mention of those animal cancer
8	met, and that strengthens the evidence.	8	bioassays in your expert report?
9	BY MR. LASKER:	9	MS. FORGIE: Object to the form.
10	Q. Let's talk about chance. 10:10	10	THE WITNESS: Well, they are 10:29
11	MS. FORGIE: If you're at a	11	mentioned, but I am not critiquing them
12	reasonable breaking point, just let us	12	in the way that I would critique an
13	know.	13	epidemiology study. But I certainly
14	MR. LASKER: Sure. How long have	14	reviewed them.
15	we been? Over an hour? 10:10	15	BY MR. LASKER: 10:29
16	MS. FORGIE: An hour and ten	16	Q. Can you point in your expert report
17	minutes.	17	where you mentioned any of the animal cancer
18	MR. LASKER: That'll be fine.	18	bioassays?
19	THE VIDEOGRAPHER: We're off the	19	A. Under biologic plausibility and
20	record at 10:10 a.m. 10:10	20	where I say what I searched. Where is that? 10:29
21	(Recess taken from 10:10 a.m.	21	Q. I think that's your literature
22	to 10:27 a.m.)	22	review.
23	THE VIDEOGRAPHER: We are back on	23	A. Literature search, yeah.
24	the record at 10:27 a.m.	24	Q. Okay. So let's start with the
25	//]	25	biological plausibility because I read that 10:29

	Page 74		Page 75
1	through a number of times. Maybe I missed	1	and the listed above are mentioned in my
2	it. There are some discussions of a handful	2	search algorithm.
3	of genotoxicity studies, and you cite them.	3	BY MR. LASKER:
4	But I don't see mentioned anywhere in these	4	Q. First of all, the listed above,
5	two paragraphs of the animal cancer 10:30	5	just so we're clear in the section of 10:31
6	bioassays. Is that correct?	6	biological plausibility, is referring to
7	MS. FORGIE: Object to form.	7	studies of genotoxicity and oxidative
8	THE WITNESS: Well, the animal	8	stress; correct?
9	studies I mention on page 25.	9	MS. FORGIE: Object to the form.
10	BY MR. LASKER: 10:30	10	THE WITNESS: No, that's a compound 10:31
11	Q. Which animal studies?	11	sentence, and what I was referring to
12	A. Animal experiments.	12	here is, one, the oxidative stress and
13	Q. With regard to cytotoxic and	13	genotoxicity as a mechanism and, two,
14	genotoxic effects. I see that. Where do	14	the lab experiments that also confirmed
15	you mention any animal cancer bioassays? 10:30	15	carcinogenicity. 10:31
16	A. That says models. Correct. What	16	BY MR. LASKER:
17	are you referring to now?	17	Q. Can you point anywhere -- first of
18	Q. I'm asking if there's any mention	18	all, in biological plausibility -- we'll go
19	anywhere in this section of biological	19	to your literature search as well, but
20	plausibility to an animal cancer bioassay 10:30	20	anywhere in biological plausibility in those 10:32
21	because I'm not seeing it.	21	two paragraphs where you mention an animal
22	MS. FORGIE: Object to the form.	22	cancer bioassay?
23	THE WITNESS: Well, has been	23	A. To me the lab experiments are
24	confirmed by laboratory experiments	24	exactly that. That's what they mean.
25	listed above is what I was referring to, 10:31	25	Q. You state, "The lab experiments 10:32
	Page 76		Page 77
1	listed above," and the lab experiments		here. Yes. Page 8. It starts on page 8.
2	listed above are dealing with cytotoxic and	2	Q. Where in pages 8 and 9 do you
3	genotoxic effects.	3	mention animal cancer bioassays?
4	MS. FORGIE: Wait. Is there a	4	A. Animal and mechanistic literature.
5	question? 10:32	5	It's on page 9. 550 articles for animal and 10:33
6	BY MR. LASKER:	6	mechanistic literature and 600 citations for
7	Q. Where is there a reference anywhere	7	cancer. So that includes the oncology of
8	in these two paragraphs to an animal cancer	8	animals.
9	bioassay?	9	Q. And the bracket after that says,
10	A. No, the listed above does not refer 10:32	10	"Most citations were not immediately 10:33
11	to the mechanisms. The listed above is in	11	relevant to the present question due to
12	terms of the whole document.	12	their focus on topics such as effects in
13	Q. Your whole expert report?	13	fish resulting from runoff, effects on
14	A. Uh-huh.	14	present pregnancy and child development, or
15	Q. And you believe that you mentioned 10:32	15	effects on other cancer types." 10:33
16	the animal cancer bioassays in your	16	Do you see that?
17	literature search?	17	A. Yes.
18	A. Yes.	18	Q. In your discussion of the
19	Q. Let's go to the literature search	19	literature search, you stated that you were
20	then. Now, the literature search, just so 10:32	20	looking to obtain all published studies on 10:33
21	the record is clear is at pages 8 and 9	21	the relationship between non-Hodgkin's
22	which is some 16--15 or 16 pages before	22	lymphoma and glyphosate; correct?
23	that sentence in the biological plausibility	23	A. Yes.
24	section; correct?	24	Q. And --
25	A. I can't see it right now. Oh, 10:33	25	A. And ingredients. The active 10:34

	Page 78		Page 79
1	ingredient in Roundup. So it included	1	BY MR. LASKER:
2	Roundup.	2	Q. First of all, is it your
3	Q. And your statement to then is that	3	understanding that you will be proffering
4	this reference to the fact that you	4	any opinions in this case with respect to
5	conducted a literature search that yielded 10:34	5	animal cancer bioassays? 10:35
6	over 550 articles for animal an mechanistic	6	MS. FORGIE: Object to the form.
7	literature was a disclosure that you had	7	THE WITNESS: Well, my -- what I
8	reviewed the animal cancer bioassays and	8	understand is that I'm here as an expert
9	were rendering an opinion on them in this	9	epidemiologist but also as a scientist.
10	case? 10:34	10	As an expert epidemiologist, I rendered 10:35
11	MS. FORGIE: Object to the form.	11	you with my evaluation of the
12	THE WITNESS: This disclosure means	12	epidemiology. As a scientist I'm
13	that yes, everything that's out there in	13	curious. I go beyond epidemiology. I
14	the literature I am willing and able to	14	look at other types of literature. And
15	look at and select from and form my 10:34	15	I disclosed this here because I was told 10:35
16	opinion on. That's what I do as a	16	that I'm supposed to disclose that.
17	scientist.	17	MR. LASKER: Okay. For the record
18	Actually as a scientist I often	18	we'll state there is nothing in this
19	spend Sundays doing exactly this,	19	expert report that mentions an animal
20	searching the literature broadly to find 10:35	20	cancer bioassay. There is no disclosure 10:35
21	animal and other types of studies that	21	as required under the federal rules of
22	then give me an hint in terms of what	22	any opinion being proffered on animal
23	I'm doing as an epidemiologist, and it's	23	cancer bioassays, and unless counsel is
24	great fun. I like it.	24	here to represent that this witness will
25	//I	25	not be offering opinions with respect to 10:36
	Page 80		Page 81
1	animal cancer bioassays, we will petition the court for a second deposition of this witness because we were not prepared to question the witness on those issues because of the expert report she submitted. And we would also move to strike because those opinions have not been properly disclosed.	1	you just so I understand -- we have to
2		2	have motions practice. Is it
3		3	plaintiff's intention to proffer
4		4	Dr. Ritz to offer expert opinions with
5		5	regard animal cancer bioassays? 10:37
6		6	MS. FORGIE: She intends to give
7		7	her opinion --
8		8	MR. WISNER: Objection. Kathryn,
9		9	you don't have to answer questions in a
10	MS. FORGIE: Well, we're not going 10:36	10	deposition. Are we off the record? 10:37
11	to agree to a second deposition, of	11	MR. LASKER: We are on the record.
12	course. I would say she clearly has	12	MR. WISNER: You can't question
13	stated in there that she has looked at	13	attorneys. That's ridiculous. Let's go
14	over 550 articles for animal and	14	off the record if you want to ask that
15	mechanistic literature. There's another 10:36	15	question. 10:37
16	reference in there about the effects in	16	MR. LASKER: I certainly can. If
17	rodents of glyphosate and she's talked	17	we have to get on record with the court
18	about the CARC report and the IARC	18	and call the court right now, we can do
19	Monograph all of which, as you well	19	that as well. I need to know right now
20	know, do discuss animal literature. 10:36	20	because I'd like to move on. If the 10:37
21	MR. LASKER: Well, to be quite	21	plaintiffs' counsel are not willing to
22	clear, that is not what her expert	22	state on the record that Dr. Ritz will
23	report is, and the judge will be able to	23	not be offering opinions on animal
24	read her expert report; so we don't need	24	cancer bioassays, then we'll have an
25	to debate that. But my question to 10:37	25	issue with the court including a motion 10:37

	Page 82		Page 83
1	to strike and a motion for leave to seek	1	cancer bioassays, and the 550 articles
2	additional deposition.	2	that you are referencing are the ones
3	MS. FORGIE: You can bring whatever	3	talks she about from her initial search
4	motions you want. You can bring	4	which she excluded.
5	whatever motions you want. She's made 10:37	5	MS. FORGIE: I'm not going to argue 10:38
6	it very, very clear that she has	6	with you.
7	expertise in toxicology. You have a	7	MR. WISNER: Objection. How are
8	copy of her CV. She's talked about	8	you testifying? What's going on here?
9	studies and the effects in rodents of	9	MR. LASKER: We will file a motion
10	glyphosate which for whatever reasons 10:38	10	with the court as necessary to strike 10:38
11	you haven't found. She's talked about	11	this witness' testimony and also to seek
12	the IARC Monograph. She's talked about	12	a second deposition.
13	the CARC report. She's talked about the	13	MS. FORGIE: You do whatever you
14	550 articles on rodents, and she's	14	think is appropriate. She has clearly
15	talked about the fact that she intends 10:38	15	stated in her expert report that she 10:38
16	as a scientist in epidemiology to look	16	intends to give full opinions including
17	at the totality of sciences, and that's	17	all kinds of science.
18	exactly what's in her report. Make	18	MR. LASKER: We will submit and, in
19	whatever motions you want to make. I'm	19	fact, the judge has a full expert report
20	not going to argue about this with you. 10:38	20	in front of him, and he can look at that 10:39
21	MR. LASKER: Just to be clear, the	21	himself.
22	statements in her report with respect to	22	BY MR. LASKER:
23	animals which you want to talk about are	23	Q. Dr. Ritz, in your report you
24	specific to genotoxicity and	24	provide a definition of a number of terms
25	cytotoxicity. They do not mention 10:38	25	that epidemiologists use to try to address 10:39
	Page 84		Page 85
1	the issue of chance; correct?	1	BY MR. LASKER:
2	A. Uh-huh. There are definitions in	2	Q. Okay.
3	there in terms of chance and bias, yes.	3	A. So epidemiologists are taught what
4	Q. We'll get to bias. I want to talk	4	a P-value is and how to evaluate it, but
5	about the terms you identify with respect to 10:39	5	they're also taught never to use just a 10:40
6	chance. You provide definitions of the	6	P -value to evaluate a study or chance.
7	terms "P-value" I believe on page 11 in your	7	Q. And that's what I'm going to be
8	report; correct?	8	getting to right now in my next questions.
9	A. It's the -- the title says	9	You mention in your report at pages 11 to 12
10	"Statistical Significance," but the P-value 10:39	10	that the -- there is a convention of using a 10:40
11	is mentioned.	11	P -value of less than . 05 , but some studies
12	Q. Okay. And you explain in your	12	will use P-values such as less than .01 or P
13	expert report -- and we're going to get into	13	less than negative 10 to 7 which is one in
14	some of the issues with this, but	14	10 million; right?
15	epidemiologists at least present P-values in 10:40	15	MS. FORGIE: Object to the form. 10:41
16	trying to address the issue of whether or	16	THE WITNESS: So what is the
17	not a reported odds ratio or relative risk	17	question?
18	might be due to chance; correct?	18	BY MR. LASKER:
19	MS. FORGIE: Object to form.	19	Q. It is correct that epidemiologists
20	THE WITNESS: Epidemiologists are 10:40	20	in various studies will use different 10:41
21	trained -- modern epidemiologists -- and	21	P -values including P less than .05 but
22	those are the ones who drive the methods	22	sometimes P less than .01 or P less than 10
23	in epidemiology -- are trained to at	23	to negative 7; correct?
24	least rely on one parameter. P-value is	24	MS. FORGIE: Object to the form.
25	one parameter. 10:40	25	THE WITNESS: These type of 10:41

	Page 86		Page 87
1	P -values have been defined and used in	1	report, talks about the fact that a
2	studies, but a P-value has a very	2	P -value -- and this is on page 293, but
3	different meaning depending on the type	3	you've been using this article in your
4	of test you are conducting. For	4	teaching for a long time. I think you
5	example, there are test of pair-wise 10:41	5	probably know better than I do. 10:43
6	comparisons. There are tests of trends.	6	Dr. Poole mentions that a P-value
7	There are tests of heterogeneity. There	7	cannot be read as a probability of obtaining
8	are many, many testing situations in	8	a particular result if there is no true
9	which we use P-values, and they have a	9	association between an exposure and disease;
10	very different meaning. 10:42	10	correct? 10:43
11	BY MR. LASKER:	11	A. Where is that?
12	Q. One of the articles that you use in	12	Q. I may be paraphrasing but hold on a
13	teaching your epidemiology students about	13	second. Well, let me just ask it from your
14	P-values is an article by Charles Poole	14	report because you state this as well. I
15	entitled "Low P-values or Narrow Confidence 10:42	15	think it's in here somewhere, but I'm not 10:44
16	Intervals: Which are More Durable?"	16	going to find it as quickly. You state in
17	Correct?	17	your expert report that a P-value should not
18	A. Yes, I love that article.	18	be interpreted as a probability that
19	Q. Good. I have some questions about	19	glyphosate -- in this instance, glyphosate
20	that. This will be Exhibit 19-3. 10:42	20	causes NHL; correct? 10:44
21	(Exhibit Number 19-3 was marked	21	MS. FORGIE: Object to the form.
22	for identification.)	22	THE WITNESS: I would never use a
23	BY MR. LASKER:	23	P -value to say anything about causation.
24	Q. In this article, Dr. Poole, as you	24	A P-value is a parameter, one of many
25	explain in your report, in your expert 10:43	25	types of parameters we are using in 10:44
	Page 88		Page 89
1	evaluating data in order to reach causal	1	So a P-value could be highly
2	conclusions, but it's really just one.	2	statistically significant, and that 10 to
3	It is a knee-jerk reaction in the	3	the minus 7 is one of those genomic studies
4	medical field unfortunately, and that's	4	have P-values of 10 to the minus 10 , and
5	what this article is all about, to just 10:44	5	still the effect size is an odds ratio of 10:46
6	look at P-values and not the data	6	1.03. So that gene contributes 3 percent
7	overall to draw conclusions on the	7	increase to a disease. Is that meaningful
8	validity or reliability of data and come	8	clinically? Can we do something with that?
9	to a conclusion.	9	Is that even useful? We need to debate
10	And at UCLA we are taught not to do 10:45	10	that. But the P-value is the P-value. It's 10:46
11	that, and we are teaching our students	11	10 to the minus 10, and it's huge. Does it
12	not to do that.	12	point to something? We need a lot of other
13	BY MR. LASKER:	13	reasoning to make use of that.
14	Q. And you agree that it is not proper	14	Q. I think one of the things that
15	scientific methodology to point to a P-value 10:45	15	Dr. -- first of all, let me make sure that 10:46
16	alone as providing evidence that data -- of	16	I'm clear. The -- if a test result -- a
17	the data being analyzed substantiates a	17	test statistic results in a P-value of .05 ,
18	conclusion of causation?	18	that does not mean that there's only a
19	A. Well, a P-value alone is nothing	19	5 percent likelihood that the null value is
20	any epidemiologist worth their salt would 10:45	20	correct; correct? 10:47
21	consider for coming to causal conclusions.	21	MS. FORGIE: Object to the form.
22	What we do is we look at the data overall in	22	THE WITNESS: A P-value doesn't
23	the context of the study design, the biases,	23	refer to a likelihood. That's a
24	the size of the study, the effect we are	24	likelihood ratio test.
25	trying to estimate, the effect size. 10:46	25	//I

	Page 90		Page 91
1	BY MR. LASKER:	1	result as large or larger than what I've
2	Q. So where the test on a glyphosate	2	seen.
3	and carcinogenicity, a P statistic of . 05	3	BY MR. LASKER:
4	does not mean that there is a 95 percent	4	Q. But a P-value of . 05 does not mean
5	chance that glyphosate caused the observed 10:47	5	there's a 95 percent likelihood that 10:48
6	cancers; correct?	6	glyphosate caused the observed cancer being
7	A. It means that if you repeat a trial	7	analyzed; correct?
8	a hundred times, 95 percent of the time you	8	MS. FORGIE: Object to the form.
9	may find a result as large or larger than	9	Asked and answered.
10	what you're seeing. 10:47	10	You can answer it again. 10:48
11	Q. Okay. But my question was a little	11	THE WITNESS: This is not a way I
12	bit different. A P-value of 05 in a	12	would ever express the meaning of a
13	glyphosate cancer study does not mean that	13	P -value.
14	it is 95 percent likely that glyphosate	14	BY MR. LASKER:
15	caused the observed cancers; correct? 10:47	15	Q. And that's because, as I think you 10:48
16	MS. FORGIE: Object to the form.	16	explained, the P-value does not tell us
17	Asked and answered.	17	anything about the study's internal validity
18	Go ahead.	18	in being able to accurately identify a
19	THE WITNESS: That was a double	19	causal association if it exists; correct?
20	negative; so I have to restate this. A 10:48	20	MS. FORGIE: Object to the form. 10:48
21	P -value alone will not be used for	21	THE WITNESS: A P-value is not a
22	causal evaluation, and a P-value of . 05	22	measure of validity. A P-value is a
23	means that if a hundred times I repeat	23	measure of randomness or chance.
24	this experiment in the same population,	24	BY MR. LASKER:
25	95 percent of the time I would see a 10:48	25	Q. And Dr. Poole explains -- and this 10:49
	Page 92		Page 93
1	time I think I do have the quote for you.	1	THE WITNESS: What I teach my
2	MS. FORGIE: What page are you?	2	epidemiology students is to take these
3	MR. LASKER: On page 293.	3	statements and put them in the context
4	BY MR. LASKER:	4	of how we use P-values in epidemiology
5	Q. That -- and this is on the left 10:49	5	as one parameter and not the end-all of 10:50
6	column, the second paragraph from the top,	6	causal reasoning.
7	that "Statisticians who have examined these	7	BY MR. LASKER:
8	questions in detail have found under widely	8	Q. And you agree with Dr. Poole that a
9	ranging conditions that P -values on the	9	P -value in the vicinity of .05 generally
10	order of $.05, .01$, and even lower provide 10:49	10	provide almost no evidence against the null $10: 50$
11	much less evidence against the null value	11	hypothesis -- well, I put the "generally" in
12	than they appear to provide at face value."	12	the wrong place. Let me put it exactly how
13	Correct?	13	he says it.
14	A. That's what it states.	14	You agree with Dr. Poole that as a
15	Q. And Dr. Poole explains that 10:49	15	general matter P-values in the vicinity of 10:50
16	P-values in the vicinity of .05 provide	16	. 05 provide almost no evidence against the
17	almost no evidence against the null	17	null hypothesis at all; correct?
18	hypothesis at all; correct?	18	MS. FORGIE: Objection. Asked and
19	A. It says as a general matter	19	answered.
20	P-values in the vicinity of .05 provide $\quad 10: 49$	20	You can answer it again. 10:50
21	almost no evidence against the null	21	THE WITNESS: Well, this sentence
22	hypothesis at all.	22	is taken out of context. What I
23	Q. And that's what you teach your	23	interpret him to be saying here is that
24	epidemiology students; correct?	24	a threshold of .05 because he continues
25	MS. FORGIE: Object to the form. 10:50	25	by talking about a P of .04 , which is, 10:50

	Page 94		Page 95
1	you know, the next from .05, that	1	are typically found to be almost equally
2	keeping decision-making at a threshold	2	probable under the null and alternative
3	of .05 is a pretty ridiculous	3	hypotheses; correct?
4	experiment -- way of arguing.	4	MS. FORGIE: Object to the form.
5	What you really want to do is look 10:51	5	THE WITNESS: Again, this is taken 10:52
6	at the P -value distribution, and that's	6	out of context. This can be
7	what this sentence refers to that, you	7	misunderstood. Since this sentence is
8	know, thresholds are thresholds.	8	taken out of context, what I think he's
9	Whatever evidence you think you can draw	9	referring to is the misuse of thresholds
10	out of them, why this threshold and not 10:51	10	such as .05 . And what he's trying to 10:52
11	the next? So we should look at	11	argue here is that there's no real
12	distributions and not thresholds.	12	difference between a P-value of 05 and
13	BY MR. LASKER:	13	a P-value of .04 or a P-value of .06.
14	Q. In fact, the next sentence that you	14	It's just that we as a scientific
15	refer to, Dr. Poole states that a P-value of 10:51	15	community or the medical community has 10:52
16	. 04 , for instance, is typically found to be	16	agreed that P . 05 is it. That does not
17	almost equally probable under the null and	17	necessarily make sense if you want to
18	alternative hypotheses; correct?	18	look at data in a much more
19	A. Correct. That's what it states.	19	comprehensive way, you should look at a
20	Q. And you agree with that; correct? 10:51	20	P -value distribution, and the P-value 10:53
21	A. It refers to the structure of a	21	has a continuum.
22	P -value being a distribution -- coming from	22	And insofar as we're trying to have
23	a distribution, but we are deciding	23	a scientific dialogue, we should use the
24	arbitrarily what threshold to use, yes.	24	most data we can and not just the
25	Q. And you agree that P-values of .04 10:52	25	threshold for decision-making. Human 10:53
	Page 96		Page 97
1	lives are not light bulbs. P-values of	1	paper that you use in teaching your
2	. 05 come out of light-bulb testing that	2	epidemiologic students, I'd like to return
3	statisticians used -- right -- in	3	to this sentence that Dr. Poole has in his
4	industrial settings. And why it's a	4	article that P equals . 04 is typically found
5	simple matter. We like to think without 10:53	5	to be almost equally probable under the null 10:57
6	having to go back to all the data, and	6	and alternative hypothesis.
7	that's a bad habit, and we are trying to	7	Do you see that?
8	teach our students not to get into those	8	A. Yes.
9	bad habits.	9	Q. And so in our circumstance, in this
10	THE REPORTER: Counsel, excuse me. 10:53	10	case, the null hypothesis is that glyphosate 10:57
11	I just had a technical difficulty. I	11	does not cause non-Hodgkin's lymphoma, and
12	need to go off and restart very quickly.	12	the alternate hypothesis would be that
13	MR. LASKER: Okay.	13	glyphosate does cause non-Hodgkin's
14	THE VIDEOGRAPHER: We're off the	14	lymphoma; correct?
15	record at 10:52 a.m. This marks the end 10:53	15	MS. FORGIE: Object to the form. 10:57
16	of videotape number 1.	16	THE WITNESS: Actually, there's
17	(Recess taken from 10:52 a.m.	17	usually more than one alternate
18	to 10:57 a.m.)	18	hypothesis. So the alternate hypothesis
19	THE VIDEOGRAPHER: We are back on	19	could be it is tenfold more probable to
20	the record. The time is 10:57 a.m. 10:57	20	suffer from non-Hodgkin's lymphoma. 10:58
21	This marks the beginning of videotape	21	It's twofold more probable. So these
22	number 2 in the deposition of Dr. Beate	22	are all parameter estimates of an effect
23	Ritz.	23	size, meaning the alternative is not
24	BY MR. LASKER:	24	just one alternative. The alternative
25	Q. Dr. Ritz, going back to the Poole 10:57	25	is a continuum. 10:58

	Page 98		Page 99
1	That's what I tried to explain an	1	what the picture is in terms of a
2	hour ago when I said why we are usually	2	P -value distribution and you can
3	going with the null hypothesis is	3	actually find that in Dr. Greenland's
4	because that is one point while	4	book where he discusses on the P-value
5	alternative hypotheses are many fold. 10:58	5	is the P -value distribution as an 10:59
6	BY MR. LASKER:	6	alternate to this threshold kind of
7	Q. Understood.	7	experiment.
8	What Dr. Poole is stating then is	8	BY MR. LASKER:
9	that a P-value of .04 would be almost	9	Q. When you use that distribution, you
10	equally probable under the null hypothesis 10:58	10	find that a P-value of .05 generally 10:59
11	here that glyphosate doesn't cause	11	provides almost no evidence against the null
12	non-Hodgkin's lymphoma and the alternative	12	hypothesis; correct?
13	hypotheses of various possible measures in	13	MS. FORGIE: Object to the form.
14	which glyphosate does cause non-Hodgkin's	14	THE WITNESS: No, that's not the
15	lymphoma; correct? 10:58	15	right interpretation. It means it's 11:00
16	MS. FORGIE: Object to the form.	16	almost equally probable. It doesn't say
17	THE WITNESS: Well, what he's	17	that I'm rejecting or not rejecting
18	trying to say here, as I interpret this,	18	either the null or the alternative
19	is that he is emphasizing that we should	19	hypothesis.
20	not be using one P-value of . 04 or . 05 10:59	20	BY MR. LASKER: 11:00
21	or . 06 , but we should be evaluating the	21	Q. Understood.
22	data, and that's how I teach it, in	22	Okay. So then if you have a P
23	terms of what the overall picture in	23	equals -- and to use Dr. Poole's specific
24	terms of chance, bias, et cetera, is,	24	quote here -- if you have a P equals . 04
25	and if we are just talking P-values, 10:59	25	then in a study, you will find it is equally 11:00
	Page 100		Page 101
1	probable that here glyphosate, in fact,	1	BY MR. LASKER:
2	caused the cancer or that glyphosate did not	2	Q. So the null hypothesis would be the
3	cause the cancer; correct?	3	glyphosate does not cause non-Hodgkin's
4	MS. FORGIE: Object to the form.	4	lymphoma here, and the alternative
5	Mischaracterizes, asked and answered. 11:00	5	hypothesis might be a variety of other 11:01
6	THE WITNESS: The P-value here says	6	things with respect to the nature of
7	nothing about glyphosate. What he says	7	glyphosate's association with non-Hodgkin's
8	here is that a P of .04 is typically	8	lymphoma.
9	found to be almost equally probable	9	What I'd like to understand here,
10	under a null alternative hypothesis. He 11:00	10	and I think I'm reading this as it's stated 11:01
11	speaks about a P-value, not about a null	11	here, but if that is our understanding of
12	hypothesis that glyphosate is or isn't	12	the null hypothesis here, a P-value of . 04
13	causing NHL.	13	would typically be found to be almost
14	BY MR. LASKER:	14	equally probable under that null hypothesis
15	Q. I understand that. We can take it 11:00	15	or under an alternative causation 11:01
16	from both steps, but we want to discuss the	16	hypothesis; correct?
17	fact that -- and I think you mentioned this	17	MS. FORGIE: Object to the form.
18	before -- in the context of this case, the	18	Asked and answered.
19	null hypothesis that we're looking at is	19	And you can answer it again.
20	whether or not glyphosate causes 11:01	20	THE WITNESS: This is about the 11:02
21	non-Hodgkin's lymphoma?	21	P-value. It's about threshold. It's
22	A. And what I would be --	22	about null hypotheses and alternative
23	MS. FORGIE: Wait, wait. There's	23	hypotheses. It's not about how I assess
24	no question.	24	causation.
25	//I	25	I/I

	Page 102		Page	103
1	BY MR. LASKER:	1	a P-value of .04 , what Dr. Poole is stating	
2	Q. I'm not saying it is. I'm just	2	is that that result would be equally likely	
3	trying to understand P-values, and I think	3	if, in fact, the glyphosate had caused those	
4	it's consistent with what you said, but a	4	cancers or the glyphosate had not caused	
5	P-value of .04 in the context of a 11:02 glyphosate study or glyphosate cancer study	5	those cancers? 11:03	
6		6	MS. FORGIE: Object to the form.	
7	you could be equally likely to find that	7	Asked and answered.	
8	P-value if glyphosate actually was a cause	8	You can answer it again.	
9	of cancer or if glyphosate was not a cause	9	THE WITNESS: No, that's not how I	
10	of the cancer; correct? 11:02	10	would interpret this. 11:03	
11	MS. FORGIE: Object to the form.	11	BY MR. LASKER:	
12	Asked and answered.	12	Q. If you're doing a test in which the	
13	You can answer it again.	13	null hypothesis is glyphosate does not cause	
14	THE WITNESS: No. It means you	14	cancer and the alternative hypothesis is that glyphosate does cause cancer and you	
15	have to state your null hypothesis or 11:02	15		11:03
16	you have to state your alternative	16	get a P-value of .04 , that would make the	
17	hypothesis. Under those hypotheses, you	17	null hypothesis and the alternative	
18	are able to calculate a P-value. If it	18	hypothesis equally likely; correct?	
19	is .04 , then it might be equally	19	MS. FORGIE: Object to the form.	
20	probable under both types of hypotheses. 11:02	20	Asked and answered. 11:03	
21	That what this means.	21	You can answer it again.	
22	BY MR. LASKER:	22	This is like the fifth time on the	
23	Q. Okay. So if you were to do a test,	23	same question, Eric.	
24		24	THE WITNESS: Again, the P-value of	
25	whether glyphosate causes cancer and you get 11:03	25	. 04 that he refers to here is the 11:03	
	Page 104		Page	105
1	threshold P-value, and he calls this	1	could, of course, then decide to also	
2	threshold P-value equally probable under	2	test other hypotheses, and we could get	
3	the null and alternative hypotheses. We	3	for or against those hypotheses with a	
4	have to state all these hypotheses. We	4	similar equal chance of P-value of .04.	
5	then can calculate P-values. 11:04	5	That's what it says. 11:05	
6	We can calculate P-value	6	BY MR. LASKER:	
7		7	upshot of this work has been a statistical	
8	distributions, and we can see how likely the P-values are, not the associations,	8		
9	not the causation, not everything else.	9	research program devoted to calibrating,	
10	BY MR. LASKER: 11:04	10	standardizing, conditioning, and adjusting	11:05
11	Q. And the P-value is equally likely	11	low P-values to make them higher so that	
12	hypothesis; correct?	12	they reflect more realistically the limited	
13		13	statistical evidence they provide against	
14	Asked and answered. This is like the 11:04	14	null hypothesis; correct?	
15		15	MS. FORGIE: Object to the form.	11:05
16	eighth time.	16	That's misread.	
17	You can answer it again.	17	But you can answer.	
18	THE WITNESS: Again, as I	18	THE WITNESS: He's referring to	
19	understand what Dr. Poole is trying to	19	Bayesian methods being developed here,	
20	say here is to avoid thresholds such as 11:04	20	yes. 11:05	
21	P-values of .04 because they are always	21	BY MR. LASKER:	
22	referring to one type of hypothesis, and	22	Q. And you agree that's appropriate;	
23	we are rarely ever asking the other	23	correct?	
24	alternative hypotheses. So we are	24	A. I'm not a Bayesian.	
25	usually just testing one hypothesis. We 11:05	25	Q. So you don't know one way or the	11:05

	Page 106		Page 107
1	other?	1	there are developments in statistics
2	MS. FORGIE: Object to the form.	2	that, you know, we should be looking out
3	THE WITNESS: No. I'm saying that	3	for, and this is 2001. So some of these
4	Bayesian versus frequentist	4	might have happened.
5	statisticians have a lot of things in 11:06	5	BY MR. LASKER: 11:06
6	common, and I would not want to be on	6	Q. You also talk about confidence
7	one side or the other. I think they're	7	intervals in your expert report; correct?
8	useful for different purposes.	8	A. Correct.
9	BY MR. LASKER:	9	Q. And, again, the standard
10	Q. You do agree, though, that 11:06	10	methodology or the standard measure used by 11:07
11	statistical methods devoted to calibrating,	11	epidemiologists to exclude chance using
12	standardizing, conditioning, and adjusting	12	confidence intervals is the 95 percent
13	low P-values to make them higher so that	13	confidence interval; correct?
14	they reflect more realistically the limited	14	MS. FORGIE: Object to the form.
15	statistical evidence they provide against a 11:06	15	THE WITNESS: The 95 percent 11:07
16	null hypothesis is a good idea?	16	confidence interval is a convention just
17	MS. FORGIE: Objection. Asked and	17	like the P-value of . 05.
18	answered.	18	BY MR. LASKER:
19	You can answer it again.	19	Q. Under that convention, a confidence
20	THE WITNESS: I'm saying I'm not of 11:06	20	interval is considered statistically 11:07
21	either statistical camp, frequentist or	21	significant if it excludes the null
22	Bayesian. I believe that they are both	22	hypothesis of 1.0; correct?
23	useful. They have appropriate purposes	23	A. The confidence interval projects
24	and when needed, I use either one of	24	similar types of data as the P-value in this
25	them, and what he says here is that 11:06	25	case. You are correct that if a P-value of 11:07
	Page 108		Page 109
1	. 05 is what I'm looking for, then a	1	a P-value would. A singular threshold
2	95 percent confidence interval would exclude	2	P-value, not a P-value distribution.
3	the 1.	3	BY MR. LASKER:
4	Q. And, again, you would not state	4	Q. One thing you teach your students
5	that a statistical significance -- if a test 11:08	5	to look at is what's called the confidence 11:09
6	is significant at the 95 percent confidence	6	limit ratio; correct?
7	interval, that would not mean to you that	7	A. Yes, we can look at that as well.
8	you can have 95 percent confidence that the	8	Q. And the confidence limit ratio is
9	value that you see in a given study is not	9	the ratio between the upper and the lower
10	due to chance; correct? 11:08	10	end of the confidence interval; correct? 11:09
11	MS. FORGIE: Object to the form.	11	A. Correct.
12	THE WITNESS: That's not how we	12	Q. So if we have a study that reports
13	interpret confidence intervals.	13	an odds ratio of 1.5 and, let's say, a
14	Confidence intervals have similar	14	confidence interval of 0.8 to 3.2 -- do the;
15	information but also more information 11:08	15	math work well -- the confidence limit ratio 11:09
16	than a P-value. So I have to first	16	would be 4' correct?
17	decide on the confidence limit, which is	17	MS. FORGIE: Object to the form.
18	95 percent, which is also similar to a	18	THE WITNESS: What would the ratio
19	P -value of . 05.	19	be.
20	So if I use a confidence interval 11:08	20	BY MR. LASKER: 11:09
21	in the same bad manner as a P-value,	21	Q. If it's a 95 percent confidence
22	meaning as a threshold, then that's all	22	level of 0.8 to 3.2, then your confidence
23	I get out of it. However, I teach my	23	limit ratio is 3.2 divided by 0.8 or 4;
24	students that a confidence interval	24	correct?
25	actually tells them a lot more than what 11:08	25	A. Right. 11:09

	Page 114		Page 115
1	lectures, at least this was in 2010;	1	future research; correct?
2	correct?	2	MS. FORGIE: Object to the form.
3	A. I imagine. If nobody played with	3	THE WITNESS: Conditional on their
4	it.	4	validity.
5	MS. FORGIE: I don't know about 11:13	5	BY MR. LASKER: 11:14
6	that.	6	Q. Correct.
7	BY MR. LASKER:	7	A. Uh-huh.
8	Q. On pages 123 -- actually, 124 and	8	Q. And those studies with the tighter
9	125. The one thing we did do is we put	9	confidence limit ratio would weigh more
10	numbers on these slides. So it's actually 11:14	10	heavily into a meta-analysis; correct? 11:15
11	in the bottom right-hand corner. It's the	11	MS. FORGIE: Object to the form.
12	only change we made; so we can actually do	12	THE WITNESS: Not necessarily. It
13	this in a somewhat efficient manner.	13	depends on the study size. So we could
14	MS. FORGIE: What number again on	14	have -- it depends.
15	what page? 11:14	15	BY MR. LASKER: 11:15
16	MR. LASKER: 124 and 125. This is	16	Q. Okay. In your lecture notes to
17	the same slide actually that appears in	17	your class, you state that "Estimates B and
18	Dr. Poole's article.	18	D would weigh more heavily into
19	BY MR. LASKER:	19	meta-analysis and would exert stronger
20	Q. On page 125, you make the point 11:14	20	influences on probability distributions in 11:15
21	that the estimates with a smaller CLR --	21	properly conducted Bayesian analyses";
22	here it's B and D -- mean the width of the	22	correct?
23	confidence intervals is tighter -- are	23	A. Yes.
24	findings that stand the best chance of	24	Q. And that is correct; right?
25	holding up in the context of existing and 11:14	25	A. Yes, that is correct. $11: 15$
	Page 116		Page 117
1	Q. And you also state that these	1	was .02 level, because it has a wider CLR
2	estimates with the more narrow CLR are the	2	than, for example, number D or letter D,
3	results that should be put forth for	3	which is not statistically significant, it
4	emphasis as the most statistically stable	4	is -- has less chance of holding up
5	results that this study has to offer; 11:15	5	conditioned on its validity in the context 11:17
6	correct?	6	of existing and future research; correct?
7	MS. FORGIE: Object to the form.	7	MS. FORGIE: Object to the form.
8	THE WITNESS: What was the	8	THE WITNESS: Indeed that is one
9	question? That I state this?	9	thing I try to explain to my students to
10	BY MR. LASKER: 11:15	10	not rely just on the P-value, P less 11:17
11	Q. You state that these estimates B	11	than .05 , which in the C row, we see is
12	and D with the more narrow CLR are the	12	the case, but we also have a wide CLR,
13	results that should be put forth for	13	and we have a very strong point estimate
14	emphasis as the most statistically stable	14	and a wide confidence interval.
15	results this study has to offer; correct? 11:16	15	So when you're taking all of that 11:17
16	MS. FORGIE: Object to the form.	16	into consideration, then the estimate D
17	THE WITNESS: Actually, it doesn't	17	would be at least, if not more, valid,
18	refer to the CLR. It refers to the	18	might prove more valid in the end or
19	whole of the data provided under B and	19	more reproducible in the end than the
20	D. 11:16	20	estimate C. However, you know, all this 11:17
21	BY MR. LASKER:	21	depends on validity, as I said.
22	Q. Okay. And the data with a narrower	22	BY MR. LASKER:
23	CLR, one of the points you're making here is	23	Q. Okay. And you state in your expert
24	that even though, for example, your category	24	report -- and it's on page 12 in your expert
25	C is statistically significant to the P, it 11:16	25	report -- that -- the last sentence of the 11:18

	Page 118		Page 119
1	first full paragraph that starts	1	MS. FORGIE: Object to the form.
2	"Importantly, however."	2	BY MR. LASKER:
3	A. Which page?	3	Q. That's a measurement of the width
4	Q. Page 12.	4	of the confidence interval?
5	A. Yes. 11:18	5	A. It's a measurement of the width of 11:19
6	Q. And you state that "The odds ratios	6	the confidence interval; however, the CLR
7	or the risk ratios least likely to be	7	does not tell you anything about the
8	influenced by chance are not those with low	8	placement of the confidence interval.
9	P -values, but those with narrow confidence	9	Q. Understood.
10	intervals or low CLRs." Correct? 11:18	10	MS. FORGIE: Wait. Let her finish. 11:19
11	MS. FORGIE: Object to the form.	11	THE WITNESS: What I've been trying
12	THE WITNESS: Where was that?	12	to say is we should not rely solely on a
13	BY MR. LASKER:	13	P -value especially a P-value threshold
14	Q. The last sentence of the second	14	or a confidence interval or a CLR or a
15	paragraph. 11:18	15	point estimate. 11:19
16	A. "Importantly, estimates least	16	So don't be fooled by a high point
17	influenced by chance are not those with low	17	estimate but a confidence interval that
18	P -values but those with narrow confidence	18	goes from .5 to 200 because that data is
19	intervals."	19	pretty much uninformative.
20	Q. That's correct; right? 11:18	20	BY MR. LASKER: 11:19
21	A. In the context of this, yes.	21	Q. Now, on page -- in your expert
22	Q. Okay. And when we talk about	22	report on page 15, you provide a table
23	narrow confidence intervals, the measurement	23	listing of different publications with
24	that you provided for us that I'd like to be	24	epidemiological data in glyphosate and
25	able to use is the CLR; correct? 11:19	25	non-Hodgkin's lymphoma; correct? 11:20
	Page 120		Page 121
1	A. Where is this?	1	THE WITNESS: Well, powerful has
2	Q. Page 15 in your report.	2	many meanings. If we're talking about
3	A. Yes.	3	statistically powerful versus powerful
4	Q. And just so it's clear, this table	4	in a sense of validity, then, you know,
5	does not tell you or does not provide you 11:20	5	those are different discussions. 11:21
6	with a -- the relative -- a sense of the	6	BY MR. LASKER:
7	relative power of the listed studies to	7	Q. This table does not tell us
8	identify a causal association between	8	anything about which study is the most
9	glyphosate and non-Hodgkin's lymphoma;	9	statistically powerful in determining
10	correct? 11:20	10	whether there is a causal relationship 11:21
11	A. This table shows what it says in	11	between glyphosate and non-Hodgkin's
12	the sentence above. "I show the sample size	12	lymphoma; correct?
13	of each human study of glyphosate in NHL."	13	MS. FORGIE: Objection. Asked and
14	That's exactly it. It shows the sample	14	answered. This is the third time.
15	size. 11:20	15	You can answer it again. 11:21
16	Q. Okay. This table did not tell	16	THE WITNESS: This table was meant
17	you -- did not tell you which of these	17	to show sample size.
18	studies is the most powerful study in being	18	BY MR. LASKER:
19	able to assess an association between	19	Q. It does not tell you anything about
20	glyphosate and non-Hodgkin's lymphoma; 11:20	20	the power of the study to determine a causal 11:21
21	correct?	21	association between glyphosate and
22	MS. FORGIE: Objection. Asked and	22	non-Hodgkin's lymphoma; correct?
23	answered. That's the exact question you	23	MS. FORGIE: Objection. Asked and
24	just asked.	24	answered. This is the fourth time.
25	You can answer it again. 11:21	25	THE WITNESS: Wrong. Sample size 11:21

	Page 122		Page 123
1	is one element of the power of a study.	1	MS. FORGIE: Objection. I object
2	BY MR. LASKER:	2	to the form, and asked and answered.
3	Q. Okay. The top listed study on your	3	THE WITNESS: You don't like my
4	table is the Cocco study 2013; correct?	4	table?
5	A. Yes. 11:21	5	BY MR. LASKER: 11:22
6	Q. And the Cocco study is the least	6	Q. I'm just asking you a question.
7	powerful of all the epidemiologic studies to	7	A. The Cocco study is what the Cocco
8	be able to assess the association between	8	study is, and I actually explain the Cocco
9	glyphosate and non-Hodgkin's lymphoma;	9	study a few pages later. The study by Cocco
10	correct? 11:22	10	was limited in how much we can glean from 11:22
11	MS. FORGIE: Object to the form.	11	its results as only four cases and two
12	THE WITNESS: This table shows	12	controls had ever used glyphosate.
13	sample size. It has nothing to do with	13	Q. So the Cocco study is, because of
14	statistical power in the sense that it's	14	that fact, not powerful in assessing an
15	a complete evaluation of statistical 11:22	15	association between glyphosate and 11:23
16	power. However, sample size is part of	16	non-Hodgkin's lymphoma; correct?
17	what we use in calculating statistical	17	MS. FORGIE: Object to the form and
18	power.	18	asked and answered. This is, like, the
19	BY MR. LASKER:	19	fifth or sixth time.
20	Q. My question, though, you have Cocco 11:22	20	You can answer it again. 11:23
21	listed as the top study on this table, and	21	THE WITNESS: The Cocco study has
22	the Cocco study is, in fact, the least	22	been evaluated by me. It's also been
23	powerful study in assessing a potential	23	listed in this table. This table shows
24	causal association between glyphosate and	24	sample size. The Cocco study is
25	non-Hodgkin's lymphoma; correct? 11:22	25	definitely the largest study we have in 11:23
	Page 124		Page 125
1	terms of sample size of cases, not	1	One of those is the number of cases.
2	controls. The AHS has a lot more	2	The other is the number of controls.
3	controls. So in terms of case number,	3	Yet another is the prevalence of
4	it is the most -- it is the study with	4	exposure, and then power cannot be
5	the most cases. However, as I said a 11:23	5	distinguished on a playing field without 11:24
6	few pages after on page 18, it is	6	saying what effect size you actually
7	limited because of low exposure	7	want to estimate. So once we have
8	prevalence.	8	agreed what the effect size is, then we
9	BY MR. LASKER:	9	can talk about power.
10	Q. And just so I understand, the Cocco 11:23	10	BY MR. LASKER: 11:24
11	study is the, I believe, least powerful	11	Q. It would not be appropriate for
12	study in being able to answer the question	12	somebody to look at this table on page 15
13	of whether glyphosate is causally associated	13	and conclude that the Cocco study was more
14	with non-Hodgkin's lymphoma; correct?	14	powerful than the De Roos study with respect
15	MS. FORGIE: Object to the form. 11:24	15	to assessing whether there is an association 11:25
16	Asked and answered. This is number six.	16	between glyphosate and non-Hodgkin's
17	You can answer it again.	17	lymphoma; is that fair?
18	THE WITNESS: The Cocco study has a	18	MS. FORGIE: Object to the form and
19	large sample size in terms of cases.	19	asked and answered.
20	The AHS study has the largest sample 11:24	20	THE WITNESS: Again, if we're 11:25
21	size in terms of controls. One is at	21	talking statistical power and not
22	the top; the other is at the bottom. We	22	validity of the study, which, you know,
23	could turn it around if you'd like.	23	is another criterion that I would put
24	However, power, statistical power is	24	actually much higher here, the Cocco
25	determined by a number of parameters. 11:24	25	study has the most cases. The De Roos 11:25

	Page 126		Page 127
1	study has the most controls. Both are	1	instruction for the witness to answer
2	powerful because of that part of the	2	the questions or to provide us more
3	equation that goes into a power	3	time. I ask yes or no questions and I
4	analysis. However, there are more	4	get a speech.
5	parameters than the number of cases, the 11:25	5	MS. FORGIE: You know, first of 11:26
6	number of controls. One of them is	6	all, part of the problem is you keep
7	exposure prevalence. I explain that	7	putting these long declaratory
8	when I talk about the Cocco study as not	8	statements before everything. She is
9	being able to tell us much because it	9	not required to give a yes or no answer.
10	has low exposure prevalence. On the 11:25	10	She has answered it very clearly -- 11:26
11	other hand, De Roos has a very high	11	MR. LASKER: You're not the
12	exposure prevalence.	12	witness.
13	BY MR. LASKER:	13	MS. FORGIE: Let me finish.
14	Q. Dr. --	14	MR. LASKER: You're not the
15	MS. FORGIE: Wait. Let her finish. 11:26	15	witness. 11:26
16	MR. LASKER: We're going to be here	16	MS. FORGIE: Neither are you. So,
17	all day, and I'm going to have to mark	17	you know what? If you want to call the
18	this and go to the judge because I can't	18	judge, I think you should go ahead.
19	get a yes or no answer to any question I	19	MR. LASKER: Okay. Well, we're
20	ask. I asked a very simple question, 11:26	20	going to start marking these and at a 11:26
21	and she's going into a monologue. We're	21	certain point we'll go -- let me mark
22	not going to have that happen here. So	22	the last question and answer. I'm going
23	if the witness is not going to answer	23	to ask the question again.
24	the questions, then we'll have to go to	24	MS. FORGIE: Are you going to call
25	the court again to either get 11:26	25	the judge? 11:26
	Page 128		Page 129
1	MR. LASKER: I will eventually if	1	show parts of statistical power, but, of
2	this keeps up. I'm going to mark them	2	course, I would not want to infer
3	and we'll come back to the judge if we	3	statistical power from just this table.
4	have to.	4	But it is part of it.
5	BY MR. LASKER: 11:26	5	BY MR. LASKER: 11:27
6	Q. Table 15, the table you present on	6	Q. And another way one could look at
7	page 15 of your report. It would not be	7	this would be to calculate the CLRs for each
8	appropriate to look at this table alone to	8	of these studies; correct?
9	reach a conclusion as to the relative power	9	MS. FORGIE: Object to the form.
10	of the listed studies to determine whether 11:27	10	BY MR. LASKER: 11:27
11	glyphosate is associated with non-Hodgkin's	11	Q. For the endpoint of Roundup and
12	lymphoma; correct?	12	non-Hodgkin's lymphoma?
13	MS. FORGIE: Object to the form.	13	A. CLRs is something that we calculate
14	Asked and answered. This is like	14	after we have the data and the parameter
15	number $7.111: 27$	15	estimates. 11:28
16	You can answer it again.	16	Q. Right. And we have the data and
17	THE WITNESS: This is a table that	17	the parameter estimates for each of these
18	refers to sample size. Sample size is	18	studies; correct?
19	part of statistical power.	19	A. Yeah, but that is not how we're
20	BY MR. LASKER: 11:27	20	calculating statistical power. Statistical 11:28
21	Q. It would not be --	21	power is something that we are calculating
22	A. So --	22	prior to conducting the study.
23	MS. FORGIE: She is entitled to	23	Q. Understood. So now it's after the
24	finish.	24	fact we have the data. We could actually
25	THE WITNESS: It is appropriate to 11:27	25	calculate a CLR for each of these studies; 11:28

	Page 130		Page 131
1	correct?	1	BY MR. LASKER:
2	A. If we can agree on which results to	2	Q. In other words, even if a study
3	use and, yeah, we can do that.	3	reports a positive association and reports a
4	Q. Have you done that exercise?	4	95 percent confidence interval that excludes
5	A. In my head. 11:28	5	1.0, that study cannot be interpreted as 11:29
6	Q. With respect to -- let's move on.	6	evidence of a causal association if there is
7	The interpretation of confidence intervals	7	bias in the study; correct?
8	in observational studies requires the	8	MS. FORGIE: Object to the form.
9	assumption of no bias; correct?	9	THE WITNESS: It depends on the
10	MS. FORGIE: Object to the form. 11:28	10	kind of bias, the size of bias. We are 11:29
11	THE WITNESS: It is correct that	11	talking about bias as a category. We at
12	confidence intervals and observational	12	UCLA try to teach bias in terms of
13	studies do not include -- are not	13	quantitative and so the bias can be so
14	estimates of bias.	14	minimal that it's not to be a concern.
15	BY MR. LASKER: 11:29	15	BY MR. LASKER: 11:30
16	Q. So the interpretation of confidence	16	Q. One type of bias that you identify
17	interval and observational studies requires	17	in your expert report is recall bias;
18	the assumption of no bias; correct?	18	correct?
19	MS. FORGIE: Object to the form.	19	A. Yes.
20	Asked and answered. 11:29	20	Q. And you also teach your students 11:30
21	You can answer it again.	21	about recall bias, your epidemiology
22	THE WITNESS: We make assumptions	22	students; correct?
23	when interpreting confidence intervals	23	A. Correct.
24	of observational studies, and one of the	24	Q. Let's get the 2017 slide deck on
25	assumptions is no other biases, yes. 11:29	25	informational bias. 11:30
	Page 132		Page 133
1	(Exhibit Number 19-5 was marked	1	and then there's no page number on 61.
2	for identification.)	2	MS. FORGIE: Right. I don't see
3	BY MR. LASKER:	3	the pages.
4	Q. And, Dr. Ritz, I've handed you as	4	MR. LASKER: It is the page after
5	Exhibit 19-5, I believe this is a slide deck 11:31	5	60 which I've called 61 in my simplistic 11:31
6	that you used either last year or you're	6	way of counting.
7	using currently with your epi 200 B	7	BY MR. LASKER:
8	students; correct?	8	Q. So you see the slide that has
9	A. I don't know. I haven't reviewed	9	recall bias listed at the top; correct?
10	it. It looks like it. 11:31	10	A. Correct. 11:32
11	Q. This is a document I'll represent	11	Q. And recall bias is a form of
12	that you produced in response to our --	12	differential misclassification bias of
13	A. Oh, okay. Then it must be.	13	particular concern in interview-based case
14	MS. FORGIE: Did you add pages to	14	control studies; correct?
15	it? 11:31	15	A. Correct. 11:32
16	MR. LASKER: She's updated.	16	Q. And the issue with recall bias is
17	THE WITNESS: I learn.	17	that cases who are diseased may ruminate
18	BY MR. LASKER:	18	about prior exposures and report it more
19	Q. So at page 61 in your slide deck,	19	completely than controls; correct?
20	you talk about this issue of recall bias. I 11:31	20	MS. FORGIE: Object to the form. 11:32
21	just want to make sure I understand the	21	THE WITNESS: It says that that is
22	terminology. So as you explain --	22	one way how differential recall can
23	MS. FORGIE: Wait a minute. I	23	occur.
24	don't see page 61.	24	BY MR. LASKER:
25	MR. LASKER: It's actually page 60, 11:31	25	Q. And the other thing that you 11:32

	Page 134		Page 135
1	mention and you teach your students is that	1	study, controls might not recall exposures
2	cases might exaggerate exposure while	2	since they do not have an incentive to do
3	subjects without the disease under	3	so; correct?
4	investigation. And I guess there's	4	A. Correct. And, again, that is under
5	something missing here. 11:32	5	the premise that we are doing whatever we 11:33
6	A. Yeah. That's why this --	6	can to have everybody recall in the same
7	Q. Let me understand this correctly.	7	way.
8	A. No, this is an appendix to the	8	Q. A recall bias -- well, recall bias
9	class, so it's not edited.	9	can create another -- there can be another
10	Q. But I think the point -- and let me 11:33	10	issue with recall bias if a study relies 11:34
11	make sure I'm correct -- the point that	11	upon next of kin or proxy respondents to
12	without the typo you would be making here is	12	provide exposure information; correct?
13	that cases might exaggerate exposure	13	MS. FORGIE: Object to the form.
14	compared to subjects without the disease	14	THE WITNESS: That's not -- we can
15	under investigation; correct? 11:33	15	call it recall bias, but it is usually 11:34
16	A. Yes.	16	being less informed about the exposure
17	MS. FORGIE: Object to the form.	17	so it's kind of information bias.
18	THE WITNESS: Well, that is one way	18	BY MR. LASKER:
19	how differential recall bias can occur	19	Q. As a general matter, exposure data
20	and why I'm teaching it is to say that 11:33	20	provided by proxies is considered less 11:34
21	when we do our fieldwork have to avoid	21	reliable than exposure information provided
22	that this is going to happen.	22	by the actual cases and controls; correct?
23	BY MR. LASKER:	23	MS. FORGIE: Object to the form.
24	Q. And the other issue that you teach	24	THE WITNESS: That is relative.
25	your students is that in the case control 11:33	25	For example, if it is an exposure that a 11:34
	Page 136		Page 137
1	case would not want to report but the	1	day, yes. But if it's a wife who
2	wife then tells us, it's actually more	2	quizzes her husband on how did your day
3	reliable. So it really depends on the	3	go and what did you do and what are the
4	study.	4	expenses about these kind of pesticides
5	BY MR. LASKER: 11:34	5	that I'm seeing on the ledger here 11:35
6	Q. I'll give you that one. I know	6	because she does the books, she knows
7	that you do this a lot in your work, but	7	very well.
8	with respect to pesticide exposures, as a	8	BY MR. LASKER:
9	general matter, exposure data provided by	9	Q. That's why I didn't want to ask in
10	proxies would be considered less reliable 11:35	10	every case because obviously case-by-case 11:36
11	than exposure data provided by the cases or	11	can be different. But as a general matter
12	controls themselves; correct?	12	overall, exposure data provided by proxies
13	MS. FORGIE: Object to the form.	13	is considered at least potentially less
14	THE WITNESS: Again, it depends on	14	reliable than exposure data provided by the
15	the circumstances. For example, if the 11:35	15	cases and controls themselves; correct? 11:36
16	proxy would be a co-worker, he might be	16	MS. FORGIE: Object to the form and
17	just as able to report the work	17	asked and answered.
18	practices and the type of exposures. If	18	You can answer it again.
19	the proxy is a son of the farmer who	19	THE WITNESS: Again, it depends.
20	worked alongside the farmer, he would be 11:35	20	It depends on who the proxy is, how 11:36
21	very well capable of responding. If it	21	close the proxy is to the individual,
22	is a wife who never goes out in the	22	how much they communicate, how much they
23	fields and doesn't talk to her husband	23	work together, and whether it is
24	at night at the table -- at the dinner	24	actually a proxy who counts while the
25	table about what he's been doing all 11:35	25	individual doesn't count, meaning, well, 11:36

	Page 138		Page	139
1	we paid so much for all of these	1	MS. FORGIE: Object to the form.	
2	pesticides in the last year and the	2	THE WITNESS: The use of proxies	
3	husband doesn't care. He just uses	3	versus the individual themselves may or	
4	what's there. So sometimes we find in	4	may not result in information bias, and	
5	our studies of elderly especially thatthe wives are much more reliable \quad 11:36	5	it may or may not result in differential	11:37
6		6	information bias. So if we are using	
7	sources. So you can't really say that	7	proxies in cases and controls, then	
8	it's always the proxy that misreports.	8	whatever they misreport for cases and	
9	BY MR. LASKER:	9	controls might be at the same level, and	
10	Q. And I understand that. I'm not 11:36 trying to nail you down on every instance.	10	that would be a non-differential	11:38
11		11	misclassification.	
12	MS. FORGIE: There's no question.	12	BY MR. LASKER:	
13	BY MR. LASKER:	13	Q. And when you do your sensitivity	
14	Q. But let me -- one of the things	14	analysis, you're looking to see whether	
15	you've done, and I've seen this in some of 11:37 your publications is you can conduct a	15	there's a differential or non-differential	11:38
16		16	including the proxy data; correct?	
17	sensitivity analysis to determine whether or	17	MS. FORGIE: Object to the form.	
18	not the inclusion of proxy data affects the	18	THE WITNESS: Not exactly. If I	
19	results of the study; correct?	19	want to establish the validity of a	
20	A. Correct. 11:37 Q. And one of the things you're	20	proxy, I would actually need a gold	11:38
21		21	standard like a record, then interview	
22	Q. And one of the things you're concerned about when you do that analysis is	22	the case, interview the proxy, and then	
23	a possibility that the use of a proxy may	23	compare both to the gold standard.	
24	have introduced some misclassification bias	24	BY MR. LASKER:	
25	into a study; correct? 11:37	25	Q. Another type of bias that can arise	11:38
	Page 140		Page	e 141
1	in observational studies is selection bias; correct?	1	cohort study does not have the kind of	
2		2	selection bias that a case control study	
3	A. Correct.	3	has. But it has another type of	
4	Q. And case control studies are	4	selection bias that a case control study	
5	vulnerable to selection bias and their 11:39	5	doesn't have. 11:40	
6		6	BY MR. LASKER:	
7	validity to a large degree hinges on the	7	Q. And what is that?	
8	MS. FORGIE: Object to the form.	8	A. That's loss to follow-up,	
9	THE WITNESS: It is correct that	9	differential loss to follow-up.	
10	at -- that there is selection bias in 11:39	10	Q. With respect to loss to follow-up	11:40
11	case control studies. There is also	11	for disease outcome, that is not, as I	
12	selection bias in cohort studies.	12	understand it, correct me if I'm wrong, an	
13	However, case control studies are	13	issue with the Agricultural Health Study;	
14		14	correct?	
15	of selection bias because we try to 11:39	15	MS. FORGIE: Object to the form.	11:40
16	avoid it as much as we can.	16	THE WITNESS: Not necessarily. The	
17	BY MR. LASKER:	17	Agricultural Health Study may have	
18	Q. And, in fact, in your own	18	selection bias depending on whether or	
19	that this problem of selection bias can be 11:39	19	not there's differential loss to	
20		20	follow-up with respect to the exposed	11:40
21	circumvented in the cohort study; correct?	21	and the unexposed.	
22	MS. FORGIE: Object to the form.	22	BY MR. LASKER:	
23	THE WITNESS: It's a different kind	23	Q. Okay.	
24	of selection bias in a cohort study as	24	A. So it would depend on what the	
25	well as in a case control study. A 11:39	25	outcome it is we are talking about. 1	11:40

	Page 142		Page 143
1	Q. The other issue you mention in your	1	THE WITNESS: That was part of the
2	expert report is confounding. A confounder	2	argument, however, that's not how we are
3	is an exposure that is associated both with	3	defining confounding. Confounding is an
4	the exposure of interest and the outcome of	4	independent risk factor for the outcome
5	interest; correct? 11:41	5	that also has an association with the 11:41
6	MS. FORGIE: Object to the form.	6	exposure and is not an intermediate in
7	THE WITNESS: That is one part of	7	the pathway to disease.
8	how we define a confounder.	8	MS. FORGIE: When you get to a good
9	BY MR. LASKER:	9	breaking point.
10	Q. So, for example, there was a study 11:41	10	MR. LASKER: Okay. Let's get 11:41
11	a few years back now that reported a	11	through this.
12	positive association between coffee and	12	MS. FORGIE: Thanks.
13	pancreatic cancer? It's somewhat of a	13	BY MR. LASKER:
14	well-known --	14	Q. With respect to coffee drinkers and
15	A. Favorite example. 11:41	15	pancreatic cancer, smoking was a confounder; 11:42
16	Q. And when the investigators looked	16	is that correct?
17	more closely at that data, they discovered	17	A. Assuming that smoking really causes
18	that the reported positive association was	18	pancreatic cancer which I'm not completely
19	actually due to the fact that, if I have	19	sure it's true, but I'm not a pancreatic
20	this correctly, coffee drinkers were more 11:41	20	cancer researcher, and depending on what 11:42
21	likely to be smokers and the smoking	21	population we're talking about, for example,
22	increased the risk of pancreatic cancer? Do	22	there are populations where you have a lot
23	I have that right, or do I have it	23	of coffee drinking but no smoking, and there
24	backwards?	24	are populations where you have a lot of
25	MS. FORGIE: Object to the form. 11:41	25	smoking and no coffee drinking, meaning the 11:42
	Page 144		Page 145
1	two are independent.	1	you made in your report, I think elsewhere,
2	Assuming that we are in a	2	is in analyzing or conducting a study, you'd
3	population where the two are actually	3	want to identify as best you can other risk
4	dependent and we know that, that coffee	4	factors for disease that you're studying to
5	drinkers smoke more or vice versa, then that 11:42	5	be able to see whether or not those are 11:56
6	could be defined as a confounder. However,	6	confounders; correct?
7	in a cohort study, you can actually assess	7	A. It is correct that you're always
8	that.	8	very worried about confounding no matter
9	Q. In your studies, your epidemiologic	9	what and that you're identifying strong risk
10	studies, you will try to address the 11:42	10	factors for the disease that also is 11:56
11	possibility of confounding; correct?	11	associated with exposure.
12	A. Definitely.	12	In the second step, you have to see
13	MR. LASKER: Why don't we take a	13	whether there are possibly intermediates in
14	break now.	14	the pathway and/or proxies for the exposure,
15	MS. FORGIE: Great. Thank you. 11:43	15	and that's a very important assessment. 11:56
16	THE VIDEOGRAPHER: We are off the	16	Q. And that can be even more difficult
17	record at 11:43 a.m.	17	in a situation where you have a disease that
18	(Recess taken from 11:43 a.m.	18	has unknown causes; correct?
19	to 11:55 a.m.)	19	MS. FORGIE: Object to the form.
20	THE VIDEOGRAPHER: We are back on 11:55	20	THE WITNESS: It's actually not 11:56
21	the record at 11:55 a.m.	21	more or less difficult. A disease that
22	BY MR. LASKER:	22	has known causes such as lung cancer, we
23	Q. Back on the record.	23	know that we have to control for
24	Dr. Ritz, we were talking about	24	smoking, and we may or may not have that
25	confounding, and I think one of the points 11:55	25	data. So that's a very difficult study 11:56

	Page 146		Page 147
1	to do if we don't have smoking data.	1	agricultural work, and he's a coauthor
2	So difficult in a sense, if I don't	2	of some of these early papers.
3	have a strong risk factor, then it also	3	BY MR. LASKER:
4	cannot be a strong confounder. So I'm	4	Q. Do you agree with Dr. Blair that
5	actually a little bit out of the woods 11:57	5	there was an association that was found 11:58
6	when there's no risk factor because I	6	between farming -- farmers and non-Hodgkin's
7	can assume that if there was a really	7	lymphoma that existed prior to the time that
8	strong risk factor, I would know about	8	glyphosate was on the market?
9	it.	9	MS. FORGIE: Object to the form.
10	So if there was a really strong 11:57	10	THE WITNESS: Did he say that 11:58
11	confounder, I probably would know about	11	anywhere in the document?
12	it.	12	BY MR. LASKER:
13	BY MR. LASKER:	13	Q. Yeah. If you want, I can show it
14	Q. You read the deposition of	14	to you if you want.
15	Dr. Blair in this case? 11:57	15	A. Yeah, yeah, please. 11:58
16	A. Yes.	16	MR. LASKER: We are not going to
17	Q. Dr. Blair has been studying	17	mark it as an exhibit. It's a
18	agricultural exposures and cancer going back	18	transcript.
19	probably 40-some-odd years; right?	19	MS. FORGIE: I think we should mark
20	MS. FORGIE: Object to the form. 11:57	20	it. 11:58
21	THE WITNESS: I'm not sure, but I	21	MR. LASKER: You want to mark it?
22	know that he's been publishing in the	22	MS. FORGIE: Yeah.
23	'80s on industrial workers, that he's	23	MR. LASKER: Where are we then?
24	worked at the NCI and that he was	24	THE REPORTER: 6.
25	generally also interested in 11:57	25	//I
	Page 148		Page 149
1	(Exhibit Number 19-6 was marked	1	association but, yeah, at the level of that
2	for identification.)	2	broad types of exposure, it might be the
3	BY MR. LASKER:	3	case.
4	Q. On page 80 --	4	Q. Okay. So with respect to farmers
5	A. Is it the page numbers down here? 11:59	5	and non-Hodgkin's lymphoma, there is at 12:00
6	Q. Yeah, the actual --	6	least something going on that would not be
7	A. Yeah, okay.	7	related to glyphosate exposure; correct?
8	Q. I'm sorry. Page 90. I don't know	8	MS. FORGIE: Object to the form.
9	if you can see the highlighting. And at	9	Asked and answered.
10	pages 90, we're talking with Dr. Blair about 11:59	10	You can answer it again. 12:00
11	this issue of an increased or an association	11	THE WITNESS: I agree that there is
12	between farming and non-Hodgkin's lymphoma	12	a difficulty in assessing exposures that
13	dating back to the 1960s.	13	vary over time. So when have we started
14	Do you see that?	14	in agriculture using chemicals? After
15	A. Yes. 11:59	15	World War II. Before that, they used 12:00
16	Q. And do you agree with Dr. Blair	16	arsenicals, et cetera; right? But
17	that there was this epidemiological	17	really manmade chemicals for pest
18	literature pointing to an association	18	control were introduced during World War
19	between farming and non-Hodgkin's lymphoma	19	II and after World War II and took off
20	dating back to before glyphosate was on the 11:59	20	in the U.S. in the 1950s. So general 12:01
21	market?	21	exposure to agricultural chemicals dates
22	A. Well, he seems to be saying that.	22	back to the 1950s.
23	I know those very old studies are very, very	23	Among those chemicals may have been
24	broad; so they would ask somebody have you	24	carcinogens. We know that there were
25	ever farmed, and, you know, find an 12:00	25	waves of chemicals that were being used. 12:01

	Page 150		Page 151
1	We started with organic chlorines until	1	types of farming have been, at least in the
2	we decided that that was a bad idea	2	AHS, associated with non-Hodgkin's lymphoma;
3	because they bioaccumulate. And then	3	correct?
4	the organic phosphates got their trial	4	MS. FORGIE: Object to the form.
5	run almost parallel. They were quite 12:01	5	THE WITNESS: There could be risk 12:02
6	acutely toxic; so there were some	6	factors for Hodgkin's lymphoma, but it
7	restrictions on those, and the	7	has to be reevaluated.
8	herbicides, the early ones were 2,4-D.	8	BY MR. LASKER:
9	2,4-D is, for example, a 2B IARC	9	Q. For non-Hodgkin's?
10	possible human carcinogen. So 12:01	10	A. For non-Hodgkin's lymphoma. 12:02
11	definitely farmers have been exposed to	11	However, that doesn't make them a
12	carcinogens at least since World War II.	12	confounder. We now have to also consider
13	BY MR. LASKER:	13	whether or not they're related to the
14	Q. And you also mentioned earlier that	14	exposures.
15	diesel fuel might be associated with 12:01	15	MS. FORGIE: Wait, let her finish. 12:02
16	non-Hodgkin's lymphoma in farmers; correct?	16	MR. LASKER: Understood.
17	A. Yes, that has been shown in the	17	BY MR. LASKER:
18	AHS. I mean, one study does not make a	18	Q. So an epidemiologic study, and I
19	summer -- one swallow. So we would never	19	think your studies are like this as well,
20	just rely on one study, but there's reason 12:02	20	will often report different odds ratios with 12:02
21	to think that certain hematopoietic cancers,	21	different levels of adjustment to account
22	possibly also some cancer subtypes of NHL	22	for potential confounding; correct?
23	might be related to what is in diesel.	23	A. We would try different levels of
24	Q. And various types of animal	24	adjustment for multiple reasons, but the
25	husbandry like chicken farming or certain 12:02	25	main reason would be to assess confounding. 12:03
	Page 152		Page 153
1	Q. In your expert report at page 16 --	1	various odds ratios or rate ratios in some
2	and this is -- if you have your expert	2	of the epidemiological studies for
3	report in front of you, on page 16. In the	3	glyphosate; correct?
4	last paragraph which starts "The IARC	4	A. You can call it a forest plot. I
5	working group's monograph on glyphosate." 12:03	5	would just call it a visual representation 12:04
6	Do you see that?	6	of results from different studies.
7	A. Yeah.	7	Q. In your visual depiction of the
8	Q. You state in the second sentence	8	results from different studies, you do not
9	"The most highly adjusted estimates, also	9	provide or list the most highly adjusted
10	known as fully adjusted models, are the 12:03	10	odds ratios or risk ratios from the studies; 12:04
11	estimates that adjust for as many	11	correct?
12	confounding variables as possible such as	12	A. Not correct. De Roos 2003 is a
13	adjusting for age, sex, race, and also	13	very highly adjusted for 43 different
14	sometimes other pesticide exposures";	14	pesticides.
15	correct? 12:03	15	Q. The most highly adjusted estimate 12:05
16	A. Yes.	16	in the De Roos 2003 paper had a report odds
17	Q. And then you state that "This is	17	ratio of 1.6.
18	relevant because these fully adjusted models	18	A. No.
19	give the reader confidence that the findings	19	MS. FORGIE: Object to the form.
20	are most likely due to glyphosate Roundup 12:04	20	THE WITNESS: Would you show me 12:05
21	exposure instead of other potential causes	21	that?
22	that act as a confounder"; correct?	22	MS. FORGIE: I don't think there's
23	A. Correct.	23	a question.
24	Q. And on page 14 of your report, you	24	THE WITNESS: Yeah, is there a
25	present what's called a forest plot of the 12:04	25	question. 12:05

	Page 154		Page 155
1	BY MR. LASKER:	1	Eriksson study right now.
2	Q. There is a question. There are	2	MS. FORGIE: Are we done with these
3	two -- actually, three odds ratios in the De	3	guys?
4	Roos 2003 study.	4	MR. LASKER: Yeah, for now.
5	A. Yes. 12:05	5	So the Eriksson is -- we'll mark it 12:06
6	Q. You have reported one of those odds	6	as --
7	ratios and not the other odds ratio;	7	MS. SHIMADO: 7.
8	correct?	8	(Exhibit Number 19-7 was marked
9	A. It's the odds ratio from the	9	for identification.)
10	logistic regression. 12:05	10	BY MR. LASKER: 12:07
11	Q. We'll come back, and we'll circle	11	Q. I think you're talking about the
12	back to that later when we talk about De	12	multi-variate analysis that's on page 1661
13	Roos 2003, but with respect to the other	13	Table 7; correct?
14	studies in this paper, for example, in the	14	A. Yes.
15	Eriksson study, you do not provide the most 12:06	15	Q. And the multi-variate odds ratio 12:07
16	highly adjusted odds ratio from the Eriksson	16	for glyphosate in the Eriksson study is an
17	study in your chart on page 14; correct?	17	odds ratio of 1.51 with a confidence
18	MS. FORGIE: Object to the form.	18	interval of 0.77 to 2.94; correct?
19	THE WITNESS: I would need to see	19	MS. FORGIE: Object to the form.
20	the Eriksson paper because there was a 12:06	20	THE WITNESS: Correct. 12:07
21	multi-varied adjusted odds ratio, and I	21	BY MR. LASKER:
22	imagine that we looked at that at some	22	Q. That is not the odds ratio that you
23	point.	23	present in your visual depiction on page 14
24	BY MR. LASKER:	24	of your expert report; correct?
25	Q. Okay. Well, let's pull out the 12:06	25	A. That is not. 12:07
	Page 156		Page 157
1	Q. And if we look at the Hardell study	1	confidence interval and about 3 from
2	for 1999 -- you have Hardell 2003 listed for	2	what I see, yes.
3	hairy cell leukemia. I'm looking at the	3	BY MR. LASKER:
4	bottom of your table here.	4	Q. And if you look at Exhibit 19-8 and
5	Do you see that? 12:09	5	you look at page 1047, which is Table 7, 12:09
6	A. Yes.	6	again, the most adjusted odds ratio in that
7	MR. LASKER: Let's mark Hardell	7	study is 1.85 with an odds ratio of 0.55 to
8	2002.	8	6.2; correct?
9	(Exhibit Number 19-8 was marked	9	A. That's what they call them,
10	for identification.) 12:09	10	multi-variate model. 12:10
11	MS. FORGIE: Are we done with	11	Q. So again for Hardell, you do not
12	Eriksson?	12	present the most fully adjusted odds ratio
13	MR. LASKER: For now. We'll go	13	according to that study; correct?
14	back to it.	14	MS. FORGIE: Object to the form.
15	BY MR. LASKER: 12:09	15	THE WITNESS: For good reasons. 12:10
16	Q. In your visual depiction for	16	BY MR. LASKER:
17	Hardell, you're depicting an odds ratio of	17	Q. I'm just asking the question in
18	slightly above 3 . That is listed as	18	your Table 14 --
19	statistically significant; correct?	19	A. Yes.
20	MS. FORGIE: Object to the form. 12:09	20	Q. -- for Hardell, you do not present 12:10
21	BY MR. LASKER:	21	the most adjusted -- highly adjusted odds
22	Q. At least as it's depicted on your	22	ratio reported by the authors of the study;
23	page 14?	23	right?
24	MS. FORGIE: Object to the form.	24	MS. FORGIE: Object to the form.
25	THE WITNESS: It has a wide 12:09	25	Asked and answered. 12:10

	Page 158		Page 159
1	You can answer it again.	1	these studies -- just so we're clear, the --
2	THE WITNESS: So I'm presenting the	2	your comment with respect to the most highly
3	odds ratio that I believe has the most	3	adjusted estimates is specific to the
4	validity given what they presented in	4	meta-analysis that were conducted of the
5	their paper. 12:10	5	glyphosate studies; correct? 12:12
6	BY MR. LASKER:	6	MS. FORGIE: Object to the form.
7	Q. And for the NAPP -- and we'll get	7	THE WITNESS: It refers to what
8	to that in a second -- you also have elected	8	others considered as their criteria for
9	in your visual depiction of the study	9	pulling estimates, not mine, yes.
10	results to report an odds ratio that was not 12:11	10	BY MR. LASKER: 12:12
11	adjusted for three pesticides that the NAPP	11	Q. And you were stating in here that
12	investigators adjusted for in their study;	12	IARC's adjustment or their analysis -- their
13	correct?	13	meta-analysis using these most highly
14	MS. FORGIE: Object to the form.	14	adjusted estimates from the studies was
15	THE WITNESS: Again, what I strive 12:11	15	appropriate because it gave the reader 12:12
16	to do is present odds ratios on	16	confidence that the findings are most likely
17	confidence interval for what I believe	17	due to glyphosate Roundup exposure instead
18	the most valid model is because we're	18	of another potential cause that acts as a
19	now talking about evaluating the data	19	confounder; correct?
20	overall. That does not necessarily mean 12:11	20	A. I'm making no statements about 12:12
21	the most fully adjusted model.	21	appropriateness of these estimates. What
22	BY MR. LASKER:	22	I'm saying here is that they did something
23	Q. Just so I understand this, although	23	we call conservative, which is throw the
24	you state in your expert report that the	24	kitchen sink into a model and see what falls
25	most highly adjusted estimates reported in 12:11	25	out on the other end. 12:12
	Page 160		Page 161
1	That is not what I consider the	1	MS. FORGIE: Wait. Object to the
2	most valid approach.	2	form.
3	Q. Okay. The visual depiction that	3	THE WITNESS: There are different
4	you have of the studies on page 14, you did	4	ways of depicting results visually, and
5	not -- I mentioned it as a forest plot. You 12:13	5	in a forest plot, you are trying to show 12:14
6	weren't --	6	confidence intervals that are
7	A. Happy with it.	7	symmetrical, and you can only do that
8	Q. -- happy with that terminology.	8	when you use a logarithmic scale.
9	Forest plots, if I understand	9	BY MR. LASKER:
10	correctly, are usually depicted on a 12:13	10	Q. And by using the depiction that you 12:14
11	logarithmic scale; correct?	11	use, which is not a logarithmic scale, the
12	A. Uh-huh.	12	visual effect of that is that the confidence
13	Q. And the issue with a logarithmic	13	intervals will go further out to the right
14	scale, so, for example, in your visual	14	or will appear in this depiction to go
15	depiction of the Orsi study -- and we can 12:13	15	further out to the right than if you were 12:14
16	look at the actual odds ratios if you want	16	presenting a forest plot on a logarithmic
17	in that study -- but that was a study that	17	scale; correct?
18	had an odds ratio of 1.0 and a lower	18	MS. FORGIE: Object to the form.
19	confidence interval was about 0.5 and the	19	THE WITNESS: That is only the case
20	upper confidence interval was about 2.0. 12:13	20	when you go below 1. As long as you're 12:14
21	If you presented that in a forest	21	above 1 , they are actually symmetric,
22	plot, your line would be about equal	22	and you can see that down here Eriksson
23	distance on both sides of --	23	2008.
24	A. There --	24	BY MR. LASKER:
25	Q. -- one; correct? 12:14	25	Q. Right. 12:14

	Page 162		Page 163
1	But with the -- and we have in	1	BY MR. LASKER:
2	this -- in your visual depiction, numerous	2	Q. With respect to confounding -- and
3	lines that go below 1 and above 1 . When you	3	this is going to be a general question, I
4	present it the way that you have in a normal	4	think, but epidemiologists use different
5	scale as opposed to the way you do it on a 12:15	5	methods to control for potential 12:16
6	forest plot with a logarithmic scale, that	6	confounding; correct?
7	has the effect of making those lines extend	7	A. Yes.
8	out further or appear further out to the	8	Q. So epidemiologists can control for
9	right than to the left; correct?	9	confounders through model fitting techniques
10	MS. FORGIE: Object to the form and 12:15	10	like a regression analysis; correct? 12:16
11	asked and answered.	11	A. That is one way.
12	You can answer it again.	12	Q. And epidemiologists can also
13	THE WITNESS: This is not a forest	13	control for confounding by conducting a
14	plot. This is just a visualization.	14	stratified analysis; correct?
15	I'm giving point estimates and 12:15	15	MS. FORGIE: Object to the form. 12:16
16	confidence intervals, and the reason for	16	THE WITNESS: That is one other way
17	doing this is to have an easy reminder	17	of looking at control for confounding.
18	myself, as well as the reader, what the	18	BY MR. LASKER:
19	point estimates and the confidence	19	Q. So in a stratified analysis, an
20	interval widths is. 12:15	20	epidemiologist will calculate an odds ratio 12:16
21	It was not to say whether or not it	21	for subjects with concurrent exposures to
22	is going more or less beyond the null	22	two potential risk factors, and then they'll
23	value, but it clearly indicates when it	23	separately calculate the odds ratios for the
24	goes below the null value.	24	subjects having only one of those exposures;
25	I/I	25	correct? 12:16
	Page 164		Page 165
1	A. Not necessarily. You can subgroup,	1	multi-variate models rather than
2	but in the end, you want a summary effect	2	stratification.
3	estimate that you weigh by the strata. So	3	BY MR. LASKER:
4	you're standardizing your estimate according	4	Q. Just so we can agree what -- how
5	to the weights of the strata in which these 12:17	5	this works, let's turn back to 19-4 which is 12:18
6	individuals fall.	6	your 2010 slide deck.
7	Q. So in your stratification, for	7	MS. FORGIE: Wait. Let me get it.
8	example, you would have if there is current	8	Okay.
9	exposures or potential for current	9	THE WITNESS: Page?
10	exposures, you would have one strata that is 12:17	10	BY MR. LASKER: 12:18
11	exposed only to one of those risk factors,	11	Q. 98. And as you teach your students
12	one strata that's exposed to both of those	12	then, a stratified analysis is a method for
13	risk factors, and one strata that's exposed	13	controlling for confounders. "We estimate
14	to the other risk factor; correct?	14	the exposure disease association within
15	MS. FORGIE: Object to the form. 12:17	15	categories or strata of the confounders as 12:19
16	THE WITNESS: If you're lucky, you	16	in the examples given previously or and
17	have people in all of those strata, but	17	derive a summary estimate of this
18	you have to define the strata, and	18	association across the strata which often
19	that's one reason why we use that tool	19	assumes that the association does not vary
20	not necessarily when we have better data 12:17	20	across strata." Correct? 12:19
21	that's not categorical because,	21	A. Correct. That's exactly what I
22	otherwise, within those strata, still	22	just tried to explain.
23	have confounding because of	23	Q. In your rebuttal expert report, you
24	categorization.	24	state that "Controlling for confounding by
25	So we're trying to use 12:17	25	other pesticides in the glyphosate NHL 12:19

	Page 166		Page 167
1	studies could make it harder to identify an	1	now -- is that I was trying to identify
2	association between glyphosate and NHL."	2	confounders which is a different
3	Do you recall that?	3	concept.
4	MS. FORGIE: Object to the form.	4	It's the underlying scientific
5	THE WITNESS: Where do I say that? 12:19	5	concept behind control for confounding. 12:21
6	MS. FORGIE: Are we done with 4?	6	Confounding is something I can assess in
7	MR. LASKER: For now, yeah. Where	7	data. Confounder is a scientific
8	are we now?	8	concept that I need to presume, and
9	MS. SHIMADO: 9.	9	that's what we're doing with directed
10	(Exhibit Number 19-9 was marked 12:20	10	basic little graphs. You saw a lot of 12:21
11	for identification.)	11	them in my slides.
12	BY MR. LASKER:	12	And so what that means is we have
13	Q. So pages of 6 and 7, I think and	13	to convince ourselves that a variable is
14	maybe I'm misunderstanding, but I thought	14	a confounder, meaning, there's an
15	what you were stating in pages 6 and 7 of 12:20	15	underlying true association between that 12:21
16	your report is that controlling in the	16	variable and the outcome as well as that
17	glyphosate NHL studies controlling for	17	variable and the exposure of interest
18	confounding by other pesticides can make it	18	and that that variable is not just a
19	harder to identify an association between	19	proxy measure of the exposure that I'm
20	glyphosate and NHL; correct? 12:20	20	actually trying to evaluate. 12:21
21	MS. FORGIE: Object to the form.	21	And any kind of proxy measure of
22	THE WITNESS: Well, it depends on	22	the exposure should not be treated as a
23	what we mean by "make it harder." So	23	confounder.
24	what I am trying to say here, what I do	24	BY MR. LASKER:
25	remember -- I'm not reading it right 12:20	25	Q. I think I was actually looking at 12:22
	Page 168		Page 169
1	page 7 where you're talking about this issue	1	trying to teach my students that they
2	of smoking, lung cancer and whether or not	2	should not confuse confounders and
3	radon exposure adds to the background	3	effect modifiers. In this case, it's an
4	instance of lung cancer. So I think we're	4	effect modification and not a
5	talking past each other. 12:22	5	confounding. That said, the same factor 12:23
6	A. Yeah.	6	can be an effect modifier and a
7	MS. FORGIE: There's no question.	7	confounder and/or a proxy. That's why
8	BY MR. LASKER:	8	I'm saying confounding is something we
9	Q. We agree in any event.	9	do mathematically. We have the data.
10	MS. FORGIE: No, I don't agree that 12:22	10	We throw something in; we take something 12:23
11	we agree. All this smoking stuff is	11	out. But confounder is at the
12	just putting me right off smoking.	12	conceptual level. I need to decide is
13	BY MR. LASKER:	13	this a confounder? Yes or no? We have
14	Q. My question actually goes to the	14	our rules for that. Is that a proxy for
15	point I think you're trying to make on 12:22	15	an exposure and not a confounder, or is 12:23
16	page 7, and maybe I'm misunderstanding it.	16	it acting as an effect measure modifier,
17	But in your example on page 7, you	17	and in this case, that was an effect
18	discuss the possibility of another	18	measure modification.
19	confounder, in this case, I think it's	19	BY MR. LASKER:
20	radon, making it more difficult to identify 12:22	20	Q. So if I understand correctly, 12:23
21	an association between an exposure and	21	effect measure modifier in this case is
22	outcome; correct?	22	radon?
23	MS. FORGIE: Object to the form.	23	A. Uh-huh.
24	THE WITNESS: This is really funny	24	MS. FORGIE: Object to the form.
25	in a way because that's exactly what I'm 12:22	25	BY MR. LASKER: 12:23

	Page 170		Page 171
1	Q. You have to say yes or no,	1	across populations. So you could in one
2	obviously, for the court reporter.	2	population estimate a relative risk of 2
3	A. Oh, I think that's how I build it.	3	and another relative risk of 5 , and we
4	It could be either smoking or radon that	4	both would probably agree those are very
5	I -- but I think it was radon that I called 12:24	5	different numbers. In one population 12:25
6	it the effect measure modifier. I'm not	6	you have an effect modifier present; in
7	saying it, but Ithink that's correct.	7	another you don't. So it is not that
8	Q. And the reason that in this example	8	the association was the agent of
9	radon was an effect measure modifier that	9	interest is really different but that
10	could impact the ability to conduct the 12:24	10	the comparison you're making are 12:25
11	analysis of smoking and lung cancer was	11	comparisons to a population at a
12	because in your analysis the radon could	12	different risk, baseline risk. And the
13	result in ten extra cases of lung cancer per	13	extent to which the effect modifier
14	100,000 miners; correct?	14	could influence the odds ratio that --
15	A. Yes. 12:24	15	of interest in a study will depend on 12:26
16	Q. And it's the size of that	16	how powerful an effect modification you
17	association, if you will, that will	17	have; correct.
18	determine the extent to which this effect	18	MS. FORGIE: Object to the form.
19	modification could be -- could introduce a	19	BY MR. LASKER:
20	problem in conducting your epidemiological 12:25	20	Q. In other words, let me just reword 12:26
21	analysis; correct?	21	this. Maybe this would be easier. If the
22	MS. FORGIE: Object to the form.	22	radon exposure added one extra case of lung
${ }^{23}$	THE WITNESS: It is insofar a	23	cancer for 100,000 miners instead of ten
24	problem as effect measure modification	24	tra cases of lung cancer for 100,000 , that
25	comes into play when you're comparing 12:25	25	would have a fairly minimal impact on the 12:26
	Page 172		Page 173
1	odds ratio that would be reported for	1	MS. FORGIE: Object to the form.
2	smoking and lung cancer; correct?	2	THE WITNESS: Well, 20 over 4 is
3	MS. FORGIE: Object to the form.	3	ignoring radon.
4	THE WITNESS: Fairly minimal is	4	BY MR. LASKER:
5	relative, but the number would be 12:26	5	Q. Right. 12:27
6	smaller.	6	A. So that's the fivefold increased
7	BY MR. LASKER:	7	risk due to smoking. So now if radon
8	Q. Okay. And in -- and I think you	8	affects non smokers and smokers in the same
9	can probably calculate it. It would	9	way, then we would be adding one case to
10	probably be -- we'd be looking at -- 12:26	10	each. 12:28
11	A. 5.05 .	11	Q. Right.
12	MS. FORGIE: There's no question.	12	A. So we would have 21 over 5 .
13	BY MR. LASKER:	13	Q. Okay. 21 over 5?
14	Q. Instead of -- the 20 out of four,	14	A. Uh-huh.
15	you'd be looking at 31 out of 5 over 5; 12:27	15	Q. So then it would be 4.25 as opposed 12:28
16	correct? In that scenario? Or I'm sorry.	16	to 5 . It would be a much smaller
17	MS. FORGIE: No, object to the	17	difference.
18	form.	18	MS. FORGIE: Object to the form.
19	THE WITNESS: 31 over --	19	THE WITNESS: 4.25 is pretty big,
20	MR. WISNER: 21 over? 12:27	20	but there's a difference to 5 , yeah. 12:28
21	MR. LASKER: I think that's right.	21	BY MR. LASKER:
22	MS. FORGIE: What's the question?	22	Q. And so to be able to determine or
23	BY MR. LASKER:	23	to be -- if the issue is whether other
24	Q. Instead of 21 over 4 it would be 31	24	pesticides are effect modifiers in
25	over 5 ? 12:27	25	conducting -- in looking at a glyphosate 12:28

	Page 174		Page 175
1	non-Hodgkin's lymphoma association, one of	1	question again.
2	the issues you can look at is how powerful	2	BY MR. LASKER:
3	of an association there is between these	3	Q. I want to focus on the effect
4	other pesticides and non-Hodgkin's lymphoma;	4	modification point that you're making here,
5	correct? 12:28	5	and that does not rely upon any correlation 12:29
6	MS. FORGIE: Object to the form.	6	between, in this case, radon and smoking;
7	THE WITNESS: That is not the only	7	right?
8	thing I would look at. I would also	8	MS. FORGIE: Object to the form.
9	look at how correlated the exposures are	9	THE WITNESS: This is an example
10	with glyphosate. 12:29	10	where I'm trying to show in the first 12:29
11	BY MR. LASKER:	11	part of this example how when you have
12	Q. But in this instance -- this	12	one risk factor only assessment and
13	example is not talking about a correlation?	13	you're comparing -- and you're
14	A. No.	14	calculating a so-and-so fold risk in the
15	Q. I'm just trying to get the exposure 12:29	15	exposed over the unexposed, and you're 12:29
16	modification aspect of it.	16	going to another population where now
17	MS. FORGIE: There's no question.	17	you have an additional risk factor for
18	BY MR. LASKER:	18	the outcome that adds to the baseline
19	Q. Are we on the same page here?	19	risk, and it adds in the same way in the
20	MS. FORGIE: Objection. 12:29	20	exposed and the unexposed how you would 12:30
21	You're asking if you guys are on	21	see a different odds at risk or rate
22	the same page?	22	ratio.
23	MR. LASKER: I have to be able to	23	BY MR. LASKER:
24	ask the question without you objecting	24	Q. And my only point here, I guess --
25	in the middle of it. Let me ask the 12:29	25	and my understanding maybe I'm missing it 12:30
	Page 176		Page 177
1	was that you were raising the possibility	1	BY MR. LASKER:
2	that other pesticide exposures might have an	2	Q. Okay. But if the other pesticide
3	effect modification on glyphosate studies if	3	exposures were resulting in one extra case
4	you're looking at a population that has	4	of non-Hodgkin's lymphoma over -- out of a
5	those other pesticide exposures and that 12:30	5	hundred thousand, that would have less of an 12:31
6	increases the background instance of NHL ; is	6	effect modification than if they were
7	that correct?	7	resulting in ten cases of non-Hodgkin's
8	MS. FORGIE: Object to the form.	8	lymphoma out of a hundred thousand; correct?
9	THE WITNESS: Well, if we agree	9	MS. FORGIE: Object to the form.
10	which pesticides are related to NHL and 12:30	10	THE WITNESS: That would depend on 12:31
11	one population of farmers is exposed to	11	the correlation of the exposures in this
12	those, then we would presume that those	12	dataset. So the correlation of the
13	farmers have a larger background rate of	13	pesticides was glyphosate.
14	NHL.	14	BY MR. LASKER:
15	BY MR. LASKER: 12:30	15	Q. And I guess so the effect 12:31
16	Q. Okay. And to be able to assess the	16	modification you present on page 7 depends
17	extent to which that could create an	17	upon the correlation between radon and
18	exposure modification, we would need to	18	smoking?
19	consider the strength of that association	19	A. Yes.
20	between the other pesticides and 12:31	20	Q. Okay. Moving on, we can take a 12:32
21	non-Hodgkin's lymphoma; correct?	21	break for lunch now or go on for a little
22	MS. FORGIE: Object to the form.	22	bit longer.
23	THE WITNESS: No. What we need is	23	MS. FORGIE: It's up to you guys.
24	enough sample size to then evaluate the	24	I don't eat; so it doesn't matter to me.
25	effect of glyphosate. 12:31	25	MR. LASKER: Why don't we have 12:32

	Page 178		Page 179
1	lunch now. It's a little bit of a short	1	interval of 0.7 to 1.9; correct?
2	session, but it's probably a good time.	2	A. Correct.
3	THE VIDEOGRAPHER: We're off the	3	Q. And the odds ratio was adjusted as
4	record at 12:32 p.m.	4	indicated in the footnote to the table for
5	(Recess taken from 12:32 p.m. 12:32	5	vital status, age, sex, smoking, family 12:34
6	to 12:33 p.m.)	6	history of lymphopoietic cancer, high-risk
7	THE VIDEOGRAPHER: We are back on	7	occupations, and high-risk exposures;
8	the record at 12:33 p.m.	8	correct?
9	BY MR. LASKER:	9	A. Yes.
10	Q. Dr. Ritz, let's walk through some 12:33	10	Q. And as Cantor is defining high-risk 12:35
11	of the epidemiologic studies that you	11	exposures, if it meets a certain criteria,
12	discuss in your report. I think the first	12	those could include exposures to other
13	study you talk about is the Cantor study	13	pesticides; correct?
14	from 1992. Why don't we mark that.	14	A. As far as I remember, but I'm just
15	(Exhibit Number 19-10 was 12:33	15	looking for that definition. 12:35
16	marked for identification.)	16	Q. I think it is page 2448, top of the
17	THE WITNESS: Actually, the	17	right-hand column just above "results."
18	Eriksson study that I mentioned first.	18	MS. FORGIE: Where did you see it?
19	Doesn't matter.	19	MR. LASKER: 2448, top of the
20	BY MR. LASKER: 12:34	20	right-hand column. 12:35
21	Q. We'll get to Eriksson as well.	21	THE WITNESS: Yeah, it's the odds
22	19-10. So the Cantor study reported an odds	22	ratio of 1.5 plus. Is that it?
23	ratio for glyphosate and non-Hodgkin's	23	BY MR. LASKER:
24	lymphoma, and it's on page 2450 in this	24	Q. I believe so.
25	study in Table 6 of 1.1 with a confidence 12:34	25	A. Yeah. 12:35
	Page 180		Page 181
1	MS. FORGIE: Thank you.	1	the other -- De Roos, for example, which
2	BY MR. LASKER:	2	includes Cantor. I would imagine that
3	Q. Just so the record is clear, in the	3	De Roos is at least as powerful as
4	Cantor study the odds ratio was adjusted for	4	Cantor; so it should actually be
5	vital status, age, sex, smoking, family 12:36	5	shorter. 12:37
6	history of lymphopoietic cancer, high-risk	6	BY MR. LASKER:
7	occupation and high-risk exposures which can	7	Q. If you look in your -- and this is
8	include other pesticides; correct?	8	an abbreviated short form, but De Roos 2003.
9	A. Other substances it says, but I	9	You have -- we can get to the actual number
10	imagine it's pesticides included. 12:36	10	if you want, but you have it on -- the 12:37
11	Q. And the CLR, if we were to	11	number that you used at least has a CLR that
12	calculate that confidence limit ratio for	12	is well above 3; correct?
13	the glyphosate and non-Hodgkin's lymphoma,	13	MS. FORGIE: Object to the form.
14	is 1.9 to 0.7. So that is slightly below	14	THE WITNESS: I wouldn't be able to
15	3.0; correct? 12:36	15	do that in my head without the numbers 12:37
16	A. Yeah.	16	right now. I have to guess where this
17	Q. And this is -- and you said you'd	17	is coming out, and I also need to -- oh,
18	done this in your head. I don't know if you	18	and this is a differently adjusted
19	recall it in your head, but the CLR for the	19	estimate, plus it's from a larger study.
20	Cantor study is the smallest CLR for any 12:36	20	So it doesn't just include Cantor. It 12:38
21	odds ratio, report odds ratio, where the	21	also includes the Nebraska and some
22	odds ratio has been adjusted for other	22	other study.
23	pesticide exposures; correct?	23	BY MR. LASKER:
24	MS. FORGIE: Object to the form.	24	Q. We'll look at the CLR for De Roos
25	THE WITNESS: I would need to check 12:37	25	when we get there. We can just compare 12:38

	Page 182		Page 183
1	them, but I think you stated that you	1	BY MR. LASKER:
2	thought the De Roos study might be at least	2	Q. Yeah.
3	as powerful as the Cantor study. Are there	3	A. I have to check it whether it's
4	any other case control studies that you	4	always ever/never. Did I not show any
5	believe would be as powerful as the Cantor 12:38	5	others? No, I guess they would be mostly 12:39
6	study, any measuring glyphosate in	6	ever/never.
7	non-Hodgkin's lymphoma?	7	Q. Okay. So with respect to that
8	MS. FORGIE: Object to the form.	8	assessment that you have or that measure
9	THE WITNESS: It depends on what	9	that you have on page 14 of your expert
10	the comparison is that I want to do. 12:38	10	report, are you aware of -- and I'm going to 12:39
11	For example, ever handled is a very bad	11	give you -- talk also, and we'll put it in
12	exposure assessment. So this 1.1 for	12	the NAPP which is a further pooling of the
13	ever handled I would judge as not very	13	Cantor data and some other data from Canada.
14	valid because the exposure is probably	14	But other than that, is there any study that
15	strongly misclassified 12:39	15	has greater power than Cantor with respect 12:40
16	non-differentially.	16	to the ever/never odds ratio for
17	BY MR. LASKER:	17	glyphosate-based herbicides in non-Hodgkin's
18	Q. Except for three of the studies I	18	lymphoma?
19	believe -- let's strike this. Let's strike	19	MS. FORGIE: Object to the form.
20	this. The odds ratio that you present in 12:39	20	THE WITNESS: Actually I'm 12:40
21	your expert report on page 14 are for	21	realizing something that I didn't
22	ever/never exposure; correct?	22	realize before. This table actually
23	MS. FORGIE: Object to the form.	23	says "odds ratios for ever having
24	THE WITNESS: Page 14? Which one?	24	handled specific herbicides prior to
25	This? 12:39	25	1965." I thought glyphosate was not 12:40
	Page 184		Page 185
1	available prior to 1965.	1	continue through this.
2	BY MR. LASKER:	2	MS. FORGIE: I agree.
3	Q. That would be the right column of	3	BY MR. LASKER:
4	the table, the left table. Left column is	4	Q. And if I understand you correctly,
5	upper. 12:40	5	that is because it's your opinion that 12:41
6	A. Oh, okay.	6	ever/never analyses are not as informative
7	Q. Going back to the question then,	7	on whether or not there is an association
8	other than the subsequent studies that	8	between glyphosate and non-Hodgkin's
${ }^{9}$	pooled Cantor and included Cantor in the	9	lymphoma as measures that try to look at the
10	pooling, which would be De Roos 2003 and the 12:41	10	amount of exposure of glyphosate; correct? 12:42
11	NAPP, are you -- are you aware of any study	11	MS. FORGIE: Object to the form.
12	that had a greater power to assess	12	THE WITNESS: An ever/never
13	ever/never exposure to glyphosate in	13	exposure presumes that any type of
14	non-Hodgkin's lymphoma?	14	exposure I had can be handled in the
15	MS. FORGIE: Object to the form. 12:41	15	same way. So somebody looking at a 12:42
16	THE WITNESS: I wouldn't be able to	16	bottle of pesticides and spraying it
17	tell off my head because I consider	17	once gets to be thrown in the same
18	ever/never the lowest common denominator	18	category as somebody applying pesticides
19	across all these studies, and I would	19	on a regular basis in an occupation.
20	hope that we have better measures to 12:41	20	And that is the least informative and 12:42
21	assess exposure than ever/never.	21	the most capable of inducing
22	MS. FORGIE: Just so you know, it	22	non-differential exposure
23	looks like the lunch is here. I'm not	23	misclassification by people recalling
24	saying we have to break now.	24	wrongly.
25	MR. LASKER: We'll probably just 12:41	25	/I/

	Page 186		Page 187
1	BY MR. LASKER:	1	time elapse from the time of exposure until
2	Q. The -- in your expert report you	2	the measure of non-Hodgkin's lymphoma for
3	opine, and I think this is at page 17 of	3	the biological process to take place that
4	your report. I'm sorry. On page 18 of your	4	would lead to exposure to diagnose disease;
5	report. At the bottom of page 18 -- and you 12:43	5	correct? 12:44
6	were right. This is the bottom of my head.	6	MS. FORGIE: Object to the form.
7	I got it backwards as to which study you	7	THE WITNESS: Latency -- the word
8	were doing first in your report. So bottom	8	"latency" is used in different ways and
9	of page 18 you're talking about the Cantor	9	in epidemiology we are trying to figure
10	study, going over to page 19; correct? 12:43	10	out the minimum time between an exposure 12:44
11	A. Yes.	11	happening and causing the disease. So
12	Q. And you state that the Cantor study	12	in a time-changing exposure and a
13	is less informative because the cases are	13	cumulative or a -- not an exposure like
14	diagnosed with non-Hodgkin's lymphoma	14	the A bomb that's one time -- right? --
15	between 1980 and 1983 which you state was at 12:43	15	you kind of have to decide when the 12:45
16	most only six to ten years from the first	16	potential for carcinogenicity has
17	potential glyphosate exposure; correct?	17	occurred, and from that point of time to
18	A. Correct.	18	when you're actually diagnosing the
19	Q. And you explain that this would	19	disease. That may be very different
20	be -- and just so the record is clear, we 12:44	20	depending on many factors including age 12:45
21	are talking about here is the concept of	21	of the subject.
22	latency; correct?	22	BY MR. LASKER:
23	A. This talks about latency, yes.	23	Q. Right. And the point that you're
24	Q. And the issue of latency is that	24	making with respect to Cantor, and I think
25	you would need to have a certain period of 12:44	25	you state this on page 17 of your report 12:45
	Page 188		Page 189
1	about in the middle paragraph -- I'm sorry,	1	more susceptible to exposures, that
2	in the first paragraph about halfway down,	2	cancer might just happen earlier after
3	you state that typically we would generally	3	exposure than in somebody where the
4	expect a five to ten-year minimum latency	4	cancer cell is dormant and kept in check
5	between exposure and disease onset for blood 12:45	5	by the immune system and other factors 12:47
6	system-related cancers; correct?	6	for 20 more years. So the latency
7	A. That's read correctly.	7	period is really an average or minimum
8	Q. So what that means is even if you	8	dependent on what population I'm looking
9	have -- let's say if you have a known	9	at and whether I allow for that
10	carcinogen that causes NHL, it would take a 12:46	10	population to age into the time when the 12:47
11	minimum of five to ten years from the date	11	cancers would occur.
12	of exposure for the regression from cellular	12	So mostly I would imagine I have
13	insult to result in a diagnosable case of	13	higher power in my study when the people
14	non-Hodgkin's lymphoma; correct?	14	are aged into that age when they
15	MS. FORGIE: Object to the form. 12:46	15	actually have cancer. 12:47
16	THE WITNESS: No. I'm using this	16	BY MR. LASKER:
17	in terms of epidemiologic latency time	17	Q. And the concern that you're raising
18	which we are estimating was in groups.	18	with respect to the Cantor study is that --
19	So we are never estimating for one	19	well, actually let me just take a step back
20	person. So in one person, it could be 12:46	20	here. You state -- and I think this is on 12:47
21	happening within a year or two. In	21	page 19. You state that one would prefer
22	another person, it might not be	22	for NHL cancer epidemiology study, one would
23	happening until 35 years out. That's	23	prefer a minimum latency period of on
24	why I also refer to age. For example,	24	average ten years; correct?
25	somebody who is already age 60 and is 12:46	25	MS. FORGIE: Object to the form. 12:48

	Page 190		Page 191
1	THE WITNESS: That's what this	1	correct me if I'm wrong. One issue is that
2	says.	2	you want to be measuring the exposures that
3	BY MR. LASKER:	3	could have, in fact, resulted in the
4	Q. This is you.	4	outcome; correct?
5	A. Yes, yes, this is what the sentence 12:48	5	MS. FORGIE: Object to the form. 12:49
6	says. So what I was meaning by this is that	6	THE WITNESS: I'm not sure I
7	a study would be more powerful if we allowed	7	understand, but yes, we want to measure
8	for longer latency because we then would	8	exposures as carefully as we can to
9	capture more cases due to the exposure.	9	estimate whether they are causing the
10	Because if you're only allowing for two 12:48	10	outcome. 12:49
11	years, you would only capture those people	11	BY MR. LASKER:
12	who was in those two years come down with	12	Q. So, for example, and just take an
13	the cancer. If you allowing for five years,	13	extreme example, if you were to do an
14	you can see how that number would increase	14	epidemiologic study and you measured an
15	and then ten years, 20 years out. 12:49	15	exposure on Tuesday and the individual 12:50
16	So depending on how long we have	16	came -- was diagnosed with non-Hodgkin's
17	between the first exposure or the minimum	17	lymphoma on Wednesday, whatever the exposure
18	exposure necessary to cause cancer and the	18	was on Tuesday wouldn't have been a cause of
19	events that later occur, the longer the	19	the NHL because there hasn't been a
20	latency, the more chance I have to capture 12:49	20	sufficient time that has elapsed for the 12:50
21	every single case that was actually caused	21	causal mechanism to take place; correct?
22	by the exposure because there are these	22	A. If I'm assuming that the only
23	dormant cells.	23	exposure the person ever had was on Tuesday.
24	Q. Just so I understand also because I	24	Q. Right?
25	think there's a couple things going on, but 12:49	25	A. Yes. 12:50
	Page 192		Page 193
1	Q. And one of the issues you're	1	capturing the biologically plausible
2	raising in the Cantor study is if you're not	2	exposures that could account for any
3	looking back sufficiently far in time, then	3	reported non-Hodgkin's lymphoma; correct?
4	you are not capturing exposures that could	4	MS. FORGIE: Object to the form.
5	have had sufficient time to go through that 12:50	5	THE WITNESS: That's not correct. 12:51
6	process whereby they would result in a	6	That's really not what this says. What
7	diagnosable non-Hodgkin's lymphoma; correct?	7	this says is that there is an exposure
8	MS. FORGIE: Object to the form.	8	lag time that I would like in order to
9	THE WITNESS: So what I'm trying to	9	capture every single case and not just
10	say here is that exposures have to occur 12:50	10	the ones that are the early birds. 12:52
11	a certain number of, let's say, days,	11	BY MR. LASKER:
12	years, months prior to the onset of a	12	Q. If you have, though, an early bird
13	cancer before I would think that it is	13	if you will, one of the issues that you're
14	biologically possible or plausible. But	14	trying to account for is the possibility
15	that could be a year in a certain 12:51	15	that that earlier diagnosed non-Hodgkin's 12:52
16	circumstance, two years in another, and	16	lymphoma would have been related to
17	on average, it might be very different	17	something that predates any exposure;
18	depending on the population I'm looking	18	correct?
19	at.	19	MS. FORGIE: Object to the form.
20	BY MR. LASKER: 12:51	20	THE WITNESS: Well, when I have a 12:52
21	Q. And the point you make here on	21	study that only has a two-year minimum
22	page 19 is you could have traits that vary	22	follow-up and no more, then I always
23	but for a study of non-Hodgkin's lymphoma,	23	have to raise that possibility. That's
24	you'd prefer a minimum latency period of on	24	why I would like a study that has a
25	average ten years to make sure that you are 12:51	25	longer period of time between the 12:52

	Page 194		Page 195
1	exposure and the outcome so I can	1	want to consider is whether or not those
2	estimate what an average mild latency	2	exposures took place during the time period
3	might be. And if I have a study that	3	sufficiently before the diagnosis that you
4	only follows for one year, I would	4	could attribute the exposure to the outcome;
5	probably be concerned. With a study 12:53	5	correct? Because before you did the study, 12:54
6	following two years, less, three years,	6	you don't know there's an association;
7	less, et cetera, et cetera.	7	right?
8	BY MR. LASKER:	8	MS. FORGIE: Object to the form.
9	Q. What you're mentioning here with	9	THE WITNESS: Well, it depends on
10	respect to Cantor is that you have a concern 12:53	10	which study I'm conducting, but before 12:54
11	because only six to ten years have elapsed	11	this study was conducted, I don't think
12	between a potential first glyphosate	12	there was much known about glyphosate.
13	exposure and an NHL diagnosis; correct?	13	So I agree. So this is certainly a
14	A. Well, my concern is not with	14	study that is trying to evaluate
15	respect to the biologically relevant latency 12:53	15	something we know very little about, and 12:54
16	period but with respect to having really	16	of course, we always want the most
17	captured all NHLs that might have been	17	information we can get and the longest
18	caused by the exposure because I presume	18	period between exposures.
19	that, in this case, I only captured the	19	But as a public health official, I
20	early birds, the people who got their cancer 12:53	20	want to look right away. I want to look 12:54
21	relatively soon after exposure.	21	after two years and three years and four
22	Q. You would have to, though, in	22	years, but if I don't see something
23	determining that those non-Hodgkin's	23	after two years or three years, then I
24	lymphomas that you see are attributable to	24	want to look after five years because it
25	the exposure, one factor that you would also 12:54	25	doesn't mean there's nothing when I 12:55
	Page 196		Page 197
1	don't see something after two years.		hematopoietic cancers, it's generally in
2	And in epidemiology, what we often	2	the radiation literature -- and that's
3	do in order to remove exposures that are	3	where I wrote my dissertation in --
4	irrelevant is we are discounting	4	assume that it's two-year minimum. And
5	exposures within the year before 12:55	5	so what we would do is we would look 12:56
6	diagnosis, and that's a tool one can	6	carefully and critically maybe at around
7	use.	7	one year or two year, but these are all
8	BY MR. LASKER:	8	presumed.
9	Q. And one of the things that you talk	9	And they come from the medical
10	about with another study, with the Eriksson 12:55	10	literature on radiation effects -- side 12:56
11	study is a lag period of ten years because	11	effects. They are not coming from
12	in that study, that was the demarcation;	12	population studies and workers and the
13	correct?	13	general population. So what we think
14	A. Yes, that's correct.	14	the case is is that if you say one day
15	Q. Okay. And that goes to the same 12:55	15	or a month, everybody would shake their 12:56
16	issue that you're raising which is that for	16	head. Maybe even one year we would
17	hematopoietic cancers, you might need a	17	shake our heads and say I'm not really
18	period of ten years before the exposure	18	sure. But anything beyond one year
19	could actually give rise to diseases so that	19	would definitely raise concern.
20	you can actually measure an effect; correct? 12:55	20	Because we are also now talking 12:56
21	MS. FORGIE: Object to the form.	21	about initiation of cancer or promotion
22	THE WITNESS: That's incorrect.	22	of cancer, and initiation of cancer
23	That's actually stating the opposite of	23	might take longer than promotion.
24	what I said. What I'm saying is that	24	Promotion might be the last step in the
25	you want that -- actually for 12:55	25	chain of events, and that might be very 12:57

	Page 198		Page 199
1	soon.	1	not be assessed as comprehensively as I
2	So again, what I'm saying is that I	2	would have liked to and later studies do
3	would like to move out from the time of	3	a better job.
4	exposure that is relevant for the cause	4	MR. BAUM: Is this a good time to
5	of the disease. I would like to move 12:57	5	switch over to lunch? 12:58
6	out as long as I can in order to capture	6	MR. LASKER: Almost.
7	as many cases caused by that exposure as	7	BY MR. LASKER:
8	possible.	8	Q. Now, in your analysis, you were
9	So ten years out is a good time	9	assessing the start date, if you will, of
10	frame because it makes me more 12:57	10	glyphosate as a potential exposure in 1974; 12:58
11	comfortable that I'm not only capturing	11	is that correct?
12	early birds but that I'm really looking	12	MS. FORGIE: Object to the form.
13	at the chronic consequences of that	13	THE WITNESS: Well, we don't really
14	exposure.	14	know unless the author tells us exactly
15	BY MR. LASKER: 12:57	15	when the exposure happened, but the 12:58
16	Q. Understood.	16	potential for exposure starts in '74,
17	So with respect to the Cantor study	17	yes.
18	then, if I'm understanding you correctly,	18	BY MR. LASKER:
19	your concern was -- with respect to latency	19	Q. Do you know when glyphosate was
20	was solely a concern about power? 12:57	20	first approved for use in agricultural 12:59
21	MS. FORGIE: Object to the form.	21	settings?
22	THE WITNESS: No, it was not about	22	A. I thought that was about that time.
23	power, but it was a concern about this	23	MR. LASKER: Let's just mark the
24	study not -- being a little bit early in	24	next exhibit in line.
25	the sense that the chronic effects could 12:58	25	MR. BAUM: Eric, it's 1 o'clock. 12:59
	Page 200		Page 201
1	MR. LASKER: We're going to be	1	the starting point for that calculation?
2	about five minutes. It's still all in	2	MS. FORGIE: Object to the form.
3	the context of this.	3	THE WITNESS: We are presuming that
4	(Exhibit Number 19-11 was	4	this is the only way to get glyphosate
5	marked for identification.) 12:59	5	use. 01:00
6	MS. FORGIE: What number are we on?	6	BY MR. LASKER:
7	MS. SHIMADO: 11.	7	Q. This is the first approval for
8	BY MR. LASKER:	8	agricultural settings. It would be used as
9	Q. And this will be, and I'll --	9	sort of right of way and roadways for road
10	obviously, you're going to have to -- well, 12:59	10	crews. It could have been used before then, 01:00
11	I'll represent and I'm going to ask you a	11	but the first approval for farmers for use
12	question on the assumption my representation	12	of glyphosate was in December of 1975.
13	is correct. I'll represent to you that this	13	A. And that --
14	December, 1975, letter from EPA marks the	14	MS. FORGIE: Wait. There's no
15	first date on which glyphosate-based 01:00	15	question pending. 01:01
16	formulation was approved for use in	16	BY MR. LASKER:
17	agricultural settings.	17	Q. With that assumption in mind, if
18	A. Uh-huh.	18	you're trying to measure farming exposures,
19	MS. FORGIE: There's no question.	19	which was the exposures in the Cantor study
20	BY MR. LASKER: 01:00	20	which was the farmers exposure, I think by 01:01
21	Q. If that assumption is correct for	21	its definition and by its terms, would
22	farming studies, and these are -- the Cantor	22	December of 1975, then, be the proper start
23	study was specific to farming exposures in	23	point for determining the potential latency
24	calculating that latency period, would I be	24	period between exposure and disease outcome?
25	correct, then, that December, 1975, would be 01:00	25	MS. FORGIE: Object to the form. 01:01

	Page 202		Page 203
1	Asked and answered. She just answered	1	MS. FORGIE: Object to the form.
2	that exact question.	2	Asked and answered.
3	You can answer it again.	3	You can answer it again.
4	THE WITNESS: Well, I have to make	4	THE WITNESS: Well, if that is what
5	certain assumptions. One was that they 01:01	5	they are actually assessing, then you 01:02
6	actually didn't ask other occupations,	6	would have potential exposure starting
7	such as road worker, and also that these	7	at the time this agent became available
8	farmers weren't given glyphosate in	8	to the farmers, and then you could use
9	trial runs because there's a difference,	9	that for a latency period calculation.
10	and I thought I'd seen that somewhere 01:01	10	MR. LASKER: Why don't we take a 01:03
11	listed that actually glyphosate was	11	break for lunch.
12	being tried out in certain farming	12	THE VIDEOGRAPHER: This marks the
13	populations prior to general approval.	13	end of videotape number 2 in the
14	BY MR. LASKER:	14	deposition of Dr. Beate Ritz. We're off
15	Q. Okay. I'm not sure where you've 01:02	15	the record at 1:03 p.m. 01:03
16	seen that, but for the purpose of this	16	(Lunch recess taken from
17	question, if we assume that December, 1975,	17	1:03 p.m. to 1:46 p.m.)
18	was the first date where glyphosate was	18	THE VIDEOGRAPHER: We are back on
19	approved for agricultural uses, for farm	19	the record at 1:46 p.m. This marks the
20	uses, and that none of the farmers here were 01:02	20	beginning of videotape number 3 in the 01:46
21	using it for some trial purposes before its	21	deposition of Dr. Beate Ritz.
22	official approval, would December, 1975,	22	BY MR. LASKER:
23	then, be the proper starting point for then	23	Q. Dr. Ritz, let's move on to the
24	calculating the latency period for the	24	De Roos 2003-case control study. We'll mark
25	Cantor study? 01:02	25	that as the next exhibit in line. 01:46
	Page 204		Page 205
1	(Exhibit Number 19-12 was	1	roughly the median -- most of the data was
2	marked for identification.)	2	the same as Cantor, and then you have some
3	BY MR. LASKER:	3	shorter and some longer; right?
4	Q. Dr. Ritz, we can walk through this	4	MS. FORGIE: Object to the form.
5	if you'd like, but I feel you probably 01:47	5	THE WITNESS: It depends on how 01:48
6	already have done that. The median latency	6	many people were in each of those
7	time for the NHL cases in this study is	7	studies.
8	roughly equivalent to the median latency	8	BY MR. LASKER:
9	time for the cases in the Cantor study;	9	Q. You can look on Table 2.
10	correct? 01:47	10	A. Yeah, Iowa and Minnesota is the 01:48
11	A. As far as I know, it went out a	11	biggest chunk of it.
12	little bit longer in Minnesota.	12	Q. And then the other two are both
13	Q. No, I think you're talking Nebraska	13	about the same?
14	was longer and Kansas City was shorter.	14	A. Yeah.
15	MS. FORGIE: Wait. Is there a 01:48	15	Q. So can we agree the median latency 01:48
16	question?	16	period for the De Roos 2003 study is roughly
17	MR. LASKER: I'm working my way	17	equivalent to the median latency period for
18	through it.	18	the Cantor study?
19	THE WITNESS: Nebraska is the	19	MS. FORGIE: Object to the form.
20	longest followed by Minnesota and then 01:48	20	THE WITNESS: We can calculate it, 01:48
21	Kansas.	21	but it probably would come out
22	BY MR. LASKER:	22	similarly, but it's important that we
23	Q. And Kansas was shorter?	23	also have longer latency in there, in
24	A. Correct.	24	Nebraska.
25	Q. And Nebraska was longer. So 01:48	25	I/I

	Page 206		Page 207
1	BY MR. LASKER:	1	proceedings.)
2	Q. Right. But the median latency is	2	MR. LASKER: Back on the record.
3	the same. We have shorter latency for the	3	BY MR. LASKER:
4	roughly 15 or 16 percent from Kansas and	4	Q. Even for the 17 percent of the data
5	slightly longer latency for the 17.4 percent 01:49	5	that came from Nebraska, you still would not 01:50
6	in Nebraska; correct?	6	have a median latency period for glyphosate
7	MS. FORGIE: Object to the form.	7	for ten years; correct?
8	THE WITNESS: 21.5 percent in	8	MS. FORGIE: Object to the form.
9	Nebraska.	9	THE WITNESS: That makes
10	BY MR. LASKER: 01:49	10	assumptions that we're starting to count 01:50
11	Q. I was looking at the analysis of	11	in 1975 which may or may not be correct.
12	multiple pesticides.	12	But that gives us eight years, I guess.
13	A. Oh.	13	BY MR. LASKER:
14	Q. Correct?	14	Q. Whether it's '74 or '75, the
15	MS. FORGIE: Object to the form. 01:49	15	maximum latency period would be -- maybe the 01:50
16	THE WITNESS: 17.4, yes.	16	maximum would be 12 years, but we're talking
17	BY MR. LASKER:	17	the median latency period. The median
18	Q. Okay. With respect to the Nebraska	18	latency period even for this Nebraska
19	data which is, as you mentioned, is data	19	subgroup would be less than ten years;
20	that's somewhat longer, that goes out from 01:49	20	correct? 01:50
21	July 1983 to June 1986?	21	MS. FORGIE: Object to the form.
22	A. Correct.	22	THE WITNESS: About ten years.
23	Q. Even in that sub population	23	BY MR. LASKER:
24	litigation --	24	Q. Let me make sure I understand the
25	(Interruption in the 01:50	25	median latency period. This would allow -- 01:51
	Page 208		Page 209
1	if everybody had taken glyphosate the very	1	A. Correct.
2	first day that it was available, that would	2	Q. The actual median latency for the
3	be the latency period, but, of course,	3	population that's being studied would be
4	that's not going to be the reality in the	4	less than the maximum latency period;
5	study; correct? 01:51	5	correct? 01:52
6	A. I don't know --	6	A. It would be somewhere in between
7	MS. FORGIE: Object to the form.	7	the diagnosis dates, and the diagnosis dates
8	THE WITNESS: I don't know what the	8	are July, '83, through June, '86.
9	reality in the study is because it's not	9	Q. I understand that. That would be
10	stated exactly when these farmers 01:51	10	when diagnosis was. The exposure -- the 01:52
11	started, and if we are presuming that	11	median period of exposure would not be ten
12	the EPA date is the earliest one, and	12	years before that. It would be somewhat
13	you said yourself there were other uses	13	less. At some point in time prior to
14	for glyphosate, so who knows? Farmers	14	diagnosis that they're exposed, not the very
15	do all sorts of things including buying 01:51	15	first day; correct? 01:52
16	things that are not EPA approved. So I	16	MS. FORGIE: Object to the form and
17	don't know.	17	asked and answered.
18	BY MR. LASKER:	18	You can answer again.
19	Q. So there are two parts of this:	19	THE WITNESS: Well, it depends what
20	When you talk about median latency, there 01:51	20	we are presuming about the exposure. So 01:52
21	is, in this case, a maximum latency period	21	if we are presuming that they really
22	of whenever you want to start measuring	22	only started using in 1975, and they
23	1974, 1975 through to the date of diagnosis.	23	were using a certain amount of
24	That would be the maximum latency period	24	glyphosate that needed to be used in a
25	possible. 01:52	25	certain way, they might have used, you 01:53

	Page 210		Page 211
1	know, a huge amount the first time	1	analysis, the median latency period, even of
2	around because they were told it's very	2	the Nebraska data, would be less than ten
3	non-toxic and maybe all of the relevant	3	years; correct?
4	exposure were in the first year. I	4	MS. FORGIE: Object to the form.
5	don't know. They did not investigate 01:53	5	Asked and answered. 01:54
6	that.	6	THE WITNESS: Not necessarily
7	BY MR. LASKER:	7	because the Nebraska diagnosis median is
8	Q. Okay. I understand that.	8	1985. So that's ten years after 1975.
9	But with respect to, as an	9	BY MR. LASKER:
10	epidemiologist if you're looking at this 01:53	10	Q. I understand that. Let me just 01:54
11	study and you don't have the data on when	11	make sure I understand this. You mentioned
12	exposures took place, would you assume then	12	that you had used some sort of range that
13	in your analysis of the Nebraska data for	13	determined likely first exposure date.
14	purposes of assessing the data that all of	14	It wouldn't all be assumed to be
15	the exposures to Roundup took place on the 01:53	15	1975; correct? 01:54
16	first date that exposures were possible?	16	MS. FORGIE: Object to the form.
17	MS. FORGIE: Object to the form.	17	Asked and answered. She's testified --
18	Asked and answered.	18	THE WITNESS: That would be a kind
19	You can answer it again.	19	of sensitivity analysis you might want
20	THE WITNESS: Well, I would 01:53	20	to play with. 01:54
21	probably look at a range of possible	21	BY MR. LASKER:
22	times, and then you can, you know, use	22	Q. And if that analysis were
23	that in your analysis.	23	conducted, the median latency period for
24	BY MR. LASKER:	24	even the Nebraska, 17 percent in this study
25	Q. Okay. And if you were to do that 01:53	25	could be less than ten years; correct? 01:54
	Page 212		Page 213
1	MS. FORGIE: Object to the form.	1	A. Yes.
2	Asked and answered.	2	Q. So that confidence interval is --
3	You can answer it again.	3	I'm sorry, the CLR for that, and I've done
4	THE WITNESS: Well, I could define	4	the math, but it's going to be about 3.6,
5	a range that would make it less than ten 01:54	5	and you can sort of eyeball that; right? 01:56
6	years, but if I subtract 1985 and 1975,	6	A. Yeah.
7	I have ten years on average.	7	MS. FORGIE: Object to the form.
8	BY MR. LASKER:	8	BY MR. LASKER:
${ }^{9}$	Q. Okay. And you talked earlier about	9	Q. And for the hierarchical regression
10	the issue -- we were talking about this in 01:55	10	odds ratio, we have 2.8 over 0.9; so the CLR 01:56
11	connection with the Cantor study about the	11	for the hierarchical regression would be
12	power of this study to be able to identify	12	slightly above 3; correct?
13	association. So I'd like to ask you about	13	A. Yes.
14	that.	14	Q. So the CLR for both of the De Roos
15	I'd asked you about the CLR for De 01:55	15	2003 odds ratios for glyphosate are larger 01:56
16	Roos, and we now have that data; so I'd like	16	than the CLR for the Cantor 1992 study;
17	to return to that discussion. The	17	correct?
18	glyphosate data is presented on Table 3;	18	A. What did we have for that again?
19	correct?	19	Q. You can go back. It's 2.7, but why
20	A. Correct. 01:55	20	don't you look at it just to confirm for 01:56
21	Q. And for the logistical regression	21	yourself.
22	analysis which is the analysis that you	22	MS. FORGIE: Do you remember what
23	report on in your expert report, we have a	23	exhibit it is?
24	confidence interval that ranges from 1.1 to	24	MR. LASKER: It's probably the last
25	4.0; correct? 01:56	25	one we just did. 01:56

	Page 214		Page 215
1	MS. SHIMADO: 10. Exhibit 10.	1	her estimate would be the more fully
2	BY MR. LASKER:	2	adjusted compared to the Cantor.
3	Q. You should have it right there.	3	With respect to latency, the same
4	A. Yeah.	4	rules apply. However, she added some
5	Q. For the record, I'll ask the 01:57	5	studies that actually had longer latency. 01:58
6	question again while you're looking at this.	6	Again, the latency issue is an issue because
7	The CLR for both of the logistic	7	I'm missing cases that are truly caused by
8	regression analysis and the hierarchical	8	the exposure, if I believe exposure causes
9	regression analysis in the De Roos 2003	9	disease, and so it has to do with early
10	study is actually larger than the CLR for 01:57	10	studies where I'm catching these early cases 01:58
11	the Cantor study; correct?	11	and not yet the later ones.
12	A. That is correct.	12	Q. Let me just sort of step back,
13	Q. Am I correct, though, in my	13	though, because there's a lot in that
14	understanding that the -- your concern --	14	answer, and I want to make sure I understand
15	while you're concerned about the latency 01:57	15	that fully. 01:58
16	period in the Cantor study as making that	16	Is it your testimony that the
17	study less informative, you do not have that	17	logistical regression analysis in De Roos
18	same concern for the De Roos 2003 study?	18	2003 had more controls, adjusted for more
19	A. Well, first to the ' 95 percent	19	factors than the hierarchical regression?
20	confidence interval, the confidence interval 01:57	20	MS. FORGIE: Object to the form. 01:59
21	widens with the number of adjustments I	21	THE WITNESS: No, that's not what I
22	make. Obviously, De Roos makes a lot more	22	said. The hierarchical regression makes
23	co-adjustments than Cantor, and that's	23	additional assumptions that we can
24	probably the reason why these confidence	24	debate and that are debated. You will
25	intervals are wider. So in a way, actually 01:58	25	not see many -- she is actually one of 01:59
	Page 216		Page 217
1	the first people to ever use	1	must have adjusted for a lot more than
2	hierarchical regression in a systematic	2	Cantor.
3	way in the literature.	3	BY MR. LASKER:
4	There are a few more papers here	4	Q. Let me just step back here because
5	and there. I did it myself in 2002. 01:59	5	that was my question. The confidence 02:00
6	Somehow hierarchical regression has	6	interval for the hierarchical regression is
7	fallen out of favor because you have to	7	narrower than the confidence interval for
8	make a lot of assumptions, and reviewers	8	the logistic regression analysis?
9	actually constantly fight with you over	9	A. Correct, and that's by method. By
10	those assumptions whether they're 01:59	10	making more assumptions, you're narrowing 02:00
11	correct or not. So generally, we would	11	confidence intervals. That's how
12	go back in a consensus manner to a	12	hierarchical regression works.
13	normal logistic regression in which we	13	Q. Let me step back so I make sure I
14	are adjusting for as many variables that	14	understand the question -- understand the
15	we think make validly sense to adjust 01:59	15	answer to my question. 02:00
16	for.	16	In the Cantor 1992 study, you
17	And this estimate of 2.1 was the	17	raised concerns about a median latency
18	confidence interval of 1.1 to 4 , had	18	period of less than ten years as making that
19	wider confidence interval even though	19	study which had a 1.1 adjusted odds ratio,
20	there are more cases and more controls 02:00	20	in your mind, less informative. And I'm 02:01
21	in the analysis. The only way this	21	just trying to understand if that same
22	happens is if there is more full	22	concern about the median latency period of
23	adjustment for cofactors to widen these	23	less than ten years makes the De Roos 2003
24	confidence intervals.	24	study which has that hierarchy ratio that
25	So from that, I conclude that she 02:00	25	you cite less informative. 02:01

	Page 218		Page 219
1	MS. FORGIE: Objection. Object to	1	the De Roos 2003 study less informative?
2	the form. Asked and answered.	2	MS. FORGIE: Object to the form.
3	You can answer.	3	Mischaracterizes her testimony and asked
4	THE WITNESS: Cantor is part of the	4	and answered.
5	study; however, the beauty of pooled 02:01	5	You can answer it again. 02:02
6	studies is that they pool across	6	THE WITNESS: Again, the latency
7	different studies with different	7	period in Cantor cannot be different
8	strengths and different weaknesses. It	8	from what the latency period of the part
9	helps for the sample size. It helps for	9	of the data that is Cantor data in this
10	the statistical power. In this case, it 02:01	10	pooled analysis is. So it is what it 02:02
11	helps even to adjust for more variables	11	is.
12	that you would be happy to adjust for,	12	However, adding additional states
13	and overall, it's more powerful because	13	and additional data improves what this
14	of all of these reasons.	14	study can do over the Cantor study.
15	BY MR. LASKER: 02:02	15	Plus it overall increases the latency 02:02
16	Q. That wasn't my question. My	16	because we have the Nebraska study as
17	question was that you, in your expert	17	well.
18	report, cited to a median latency period for	18	BY MR. LASKER:
19	NHL of less than ten years as a reason why	19	Q. Okay. But we also have the
20	the Cantor study was less informative, and 02:02	20	Minnesota study which has a shorter latency 02:03
21	the 1.1 odds ratio in that study was less	21	period; correct?
22	informative to you.	22	MS. FORGIE: Object to the form.
23	The De Roos 2003 study has a median	23	THE WITNESS: It's likely shorter.
24	latency period of less than ten years. My	24	Yes.
25	question to you is whether that fact makes 02:02	25	III
	Page 220		Page 221
1	BY MR. LASKER:	1	BY MR. LASKER:
2	Q. Just to clarify, the Kansas study	2	Q. In your opinion, does the fact that
3	has a shorter period?	3	the De Roos 2003 study has a median latency
4	A. Kansas, yes.	4	of less than ten years make that study less
5	Q. So again, my question is -- and it 02:03	5	informative? 02:04
6	may or may not -- but does the fact that the	6	MS. FORGIE: Objection. Object to
7	De Roos 2003 study has a median latency	7	the form. Mischaracterizes her prior
8	period of less than ten years, in your	8	testimony, asked and answered. This is,
9	assessment, does that, in your mind, make	9	like, the fifth time you've asked the
10	the De Roos 2003 study less informative? 02:03	10	same question. 02:04
11	MS. FORGIE: Object to the form.	11	THE WITNESS: Now I'm really
12	Mischaracterizes her testimony. Asked	12	confused because I don't know anymore
13	and answered.	13	what you mean by "less informative."
14	You can answer it again.	14	BY MR. LASKER:
15	THE WITNESS: I think De Roos is a 02:03	15	Q. Okay. Well, that was your 02:04
16	really excellent study that did	16	terminology with respect to the Cantor
17	everything we can do in terms of pooling	17	study.
18	data in terms of relating the exposures	18	A. Correct.
19	that she had access to to the outcomes	19	Q. And you stated that the Cantor
20	in adjusting and trying different 02:03	20	study was less informative because it had a 02:04
21	methods and in actually lengthening the	21	median latency period of less than ten
22	overall latency by including Nebraska.	22	years. My question is: Do you believe that
23	MR. LASKER: Mark that answer. I'm	23	the De Roos study is less informative
24	going to ask the question again.	24	because it has a median latency period of
25	I/I	25	less than ten years? 02:04

	Page 222		Page 223
1	MS. FORGIE: Objection. Object to	1	even more informative.
2	the form. I object to the	2	BY MR. LASKER:
3	mischaracterization of her prior	3	Q. And the Nebraska data is from a
4	testimony. Asked and answered six	4	case control study that was published by
5	times. 02:05	5	Dr. Zahm; correct? 02:06
6	You can answer it again.	6	A. Yes, Sheila.
7	THE WITNESS: So the De Roos study	7	Q. And Dr. Zahm in her published case
8	generally is a better study than the	8	control study did not report any association
9	Cantor study because it pools data. So	9	between glyphosate and non-Hodgkin's
10	it's not less informative. It's 02:05	10	lymphoma, did she? 02:06
11	actually more informative, that it	11	A. Can you show me that?
12	cannot go beyond the latency period of	12	Q. Sure.
13	one of the studies included for that	13	(Exhibit Number 19-13 was
14	data is a no-brainer.	14	marked for identification.)
15	However, she added data with a 02:05	15	BY MR. LASKER: 02:06
16	longer latency; so she is actually now	16	Q. Again, my question is Dr. Zahm, in
17	covering all sorts of latency periods	17	her paper, does not report any --
18	that we can look at. And the longer, of	18	specifically any association or positive
19	course, we would have a latency period,	19	association between glyphosate and
20	the more powerful. If she had another 02:05	20	non-Hodgkin's lymphoma; correct? 02:07
21	study to add, it would become more	21	MS. FORGIE: Take as much time as
22	powerful, but it is an incremental step	22	you want reading it.
23	going from one study that may be less	23	THE WITNESS: It looks like this is
24	informative to two studies that are more	24	a study specifically analyzed for 2,4-D
25	informative to three studies that are 02:05	25	and some more general pesticide 02:07
	Page 224		Page 225
1	exposures.	1	published case control study, looking at
2	BY MR. LASKER:	2	that Nebraska data that was then pooled into
3	Q. My question to you is: In the	3	De Roos 2003, does not report any
4	published paper addressing the Nebraska data	4	association between glyphosate-based
5	that was pooled in De Roos 2003, the 02:07	5	herbicides and non-Hodgkin's lymphoma; 02:08
6	investigators, Zahm, et al., do not report	6	correct?
7	any association between glyphosate and	7	MS. FORGIE: Objection. Object to
8	non-Hodgkin's lymphoma; correct?	8	the form, asked and answered. This is
9	MS. FORGIE: Objection. Object to	9	the fifth time she's answered.
10	the form, and asked and answered. 02:08	10	You can answer it again. 02:09
11	You can answer it again.	11	THE WITNESS: So the pooled data is
12	THE WITNESS: So the beauty of	12	not what is being reported on here.
13	pooled studies is that I can do things	13	There's a difference between a study and
14	that I can't do in a single study. I	14	a study report. Usually when you do
15	presume that Sheila thought she could 02:08	15	these studies, they're very expensive. 02:09
16	not analyze certain types of pesticide	16	You collect a lot more data than what
17	based on what is 201 cases.	17	you can report in one paper, and for
18	So that would be normal procedure	18	your career, you better publish more
19	to then make this data available for a	19	than one paper.
20	larger pooled study for pesticide 02:08	20	There's always the issue of common 02:09
21	exposures that are less common.	21	and less common exposures; so when I
22	BY MR. LASKER:	22	collect as extensively as I can any kind
23	Q. My question was -- and I still I'm	23	of occupational exposure, I might or
24	not sure I've gotten -- I still haven't	24	might not have the statistical power to
25	gotten an answer. Dr. Zahm, in her 02:08	25	investigate every of those exposures in 02:09

	Page 226		Page 227
1	my study that is relatively limited	1	BY MR. LASKER:
2	since there are only 201 white males as	2	Q. Dr. Ritz, in her published paper,
3	cases.	3	case controlled paper, looking at the
4	So in that case, I provide this	4	Nebraska data that was subsequently pulled
5	data for a collaborative effort and 02:10	5	into De Roos 2003, Dr. Zahm does not report 02:10
6	Dr. De Roos' paper is such a	6	any association between glyphosate and
7	collaborative effort where then I	7	non-Hodgkin's lymphoma; correct?
8	provide them with a lot more data than I	8	MS. FORGIE: Objection. Object to
9	would be -- you see that she is the	9	the form and asked and answered. This
10	second author here, and Dr. Blair is the 02:10	10	will be, like, the eighth or ninth time 02:10
11	last author. So they would have had	11	she's answered the same question.
12	access to more data than this paper is	12	You can answer it again.
13	actually reporting on.	13	THE WITNESS: This data in the Zahm
14	MR. LASKER: I'm going to have the	14	publication from 1990 is not the data
15	reporter mark that answer again. I'm 02:10	15	that was pooled into this pooled study. 02:11
16	going to ask the question one more time	16	This is data specifically for one type
17	to see if I can get an answer. If not,	17	of application. What I imagine Dr. Zahm
18	we'll just have to address this with the	18	provided to Dr. De Roos is a much more
19	Court later.	19	extensive dataset and the De Roos study
20	MS. FORGIE: I object to the 02:10	20	is based on that more extensive dataset. 02:11
21	statements about not getting an	21	BY MR. LASKER:
22	answer --	22	Q. The De Roos study is looking at
23	MR. LASKER: That's fine. Just	23	187 cases in its pooled analysis and
24	object.	24	113 cases in its analysis of multiple
25	MS. FORGIE: It's unfair. 02:10	25	pesticides from Nebraska; correct? 02:11
	Page 228		Page 229
1	A. 113 , yes.	1	THE WITNESS: I see a citation to a
2	Q. And the Zahm published paper had,	2	Williams paper and a Hardell paper.
3	would you say, over 200 cases of	3	BY MR. LASKER:
4	non-Hodgkin's lymphoma; correct?	4	Q. Number 51 --
5	A. 201. 02:11	5	A. And $51 . \quad 02: 13$
6	Q. Okay. De Roos and her	6	Q. -- and number 8 is the McDuffie
7	co-investigators in the 2003 paper discuss	7	paper; correct?
8	their findings with respect to glyphosate in	8	A. Oh, 8 , yes.
9	their conclusion -- in the concluding	9	Q. So they cite to the McDuffie paper
10	section; correct? Or I guess in their 02:12	10	and the Hardell paper; correct? 02:13
11	discussion section?	11	A. Yes.
12	A. Yes.	12	MS. FORGIE: Objection.
13	Q. And on page 7 of 9 , the	13	BY MR. LASKER:
14	paragraph -- sort of the second	14	Q. And they state that these few
15	paragraph from the end of the bottom of the 02:12	15	suggested findings provide some impetus for 02:13
16	second column on page 7 is where De Roos and	16	further investigation into the potential
17	her co-investigators discuss their findings	17	health effects of glyphosate; correct?
18	with respect to glyphosate; correct?	18	A. It seems like they are citing
19	A. This one? The second to the last.	19	Williams here.
20	Q. Glyphosate -- 02:12	20	Q. I understand that. 02:13
21	A. Yeah, yeah.	21	The conclusion that De Roos and her
22	Q. In that discussion, they talk about	22	co-investigators provide in their discussion
23	the -- they cite to the Hardell paper, and	23	in their paper after reviewing the other
24	they cite to the McDuffie paper; correct?	24	epidemiological studies they cite, Hardell
25	MS. FORGIE: Objection. 02:13	25	and McDuffie, after they've done their 02:14

	Page 230		Page 231
1	analysis as well for the pooled data from	1	BY MR. LASKER:
2	the U.S. case controlled studies, was that	2	Q. They do not list glyphosate; right?
3	these were suggested findings that provide	3	MS. FORGIE: Wait. She hasn't
4	some impetus for further investigation into	4	finished her answer. Please let her
5	the potential health effects of glyphosate; 02:14	5	finish. 02:15
6	correct?	6	THE WITNESS: I'm looking for the
7	MS. FORGIE: Object to the form.	7	glyphosate. No, that's the general
8	THE WITNESS: The way I read this	8	statement.
9	is that they are commenting on Hardell	9	BY MR. LASKER:
10	and McDuffie. 02:14	10	Q. Okay. 02:15
11	BY MR. LASKER:	11	A. But you would need to look at the
12	Q. They do not -- De Roos and her	12	list of what she considers potentially
13	co-authors do not anywhere in their paper	13	carcinogenic which is on Table 1, and you
14	state that their study in combination with	14	will see that glyphosate was one of them
15	the earlier epidemiological studies supports 02:14	15	because it got a .3. 02:15
16	a conclusion that there has been shown a	16	Q. In her -- in De Roos' discussion,
17	causal association between glyphosate and	17	if I can direct you to page 6 of 9 , she has
18	NHL, do they?	18	data there for combined pesticide use,
19	MS. FORGIE: Object to the form.	19	Table 5.
20	THE WITNESS: Well, they're 02:14	20	Do you see that? 02:16
21	actually saying, "Our results indicate	21	A. Yes.
22	increased NHL incidents by number of	22	Q. And one of the analyses that they
23	pesticides used only for the subgroup of	23	conduct is a combined analysis of atrazine
24	potentially carcinogenic ones," and then	24	and dicamba; correct?
25	they list them. 02:15	25	A. Yes. 02:16
	Page 232		Page 233
1	Q. And as it happens, their findings	1	versus 36 and 61 for glyphosate. So it's
2	for their logistic regression and their	2	not the same people.
3	hierarchical regression for atrazine and	3	Q. Right. I wasn't suggesting it's
4	dicamba combined are almost identical to	4	the same people.
5	their findings for glyphosate alone; 02:16	5	The hierarchical regression 02:17
6	correct?	6	analysis, the conclusion for atrazine and
7	MS. FORGIE: Object to the form.	7	dicamba combined was a 1.6 odds ratio which
8	THE WITNESS: I don't know what you	8	is the same odds ratio reported for
9	mean by "identical."	9	glyphosate; correct?
10	BY MR. LASKER: 02:16	10	MS. FORGIE: Object to the form. 02:17
11	Q. Well, for atrazine and dicamba in	11	THE WITNESS: Well, yeah, I mean,
12	their logistical regression, they had an	12	when we do these kind of analyses, a lot
13	odds ratio of 2.1 which is the same odds	13	of odds ratios might be the same.
14	ratio as glyphosate had in logistical	14	BY MR. LASKER:
15	regression; correct? 02:17	15	Q. And the confidence interval for the 02:18
16	A. Yes, but odds ratio of 2.1 or .7 or	16	hierarchical regression analysis for
17	. 3 you can find all over this table.	17	atrazine and dicamba combined is, again,
18	Q. And the confidence interval for the	18	virtually identical to the odds ratio for
19	logistic regression analysis for 2.1 was	19	the hierarchical regression analysis for
20	marginally significant and very similar to 02:17	20	glyphosate; correct? 02:18
21	the confidence interval for glyphosate	21	MS. FORGIE: Object to the form.
22	alone; correct?	22	THE WITNESS: Not surprising given
23	A. Correct. But you can see that it	23	the assumptions they made for the
24	is based on very different data. It's based	24	hierarchical regression.
25	on 31 cases and 60 controls in that category 02:17	25	I/I

	Page 234		Page 235
1	BY MR. LASKER:	1	tables you absolutely cannot compare.
2	Q. And in discussing those odds	2	The result for atrazine and dicamba
3	ratios, 2.1 for the logistic regression	3	both, it's what we call an interaction
4	analysis that is just statistically	4	term, and what she is comparing here is
5	significant and a 1.6 for the hierarchical 02:18	5	they seem to be indicative super 02:19
6	regression analysis that's not significant	6	additivity and results from logistic
7	in connection with atrazine and dicamba on	7	regression.
8	page 6 in their study, and it is in the text	8	And what this next sentence is
9	right above the words "Discussion," De Roos	9	referring to, such as for atrazine and
10	states that those findings were "probably 02:18	10	dicamba, were probably misleading. So 02:19
11	misleading due to imprecision of estimates	11	the misleading is the super additivity
12	noting that these results did not hold up	12	and not the effect estimate.
13	following shrinkage and hierarchical	13	BY MR. LASKER:
14	regression analysis according to our prior	14	Q. Let's go on to the Lee study just
15	distribution of complete exchangeability"; 02:19	15	briefly. That's Lee 2004.00
16	correct?	16	MS. FORGIE: Are we putting these
17	A. That's what this says. I mean, the	17	away?
18	text.	18	MR. LASKER: For now, yes.
19	Q. And to the extent that -- I take it	19	(Exhibit Number 19-14 was
20	you would not view the identical -- or not 02:19	20	marked for identification.) 02:20
21	nearly identical odds ratios reported for	21	BY MR. LASKER:
22	glyphosate in the same study as being	22	Q. The Lee study is another pooled
23	probably misleading; correct?	23	analysis here using two of the three studies
24	MS. FORGIE: Object to the form.	24	that were used in De Roos 2003; correct?
25	THE WITNESS: You are comparing two 02:19	25	A. Correct. 02:20
	Page 236		Page 237
1	Q. The Lee study reporting its results	1	upon all the exposures. It's not specific
2	does not adjust for exposures to other	2	to glyphosate; correct?
3	pesticides; correct?	3	A. No. The one for glyphosate has six
4	MS. FORGIE: Object to the form.	4	exposed cases and 12 exposed controls, and
5	THE WITNESS: I have to check that. 02:21	5	you already have age, vital status, and 02:22
6	BY MR. LASKER:	6	state in there. So if you do it two by two
7	Q. Table 3 on page 300.	7	by two table, then you have no more
8	A. The Lee study does not give you an	8	subjects --
9	effect estimate for glyphosate. It gives	9	Q. I'm sorry --
10	you a stratified analysis by asthmatics and 02:21	10	A. -- in one of these. 02:22
11	non-asthmatics for glyphosate.	11	Q. We're not connecting here --
12	Q. And in that stratified analysis,	12	A. Table number 3.
13	they do not adjust for exposures to other	13	MS. FORGIE: Wait, let her finish.
14	pesticides; correct?	14	BY MR. LASKER:
15	MS. FORGIE: Object to the form. 02:21	15	Q. All of the adjustments in this 02:22
16	Asked and answered.	16	entire study, and there's a whole lot of
17	You can answer it again.	17	adjustments they do with stratification on
18	THE WITNESS: That seems to be	18	Tables 2 and Table 3, none of the odds
19	correct, and I would be very surprised	19	ratios anywhere in this study are adjusted
20	if they did because they had only six 02:21	20	for exposures to other pesticides; correct? 02:22
21	cases among asthmatics. If you throw	21	MS. FORGIE: Objection. Object to
22	any more variable into that model, you	22	form. Asked and answered.
23	will explode it.	23	You can answer it again.
24	BY MR. LASKER:	24	THE WITNESS: The glyphosate
25	Q. Well, the adjustment model is based 02:22	25	estimates are estimates among 02:22

	Page 238		Page 239
1	non-asthmatics and asthmatics. When you	1	to other pesticide; correct?
2	split your data in that way, you limit	2	MS. FORGIE: Objection. Object to
3	the way you can adjust. In this case,	3	the form. Asked and answered.
4	when you have asthmatics with six	4	You can answer it again.
5	glyphosate exposed cases and 12 02:23	5	THE WITNESS: None of the pesticide 02:23
6	controls, there's absolutely no way -- I	6	results are concomitantly adjusted, and
7	don't even know how they adjust for age	7	it's not a surprise because they are
8	vital status and state without exploding	8	stratifying by asthma status, and in
9	their model.	9	order to compare one model with another,
10	BY MR. LASKER: 02:23	10	they have to adjust for exactly the same 02:24
11	Q. Okay. Dr. Ritz, that wasn't my	11	variables or else you can't compare the
12	question, and that doesn't answer my	12	models.
13	question in the slightest.	13	And the intent here is to compare
14	MS. FORGIE: I object to that	14	models for asthmatics with models for
15	commentary. She's answered it twice. 02:23	15	non-asthmatics. If you put different 02:24
16	MR. LASKER: We'll mark this answer	16	adjustments variables in there, you
17	as well.	17	don't know whether you see a difference
18	BY MR. LASKER:	18	or not.
19	Q. It's a very simple question.	19	MR. LASKER: We're going to have to
20	There's two tables here, Table 2 and Table 3 02:23	20	mark that answer again and ask one more 02:24
21	with a whole lot of reported odds ratios,	21	time because I can't get a yes or no
22	not only for glyphosate, but for other	22	answer to a question. I'll ask it one
23	pesticides, for other exposures, for	23	more time.
24	combined herbicides. None of those odds	24	BY MR. LASKER:
25	ratios include any adjustment for exposure 02:23	25	Q. None of the odds ratios in the Lee 02:24
	Page 240		Page 241
1	study were adjusted for exposure to other	1	Yes or no?
2	pesticides; correct?	2	MS. FORGIE: Objection.
3	MS. FORGIE: Objection. Object to	3	No. She's not required to give a
4	the form. Asked and answered. As you	4	yes or no answer, and you know that.
5	just stated, this is like the seventh 02:24	5	MR. LASKER: Frankly, she is. 02:25
6	time.	6	MS. FORGIE: No, she's not. Don't
7	You can answer it again.	7	do this. Objection. Object to the
8	THE WITNESS: This study intends to	8	form. Object to asked and answered for
9	look at a stratified analysis of	9	the seventh time.
10	non-asthmatics and asthmatics. If I 02:24	10	You're not required to give a yes 02:25
11	really want to compare the effects	11	or no answer. You can answer again.
12	estimates between these two groups of	12	BY MR. LASKER:
13	people and I want to assess whether	13	Q. I'm asking for a yes or no answer.
14	glyphosate has the same effect in one	14	If you can't give a yes or no answer, you
15	group than in the other, I have to 02:25	15	can just state that and we'll move on and 02:25
16	automatically adjust for the same	16	we'll deal with it later for the judge.
17	variables. They already are adjusting	17	MS. FORGIE: Objection.
18	for age, vital status, and state,	18	THE WITNESS: My answer will not
19	therefore, there is no way they could	19	change.
20	also adjust for everything else. 02:25	20	BY MR. LASKER: 02:25
21	BY MR. LASKER:	21	Q. My question to you is am I correct
22	Q. So if the answer is, yes, that's	22	that the Lee study in reporting the odds
23	fine, but I need an answer for the record.	23	ratios for all the odds ratios reported does
24	Am I correct that the Lee study does not	24	not adjust for the exposure to other
25	adjust for exposure to other pesticides? 02:25	25	pesticides? 02:25

	Page 242		Page 243
1	MS. FORGIE: Objection. Object to	1	includes Nebraska and we seem to have
2	the form and asked and answered.	2	agreed that that has a longer latency
3	You can answer it again.	3	and gives you more opportunity to
4	THE WITNESS: This is such a	4	investigate this question.
5	general question that it's not 02:26	5	BY MR. LASKER: 02:27
6	answerable. But in order to inform you	6	Q. And it also includes the data in
7	what is done in this study, I state it	7	Cantor that has the latency period that you
8	again. This study intends to compare	8	believe is too short; correct?
9	effect estimates between asthmatics and	9	A. I never said that I believed it is
10	non-asthmatics. In order to do so, the 02:26	10	too short, but it does include the Iowa and 02:27
11	authors had to adjust for exactly the	11	Minnesota data that's in the Cantor study.
12	same variables in the pesticide models.	12	Q. Let's move on to the McDuffie
13	The variables they adjusted for are age,	13	study.
14	vital status, and state.	14	MS. FORGIE: Are we finished with
15	MR. LASKER: Mark that and we'll 02:26	15	this? 02:27
16	move on.	16	MR. LASKER: Yeah.
17	BY MR. LASKER:	17	(Exhibit Number 19-15 was
18	Q. The issue with latency that you	18	marked for identification.)
19	raised and we've discussed before from the	19	BY MR. LASKER:
20	same pool data would also exist to the 02:26	20	Q. Dr. Ritz, for the record this is 02:27
21	extent that it concerns you or not with the	21	the McDuffie study which is the case control
22	Lee study; correct?	22	study from Canada; correct?
23	MS. FORGIE: Object to the form.	23	A. Yes.
24	THE WITNESS: I'm not sure what you	24	Q. And the authors describe McDuffie,
25	mean by issue. However, this study 02:26	25	et al., describe their analysis in this 02:28
	Page 244		Page 245
1	study as exploratory; correct?		BY MR. LASKER:
2	MS. FORGIE: Object to the form.	2	Q. During the point in time, and I
3	THE WITNESS: Where do they say	3	think you mentioned this -- well, at -- in
4	that?	4	the method section -- strike that.
5	BY MR. LASKER: 02:28	5	Do you know based upon your review 02:29
6	Q. On page 1161 in the second	6	of this study whether glyphosate was
7	column about two-thirds of the way down. Do	7	specified in the hypothesis when they were
8	you see the sentence starting "We report	8	conducting this study?
9	results"?	9	MS. FORGIE: Object to the form.
10	A. Yes. 02:28	10	THE WITNESS: I wouldn't know that. 02:29
11	Q. "We reported results."	11	BY MR. LASKER:
12	A. Uh-huh.	12	Q. Okay. So you cannot state, then,
13	Q. And McDuffie, et al., describe	13	whether or not the glyphosate findings would
14	their analysis in this study as exploratory;	14	be considered by the investigators McDuffie,
15	correct? 02:28	15	et al., to be exploratory; correct? 02:29
16	MS. FORGIE: Objection. Object to	16	MS. FORGIE: Object to the form.
17	the form.	17	THE WITNESS: That's not correct
18	THE WITNESS: What they're stating	18	because what I -- when I design a study
19	is that they investigated a number of	19	and a study questionnaire, I have to
20	different chemicals and exposures and, 02:28	20	decide which chemical agents to specify, 02:29
21	therefore, some of the analyses to	21	meaning, to name or to want to
22	unspecified agents should be considered	22	investigate. So in my preparation for a
23	exploratory. I don't know what they	23	study, I have to be very clear about
24	mean by unspecified agents.	24	what kinds of pesticides I'm asking
25	//]	25	about, and I would call that 02:30

	Page 246		Page 247		
1	specification.	1	reading it.		
2	So if they hadn't been interested	2	BY MR. LASKER:		
3	in glyphosate, they wouldn't have	3	Q. And you don't know sitting here		
4	investigated it, and they wouldn't have	4	today whether or not based upon this and		
5	asked it in a questionnaire. 02:30	5	based upon however they prepared this 02:31		
6	BY MR. LASKER:	6	information, whether the findings that they		
7	Q. They state, however, in presenting	7	report with respect to glyphosate should be		
8	the data, and they do present data on	8	considered exploratory; correct?		
9	various different chemical agents, and they	9	MS. FORGIE: Objection. Asked and		
10	have a whole list of them, that they are 02:30 presenting results for chemical agents and	10	answered. Object to the form. 02:31		
11		11	You can answer it again.		
12	exposures that were not specified in the	12	THE WITNESS: All I can tell you I		
13	hypothesis; correct?	13	don't consider this exploratory.		
14	MS. FORGIE: Object to the form.	14	BY MR. LASKER:		
15	Asked and answered. You can answer it 02:30 again.	15	Q. Okay. The McDuffie case control 02:31 study did not adjust for exposure to other		
16		16			
17	THE WITNESS: They refer to a	17	pesticides; correct?		
18	number of chemical agents and exposures	18	A. In what table?		
19	that were not specified. The way that	19	Q. Any of the tables.		
20	$\begin{array}{ll}\text { might happen is that when you have a } & \text { 02:30 } \\ \text { questionnaire, you have open questions }\end{array}$	20	A. That's not correct. Table 6 and 7 seem to be adjusting for chemicals.	02:31	
21		21			
22	and you don't specify the name of the	22	Q. 6 and 7 are dealing with various		
23	chemical, but people decide to write	23	medical variable		
24	them in. I have no idea what they mean	24	A. And dicamba and Aldrin and		
25	by unspecified, but that's one way of 02:30	25	Mecoprop. 02:32		
	Page 248		Page 249		
1	Q. With respect to the tables that	1	report and just so the record is clear, for		
2	report any findings with respect to	2	the two ever/never odds ratios for the glyphosate that McDuffie reports, they find		
3	glyphosate, none of those findings are	3			
4	adjusted for exposures to other pesticides;	4	glyphosate that McDuffie reports, they find		
5	correct? 02:32	5	ratios are statistically significant by the		
6	MS. FORGIE: Object to the form.	6			
7	THE WITNESS: Which table are we talking about?	7	95 percent confidence interval; correct?		
8		8	A. Well, if we want to play the		
9	BY MR. LASKER:	9	P -value game, that's correct, but the values		
10	Q. Well, for glyphosate, it would be 02:32	10	are 1.26 and 1.20. One adjusted; one not.	02:34	
11	Tables 2 and Table 8 as far as I know. But	11	But that's an ever/never.		
12	you should make sure that you agree with	12	Q. Right. And the -- you mention in		
13	that. Take your time.	13	your report that there was separate analyses of the McDuffie data that, first of all,		
14	A. 2 and --	14			
15	MS. FORGIE: $8 . \quad$ 02:33	15	separated out association for glyphosate 02:34		
16	THE WITNESS: These tables seem to adjust for age and province.	16	with and without malathion; correct? I		
17		17	think that's your expert report at page 18.		
18	BY MR. LASKER:	18	A. Where's that?		
19	Q. Just so the record is clear in the	19	Q. In your expert report at page 18.		
20	odds ratios that are reported for glyphosate 02:33in the McDuffie study, the investigators do	20	MR. WISNER: Do you want to go off 02:35 the record while we fix this?		
21		21			
22	not adjust for exposure to other pesticides;	22	MR. LASKER: If we can. I don't		
23	correct?	23	know that we can. Let's wait until the end of this question.		
24	A. That seems correct.	24			
25	Q. The -- as you note in your expert 02:33	25	MS. FORGIE: What was the question 02:35		

	Page 250		Page 251
1	again?	1	odds ratio of 0.92 with a confidence
2	MR. LASKER: Now I'm losing track	2	interval of 0.54 to 1.55; correct?
3	of these things. Oh, okay.	3	A. Correct.
4	BY MR. LASKER:	4	Q. And in your report you also point
5	Q. So in your expert report you note 02:35	5	to a separate analysis that you say McDuffie 02:37
6	that there was a separate analysis of the	6	conducted which looked at glyphosate
7	McDuffie data that separated out the	7	exposure mixed with dicamba exposure;
8	association for glyphosate with and without	8	correct, in your expert report?
9	co-exposure to malathion; correct?	9	A. Where is that?
10	A. Yes, that's the Hohenadel paper. 02:36	10	Q. Right above -- 02:37
11	Q. The Hohenadel study is a stratified	11	A. Above? Yes.
12	analysis like we were discussing earlier in	12	Q. Okay. And I take it that that --
13	your testimony here today; correct?	13	your discussion there is based upon -- and
14	MS. FORGIE: Object to the form.	14	correct me if I'm wrong -- Table 2 in the
15	THE WITNESS: It's not a stratified 02:36	15	McDuffie paper? 02:37
16	analysis. It's what we would call an	16	A. It's the McDuffie paper.
17	interaction model testing.	17	Q. Look at Table 2.
18	BY MR. LASKER:	18	MS. FORGIE: You can look at
19	Q. In that interaction model testing	19	whatever you want.
20	when, and I think you report this, you note 02:36	20	BY MR. LASKER: 02:38
21	this in your expert report, when Hohenadel	21	Q. You'll see the numbers that you
22	looked at the McDuffie data and looked at	22	cite in your expert report on Table 2 for
23	exposures -- farmers who were exposed to	23	dicamba and dicamba individual. Do you see
24	glyphosate alone without co-exposure to	24	those?
25	malathion, they found or they reported an 02:36	25	A. Yes. 02:38
	Page 252		Page 253
1	Q. So in your report when you are	1	Q. -- model, second model for
2	stating that there was an elevated odds	2	Mecoprop?
3	ratio for dicamba exposure mixed with	3	A. Yeah, but it's an effect estimate
4	glyphosate exposure, that is relying upon	4	of 1.26 and 1.32, and it's only
5	that footnote G in Table 2; correct? 02:38	5	statistically significant after the 02:39
6	A. Correct. That's what it was.	6	adjustment.
7	Q. And footnote G states that the odds	7	Q. Okay. And then for Mecoprop there
8	ratio that you cite for mixed exposure for	8	is a 2.23 or 2.33 odds ratio --
9	dicamba and glyphosate also involves mixed	9	A. Correct.
10	exposures to dicamba and 2,4-D and Mecoprop; 02:39	10	Q. -- statistically significant to 02:39
11	correct?	11	both measure and for dicamba even in the
12	A. That's what it says in the	12	dicamba alone for their more highly adjusted
13	footnote.	13	odds ratio it's 1.68 marginally
14	Q. And unlike for glyphosate, McDuffie	14	statistically significant; correct?
15	reported statistically significant increased 02:39	15	A. Yes. 02:40
16	risks of non-Hodgkin's lymphoma separately	16	Q. And you cannot tell from this data
17	associated with exposures to each of the	17	when you're looking at the mixed exposures
18	three pesticides 2,4-D, dicamba, and	18	for dicamba when they're mixed for 2,4-D
19	Mecoprop; correct?	19	Mecoprop and glyphosate, you cannot
20	A. That's in table -- 02:39	20	attribute the difference between dicamba 02:40
21	Q. It's actually in Table 2. They	21	alone and this dicamba mixture to
22	have separate odds ratios reported for 2,4-D	22	glyphosate, can you?
23	that is statistically significant in	23	MS. FORGIE: Object to the form.
24	their --	24	THE WITNESS: You can never do that
25	A. Yes. 02:39	25	in an individual anyhow. When you're 02:40

	Page 254		Page 255
1	doing these kind of analyses, you have	1	saying. I'm saying there is dicamba
2	mixed exposures. If a person is exposed	2	that is of the kind Banvel and Target
3	to two compounds, then it can be either	3	which includes glyphosate and then
4	one compound or the other or both	4	there's dicamba overall. So one is a
5	together that are responsible for the 02:40	5	subgroup of the other. And you can 02:41
6	event.	6	actually see that when you're looking at
7	BY MR. LASKER:	7	the number of exposed cases and exposed
8	Q. But in this case, it's not one or	8	controls. Dicamba is the
9	the other or two. There's actually four	9	all-encompassing over label and then
10	different chemicals when you're stating that 02:41	10	they're breaking it down with and 02:42
11	there was in your expert report -- and let's	11	without glyphosate, et cetera, mixtures.
12	go back to your expert report. You state	12	BY MR. LASKER:
13	that McDuffie reported that when glyphosate	13	Q. The et cetera is the important
14	exposure was mixed with dicamba, the risk	14	point, but let me make sure I understand.
15	was increased. 02:41	15	Is it your testimony that or Banvel or 02:42
16	Do you see that?	16	Target is a mixed exposure with glyphosate?
17	A. Yes.	17	MS. FORGIE: Objection. Object to
18	Q. And, in fact, what McDuffie was	18	the form and mischaracterizes her
19	reporting is that when dicamba exposure also	19	testimony.
20	included mixed exposures to glyphosate, 02:41	20	THE WITNESS: So it says in the 02:42
21	2,4-D and Mecoprop, there was an increase as	21	footnote, "dicamba is a major chemical
22	compared to the dicamba alone; correct?	22	class, includes Banvel and Target and a
23	MS. FORGIE: Object to the form.	23	mixture of dicamba glyphosate, Rustler,
24	Mischaracterizes.	24	or a mixture of dicamba 2,4-D and
25	THE WITNESS: That's not what I'm 02:41	25	Mecoprop. 02:42
	Page 256		Page 257
1	BY MR. LASKER:	1	1.88, and the dicamba, Banvel and Target
2	Q. And then Dynel, Killex; correct?	2	is 1.68.
3	MS. FORGIE: Object to the form.	3	BY MR. LASKER:
4	THE WITNESS: Dynel DS, and Killex.	4	Q. And the difference -- in your
5	BY MR. LASKER: 02:42	5	expert report you state that the difference 02:43
6	Q. So the mixed exposure would be in	6	going up to that higher number is because
7	Rustler for dicamba and glyphosate; correct?	7	there was including mixtures with
8	A. There are several mixtures.	8	glyphosate, but that higher number actually
9	There's the mixture of dicamba and	9	also reflects exposures to 2,4-D and
10	glyphosate in Rustler and then there's the 02:42	10	Mecoprop; correct? 02:43
11	mixture of dicamba with 2,4-D and Mecoprop.	11	MS. FORGIE: Objection. Object to
12	Q. So for the 1.68 odds ratio, that's	12	the form and asked and answered.
13	dicamba alone; correct?	13	You can answer it again.
14	A. That's the overall dicamba. That's	14	THE WITNESS: I'm not sure that I
15	not dicamba alone. That's not -- that's 02:43	15	understand what you're trying to get at. 02:43
16	dicamba with everything.	16	In this table, dicamba exposure was the
17	Q. And your understanding is dicamba	17	footnote G is the overall
18	with everything is 1.68 and dicamba alone is	18	encompassing -- all-encompassing
19	the 1.88 ?	19	exposure. The individual dicamba
20	A. No. 02:43	20	herbicide Banvel or Target is the one 02:44
21	MS. FORGIE: Object to the form.	21	that's reported below. The number of
22	THE WITNESS: It's the opposite.	22	cases is lower, and the number of
23	MS. FORGIE: Okay. That's what I	23	controls is lower, but, in essence, the
24	thought.	24	number of 26 and 50s included in the
25	THE WITNESS: Dicamba overall is 02:43	25	larger category above which is 73 and 02:44

	Page 258		Page 259
1	131.	1	BY MR. LASKER:
2	BY MR. LASKER:	2	Q. So the odds ratio of 1.92 that you
3	Q. My question is very simple. In	3	cite in your expert report as glyphosate
4	your expert report, you state that the odds	4	exposure mixed with dicamba is the odds
5	ratio of 1.92 was an odds ratio of 02:44	5	ratio that McDuffie reports for dicamba and 02:45
6	glyphosate exposure mixed with dicamba. And	6	dicamba mixtures including glyphosate 2,4-D
7	am I correct in my reading of this table	7	and Mecoprop; correct?
8	that that 1.92 odd ratio is, in fact,	8	MS. FERGIE: Objection. Object to
9	dicamba with mixtures that include	9	the form. Also asked and answered.
10	glyphosate but also Mecoprop and 2,4-D? 02:44	10	You can answer it again. 02:45
11	MS. FORGIE: Objection. Object to	11	THE WITNESS: Dicamba here is a
12	the form and also asked and answered.	12	super category for several mixtures, and
13	You can answer it again.	13	it's stated under footnote G. And we
14	THE WITNESS: The larger group	14	can see that that's the case because
15	encompasses everything including 02:44	15	there are more NHL cases and more 02:45
16	glyphosate.	16	controls in that category than in the
17	BY MR. LASKER:	17	category below.
18	Q. And Mecoprop and 2,4-D; correct?	18	MR. LASKER: I'm going to mark this
19	A. It's the largest group.	19	answer as well.
20	Q. Yes. And you have to answer the 02:45	20	BY MR. LASKER: 02:45
21	question or there's no answer on the record.	21	Q. I'm going to ask the question again
22	A. Yes. It's the larger group.	22	because I think it's a simple question, but
23	MS. FORGIE: Wait, wait. So get a	23	I'm not getting an answer?
24	format back that's question and answer	24	MS. FORGIE: I'm objecting to that
25	so I can get my objections in. 02:45	25	commentary. You're badgering the 02:46
	Page 260		Page 261
1	witness when you do that.	1	glyphosate under heading G in this footnote.
2	MR. LASKER: You can object as much	2	Q. The mixture also includes which you
3	as you want.	3	don't mention in your report 2,4-D and
4	MS. FORGIE: I will.	4	Mecoprop; correct?
5	BY MR. LASKER: 02:46	5	MS. FORGIE: Objection. Asked and 02:46
6	Q. The odds ratio of 1.92 that you	6	answered. Object to the form.
7	report in your expert report as the odds	7	You can answer again.
8	ratio for glyphosate mixed with dicamba is	8	THE WITNESS: It is a mixture
9	as reported, in fact, in the study McDuffie	9	exposure. Some people were exposed to a
10	an odds ratio for dicamba and dicamba 02:46	10	mixture of dicamba and glyphosate. 02:47
11	mixtures with glyphosate but also with 2,4-D	11	Others might have been exposed to a
12	and Mecoprop; correct?	12	mixture of dicamba with something else,
13	MS. FORGIE: Objection. And I	13	but it says the major chemical classes
14	object to the form. And I object to the	14	included Banvel and Target, and it
15	fact this is the eighth time you've 02:46	15	refers to these two as major and being a 02:47
16	asked her. You're badgering this	16	mixture of dicamba and glyphosate.
17	witness. It's not fair.	17	BY MR. LASKER:
18	You can answer again.	18	Q. Banvel and Target do not have
19	THE WITNESS: The reason why I'm	19	glyphosate in them, do they?
20	referring to this is because this is a 02:46	20	MS. FORGIE: Objection. Asked and 02:47
21	mixture exposure, and that's very	21	answered.
22	clearly stated in my report.	22	You can answer it again.
23	BY MR. LASKER:	23	THE WITNESS: The way it states it
24	Q. Your report --	24	dicamba is a major chemical class,
25	A. The mixture includes dicamba and 02:46	25	includes Banvel and Target and a mixture 02:47

	Page 262		Page 263
1	of dicamba and glyphosate. That's what	1	Table 8, I believe, of exposures based upon
2	I said.	2	days, less than two days or more than two
3	BY MR. LASKER:	3	days for purposes for glyphosate; correct?
4	Q. So is it your understanding and the	4	A. Yes.
5	basis of your expert report that Banvel and 02:47	5	Q. You do not cite to this analysis, 02:48
6	Target include glyphosate?	6	unless I missed it, anywhere in your expert
7	MS. FORGIE: Objection. Object to	7	report; correct?
8	the form. Asked and answered. You're	8	A. I think I'm referring to it in my
9	badgering the witness. This is	9	Bradford Hill analyses. Yes. However, the
10	completely unfair. 02:47	10	effect as to -- 02:49
11	I'll let you answer it again.	11	Q. Can you show me where you are?
12	THE WITNESS: What I said is that	12	A. Yes. Page 23. Bradford Hill
13	dicamba is a major chemical class and	13	evaluations.
14	what they refer to here is that dicamba	14	However, the effect estimates for
15	wasn't dicamba alone, but it was under 02:47	15	longer or more extensive use in several 02:49
16	this rubric of dicamba G exposed. They	16	studies were larger between two and three,
17	subsumed multiple agents that were mixed	17	and that includes this estimate.
18	with dicamba.	18	Q. So if you were referring to this at
19	BY MR. LASKER:	19	page 23, you would need to refer to the
20	Q. McDuffie provides an analysis in 02:48	20	McDuffie paper? 02:49
21	her expert report. I'm not sure that fully	21	A. Yes.
22	answered on the last question but I'm going	22	Q. You do not in your discussion of
23	to move on so I can get through this	23	the McDuffie paper --
24	deposition for now at least.	24	A. Point that out.
25	McDuffie provides an analysis on 02:48	25	Q. Point that out; correct? 02:49
	Page 264		Page 265
1	A. I guess I didn't.	1	get the same kind of effect estimate.
2	MS. FORGIE: When you get to a good	2	Q. I'm not sure I got the answer to my
3	breaking point, let's take a short	3	question, though.
4	break, please.	4	In your opinion, does the analysis
5	MR. LASKER: Okay. Let's just get 02:50	5	that McDuffie provides in Table 8 of less 02:51
6	through this.	6	than or equal to two days' exposure versus
7	MS. FORGIE: That's fine.	7	greater than two days, in your opinion, does
8	BY MR. LASKER:	8	that provide evidence of a dose response for
9	Q. In your opinion, does this analysis	9	glyphosate?
10	on Table 8 of less than or equal to two days 02:50	10	MS. FORGIE: Objection. Object to 02:51
11	versus greater than two days provide	11	the form. Also asked and answered. She
12	evidence of a dose response for glyphosate?	12	just answered that.
13	A. This is not supposed to give a dose	13	You can answer it again.
14	response. This is an analysis where you're	14	THE WITNESS: The intent of this
15	trying to separate out people who are 02:50	15	analysis is not dose response. The 02:51
16	completely unexposed to this agent and	16	intent of this analysis is to
17	people who had minimal exposure versus	17	distinguish between types of people who
18	reasonable exposure two days per year. And	18	use and did not use glyphosate.
19	in doing so, you can actually see that	19	BY MR. LASKER:
20	there's very little confounding due to any 02:50	20	Q. And do I understand correctly then 02:51
21	other variable because for minimal exposure	21	that you do not interpret the data reported
22	the effect estimate is 1 . So even if I	22	in this table as providing evidence of a
23	would compare as done in De Roos, the people	23	dose response?
24	with more than two days of exposure to the	24	MS. FORGIE: Objection. Asked and
25	people of less than two days, I would still 02:51	25	answered. 02:51

	Page 266		Page 267
1	You can answer it again.	1	is a dose effect.
2	THE WITNESS: I see this as an	2	BY MR. LASKER:
3	indicator that a better exposure	3	Q. And so I get your opinions because
4	assessment that defines glyphosate use	4	that what we're here for. In your opinion,
5	not as ever/never which is the worst or 02:51	5	does the data presented on Table 8 for 02:52
6	the most simple category you can get but	6	glyphosate provide evidence of a dose
7	as a reasonable amount, more than two	7	response for glyphosate and non-Hodgkin's
8	days per year, we don't know how many	8	lymphoma?
9	days those are, but that that category	9	MS. FERGIE: Objection. Asked and
10	provides you with some indication that 02:52	10	answered. This is the fifth time. 02:53
11	there is an effect.	11	You can answer it again.
12	BY MR. LASKER:	12	A. So, again, this is not a formal
13	Q. So I think I understand you, but I	13	dose response analysis, but it is a very
14	just want to make sure that I'm clear. Am I	14	clever analysis and one that I really enjoy
15	correct then in my understanding that you do 02:52	15	looking at because, first of all, they are 02:53
16	not interpret the data on Table 8 in	16	splitting up people who don't use glyphosate
17	McDuffie as presenting evidence of a dose	17	and then the group of people who do use it
18	response glyphosate and non-Hodgkin's	18	and the casual users, whether -- versus the
19	lymphoma?	19	more frequent or more intense users, and in
20	MS. FERGIE: Objection. Object to 02:52	20	that sense, you can say that at the higher 02:53
21	the form. Also asked and answered.	21	doses there is actually an effect.
22	You can answer it again.	22	BY MR. LASKER:
23	A. There's no formal analysis of a	23	Q. Okay. I'm still trying to get an
24	dose response. However, the more than two	24	answer to this question because I don't
25	days per year category suggests that there 02:52	25	think I have it. 02:53
	Page 268		Page 269
1	In your opinion, does the data	1	THE WITNESS: I have criteria for
2	presented in Table 8 in the McDuffie paper	2	those response. You may have your own.
3	provide evidence of a dose response for	3	In this case, there is a high use of
4	glyphosate and non-Hodgkin's lymphoma?	4	glyphosate associated clearly with an
5	MS. FORGIE: Objection. I object 02:53	5	odds ratio of 2.12 with NHL. 02:54
6	to the form, and especially I object to	6	BY MR. LASKER:
7	the fact that she's answered this five	7	Q. Does this Table 8 in the McDuffie
8	or six times now. Again, you're	8	meet your criteria to be interpreted as
9	badgering the witness just because you	9	providing evidence of a dose response for
10	don't like the answer. 02:54	10	the glyphosate in non-Hodgkin's lymphoma? 02:55
11	You can answer it again.	11	MS. FORGIE: Objection. Asked and
12	THE WITNESS: Okay. So clever	12	answered.
13	analysis, splitting up unexposed and	13	THE WITNESS: This results provides
14	exposed, selecting out people who are	14	evidence that with intensity and
15	maybe occasional users, looking at those 02:54	15	frequency, whatever this means, two days 02:55
16	who have probably regular intense use.	16	per year, there is indeed an effect for
17	Among those with regular and intense	17	glyphosate compared to people who are
18	use, we see an effect for glyphosate.	18	using either none or using occasionally
19	BY MR. LASKER:	19	less than two times a year.
20	Q. That wasn't my question. My 02:54	20	MR. LASKER: I'm going to mark this 02:55
21	question is: Does this data in Table 8 from	21	answer, and again, I'm going to ask the
22	McDuffie, in your opinion, present evidence	22	question again because I still don't get
23	of a dose response for glyphosate?	23	answers to my questions.
24	MS. FORGIE: Objection. Asked and	24	BY MR. LASKER:
25	answered. 02:54	25	Q. Based upon your criteria, whatever 02:55

	Page 270		Page 271
1	criteria you use in your professional work,	1	BY MR. LASKER:
2	does the data presented in Table 8 in the	2	Q. Dr. Ritz, we were talking about
3	McDuffie paper provide evidence of a dose	3	Table 8 in the McDuffie paper, and I'm
4	response effect for glyphosate in	4	correct, am I not, that the McDuffie paper
5	non-Hodgkin's lymphoma? 02:55	5	does not provide any analysis of the 03:13
6	MS. FORGIE: Objection. This is,	6	intensity of the exposures to glyphosate in
7	like, the eighth time you've asked the	7	this population; correct?
8	same exact question, and she's answered	8	MS. FORGIE: Object to form.
9	it seven or eight times. This is really	9	THE WITNESS: That is incorrect.
10	badgering the witness. I'm going to let 02:55	10	They are actually distinguishing between 03:14
11	her answer it one more time.	11	irregular and regular users, and in the
12	THE WITNESS: I just repeat myself.	12	category of regular users, they see an
13	We are distinguishing unexposed people	13	increased risk.
14	from irregular users, minimal users, and	14	BY MR. LASKER:
15	regular users. In the regular use 02:56	15	Q. So regular users is greater than 03:14
16	group, we see an effect.	16	two days per year; correct?
17	MR. LASKER: Okay. Mark that	17	A. Yes.
18	answer.	18	Q. So if somebody were to use
19	Let's take a break.	19	glyphosate for a half-hour in the spring in
20	THE VIDEOGRAPHER: We are off the 02:56	20	the driveway and then a half-hour in the 03:14
21	record at 2:56 p.m.	21	fall and another half-hour in the summer,
22	(Recess taken from 2:56 p.m. to	22	that would be three times a year, and they
23	3:13 p.m.)	23	would be greater than two days a year;
24	THE VIDEOGRAPHER: We are back on	24	correct?
25	the record at 3:13 p.m. 03:13	25	A. I don't venture to say that because 03:14
	Page 272		Page 273
1	they're measuring here in days, and when I	1	You can answer it again.
2	do my pesticide studies, we actually ask how	2	THE WITNESS: These investigators
3	many hours per day, and then we average	3	asked people to report occupational
4	across to come to eight-hour workday and add	4	exposures, and when you ask about
5	all of that up. How they exactly did that 03:14	5	occupational exposures, you usually 03:15
6	is not described here, but that's how we	6	refer to a workday. So I would
7	would do it.	7	interpret this as two workdays per year.
8	Q. Okay. But you don't know how the	8	BY MR. LASKER:
9	investigators in this study calculated day	9	Q. Okay. So your interpretation --
10	of exposure; correct? 03:15	10	it's not set forth in the study, but your 03:15
11	MS. FORGIE: Objection. Asked and	11	interpretation of this table is that greater
12	answered.	12	than two days means a full two-day -- each
13	THE WITNESS: These investigators	13	day would be a full workday of exposure?
14	give you a more than two day per year	14	MS. FORGIE: Objection. Asked and
15	category, and I imagine they did this in 03:15	15	answered. Also mischaracterizes her 03:16
16	order to distinguish between irregular	16	testimony.
17	users who they classify as more than	17	THE WITNESS: I, as a pesticide
18	zero and less than two days.	18	exposure assessment epidemiologist,
19	BY MR. LASKER:	19	would specifically ask people to report
20	Q. My question, though, is these 03:15	20	how many hours, how many days, how many 03:16
21	investigators do not indicate and you don't	21	weeks, how many years they would be
22	have any information as to how they	22	having used these specific agents and
23	determine a day of exposure; correct?	23	then categorize it according to the days
24	MS. FORGIE: Objection. Asked and	24	or hours or years.
25	answered. 03:15	25	I/I

	Page 274		Page 275	
1	BY MR. LASKER:	1	again.	
2	Q. I understand what you would do.	2	MS. FORGIE: Yes, it is.	
3	That's not my question. I'm trying to find	3	BY MR. LASKER:	
4	out what McDuffie and her group did.	4	Q. McDuffie and her investigators in	
5	They do not state in their paper -- 03:16	5	this published paper never state that they	03:17
6		6	defined a day of exposure as a full workday	
7	eight-hour exposure day, do they?	7	of exposure; correct?	
8	MR. FORGIE: Objection. Asked and	8	MS. FORGIE: Objection. Asked and	
9	answered.	9	answered. You're badgering the witness.	
10	THE WITNESS: I have to check. 03:16	10	She's already told you how she	03:17
11	They actually asked extensive questions	11	interprets it.	
12	including histories, pesticide spill,	12	You can answer it again.	
13	protective equipment, et cetera. So	13	THE WITNESS: Yes, actually they'r	
14	given that they asked all this, and they	14	saying on page 1157, "We created dose	
15	were after workplace exposures, I would 03:17	15	response levels based on days per year	03:17
16		16	of personally mixing or applying	
17	BY MR. LASKER:	17	selected herbicides, insecticide,	
18	Q. McDuffie does not, anywhere in this	18	fungicides, and fumigants."	
19	paper, state that they define a day as a	19	So days per year of personally	
20	workday of exposure, do they? 03:17	20	mixing or applying, that's workplace	03:18
21	MS. FORGIE: Objection. Asked and	21	types of exposures.	
22	answered. She just testified as to	22	BY MR. LASKER:	
23	exactly how she interprets that meaning.	23	Q. I understand, but they don't state	
24	MR. LASKER: Okay. That's not the	24	a minimum time period in a day for it to be	
25	question I asked. I'll ask the question 03:17	25	quantified as a day of exposure; correct?	03:18
	Page 276		Page 277	
1	MS. FORGIE: Objection. Asked and	1	the Canadian case control study that was	
2	answered. She's told you exactly two or	2	analyzed by McDuffie; correct?	
3	three times how she interprets that.	3	A. Can I have the exhibit?	
4	You can answer it again.	4	Q. Sure.	
5	THE WITNESS: I think I answered 03:18	5	A. Thank you. 03:19	
6		6	Q. This is 19-16.	
7	MS. FORGIE: You can answer it	7	(Exhibit Number 19-16 was	
8	again.	8	marked for identification.)	
${ }^{9}$	THE WITNESS: So they are trying to	9	THE WITNESS: It's called the North	
10	distinguish between regular users and 03:18	10	American Pooled Project. On page 5, we	03:19
11	occupational regular users who are	11	see that it is encompassing those	
12	mixing and applying pesticides and	12	states, yes.	
13	people who might be for one day in their	13	BY MR. LASKER:	
14	life applying glyphosate.	14	Q. And this is the analysis at that	
15	BY MR. LASKER: 03:18	15	2015 ISEE conference that you cite to in	03:19
16	Q. Dr. Ritz, let's talk about the	16	your expert report; correct?	
17	North American pooled project analysis by	17	A. Yes.	
18	Pahwa in 2015.	18	Q. When did you -- you provided this	
19	MS. FORGIE: Are we putting this	19	slide deck or at least it was provided to us	
20	away? 03:18	20	as an additional material considered after	03:20
21	MR. LASKER: For now, yeah.	21	your rebuttal expert report.	
22	BY MR. LASKER:	22	When did you first see this slide	
23	Q. And this is analysis which was a	23	deck?	
24	pooled analysis of the case control studies	24	A. I saw it after the deposition of	
25	that were pooled in De Roos 2003 and also 03:19	25	Dr. Blair, and there was reference to this.	03:20

	Page 278		Page 279
1	Q. Did you -- had you seen this slide	1	A. Correct.
2	deck prior to the time you prepared your	2	Q. And they have two analyses that
3	initial expert report in this case?	3	they present in this table. Their odds
4	A. No.	4	ratio A which is adjusted for age, sex,
5	Q. Okay. And I take it you saw it 03:20	5	state, province, emphatic or hematopoietic 03:21
6	then sometime before you reviewed the	6	cancer in a first-degree relative, use of a
7	rebuttal -- I'm sorry, before you prepared	7	proxy respondent, and use of personal
8	your rebuttal exert report, your second	8	protective equipment; correct?
9	expert report?	9	A. Yes.
10	A. Yes. 03:20	10	Q. And then odds ratio B would adjust 03:22
11	Q. Have you read Dr. Neugut's	11	for those factors just listed and also
12	deposition?	12	adjusts for 2,4-D, dicamba and malathion;
13	A. Yes.	13	correct?
14	Q. Did you see this slide deck before	14	A. Correct.
15	you read Dr. Neugut's deposition or after? 03:20	15	Q. For the ever/never analysis of the 03:22
16	A. I wouldn't be able to tell.	16	pooled data from the U.S.-based and
17	Q. So may have been before or may have	17	Canadian-based case control studies, when
18	been after, you're not sure?	18	adjusted for the use of 2,4-D, dicamba and
19	A. I don't know.	19	malathion, they report an odds ratio of 1.13
20	Q. If I can refer you to page 10 of 03:21	20	with a confidence interval of 0.84 to 1.51; $03: 22$
21	this presentation, the NAPP presentation,	21	correct?
22	they provide data or odd ratios for their	22	A. Yes.
23	ever/never analysis both overall for the	23	Q. And for their various subtypes of
24	glyphosate and non-Hodgkin's lymphoma and	24	non-Hodgkin's lymphoma, in their adjusted
25	also for various subtypes of NHL; correct? 03:21	25	model adjusting for the use of 2,4-D, 03:22
	Page 280		Page 281
1	dicamba, and malathion, they report varying	1	MS. FORGIE: Objection. I object
2	odds ratios, one of which is below 1 , three	2	to the form.
3	of which are above 1, but all of which are	3	MR. LASKER: That's fine.
4	not statistically significant; correct?	4	THE WITNESS: That's an odds ratio
5	A. Well, I wouldn't evaluate this 03:23	5	that's lower than 1.6 and the confidence 03:24
6	according to statistical significance	6	interval includes the 1.
7	especially in a subgroup analysis where I'm	7	BY MR. LASKER:
8	splitting the data in this way. The way I	8	Q. Okay. So when they adjusted for
9	would evaluate it is whether there's	${ }^{9}$	the use of 2,4-D, dicamba, and Malathion,
10	considerable change in effect estimates and 03:23	10	their odds ratio for diffuse large B cell 03:24
11	width of the confidence interval.	11	lymphoma went down and was no longer
12	Q. Okay. So follicular lymphoma for	12	statistically significant; correct?
13	their odds ratio that's adjusted for the use	13	MS. FORGIE: Objection. Object to
14	of 2,4-D, dicamba, and malathion, they find	14	the form.
15	an odds ratio of 0.69; correct? 03:23	15	THE WITNESS: It fluctuated. It 03:24
16	A. That's what they state, yes.	16	went from 1.6 to 1.23, but the
17	Q. And that was a reduction in the	17	confidence interval basically
18	odds ratio when they adjusted for these	18	overlapping.
19	exposures to other pesticides; correct?	19	BY MR. LASKER:
20	A. Correct. 03:23	20	Q. And for the odds ratio with 03:24
21	Q. For diffuse large B cell lymphoma	21	adjustment for 2,4-D, dicamba, and
22	when they adjusted for 2,4-D, dicamba, and	22	Malathion, the confidence interval went from
23	malathion, they report an odds ratio of	23	. 81 to 1.88 including a null hypothesis of
24	1.23. That's not statistically significant;	24	1.0; correct?
25	correct? 03:24	25	A. Including the null value in a 03:24

	Page 282		Page 283
1	formal statistical test.	1	before, the confidence intervals widen
2	Q. And SLL, I knew I was going to get	2	when you add other variables into the
3	to this one. What does SLL stand for?	3	model, and it does include null to null
4	A. Small lymphocytic lymphoma.	4	value.
5	Q. For that odds ratio there is not a 03:25	5	BY MR. LASKER: 03:26
6	meaningful change when they adjusted for	6	Q. And in your original expert report
7	exposures to other pesticides; correct?	7	before you had seen this data, you had
8	MS. FORGIE: Objection. Object to	8	discussed the fact that the Pahwa NAPP data
9	the form.	9	should be considered in conducting any
10	THE WITNESS: It almost -- it 03:25	10	meta-analysis of the website data; correct? 03:26
11	basically stays the same. The	11	MS. FORGIE: Object to the form.
12	confidence interval widens as one would	12	THE WITNESS: Where is that stated?
13	expect when you put additional variables	13	BY MR. LASKER:
14	in a model.	14	Q. That is on page 16, 15 and 16 ,
15	BY MR. LASKER: 03:25	15	where you're talking about the NAPP data. 03:26
16	Q. And then for the other category you	16	And, first of all, just to be clear, in your
17	have an odds ratio that drops from 1.66 to	17	expert report for the NAPP data you are
18	1.51 with adjustments for 2,4-D, dicamba,	18	reporting data that is not adjusted for
19	and Malathion, and that adjusted odds ratio	19	exposures to 2,4-D, dicamba, and Malathion;
20	is 0.87 to 2.6 which includes the null value $03: 25$	20	correct? 03:27
21	of 1.0 ; correct?	21	A. I have to go to the abstract to
22	MS. FORGIE: Object to the form.	22	confirm that.
${ }^{23}$	THE WITNESS: Well, the odds ratio	${ }^{23}$	So what's the question?
24	changes from 1.66 to 1.51 which is	24	Q. In your expert report before you
25	almost the same. And as I stated 03:26	25	had seen the data adjusted for exposures to 03:27
	Page 284		Page 285
1	2,4-D, dicamba, and Malathion, you had	1	adjusted for exposures to other pesticides;
2	suggested that the NAPP data had not been	2	correct?
3	included in the meta-analysis that had been	3	A. I think they did, but can you show
4	performed for glyphosate and non-Hodgkin's	4	me where that's stated.
5	lymphoma; correct? 03:27	5	Q. In your expert report actually at 03:29
6	A. That is correct. They have not	6	page 16. We went through that earlier.
7	been included anywhere, and that's what this	7	A. Okay.
8	sentence says.	8	Q. Correct?
9	Q. And under the methodology that both	9	A. Yes.
0	Chang and Delzell used and that the IARC 03:28	10	Q. If we were to conclude the NAPP 03:29
11	scientists used in conducting their	11	data into the meta-analysis using the
12	meta-analyses, when there was a subsequent	12	methodology that was used by Chang and
13	pooled analysis of case control data, they	13	Delzell and using the methodology that was
14	included that subsequent study, and they	14	used by IARC, we would use the odds ratio
15	removed the earlier studies from their 03:28	15	for the NAPP of 1.13; correct? 03:29
16	meta-analysis; correct?	16	MS. FORGIE: Object to the form.
17	MS. FORGIE: Object to the form.	17	THE WITNESS: No. This is not a
18	THE WITNESS: That would usually be	18	valid model in my mind because you have
19	how you do it.	19	to show me that 2,4-D, dicamba, and
20	BY MR. LASKER: 03:28	20	Malathion are actually related to 03:29
21	Q. And in both the Chang and Delzell	21	glyphosate use and also are independent
22	meta-analysis and the analysis that IARC did	22	risk factor for NHL. So if you're
23	with its working group for their	23	telling me dicamba is an independent
24	meta-analysis, they used the odds ratios	24	risk factor for NHL, then yes. Also it
25	that were -- where they had them that were 03:28	25	should be removed. 03:30

	Page 286		Page 287
1	Also I would not accept this model	1	BY MR. LASKER:
2	because we would not want to adjust for	2	Q. In their methodology the both for
3	the use of proxy respondents or personal	3	the IARC meta-analysis and for the NAPP,
4	protective equipment because those two	4	they used the data point presented in each
5	variables are indicators for exposure 03:30	5	of the studies that were available for 03:31
6	mismeasurement. You cannot adjust a	6	glyphosate and non-Hodgkin's lymphoma;
7	model for exposure mismeasurement.	7	correct?
8	These are confounded and shouldn't be in	8	A. That's how you conduct
9	the models.	9	meta-analysis.
10	BY MR. LASKER: 03:30	10	Q. They did not exclude any of the 03:31
11	Q. I understand, and I'm going to get	11	analyses; correct?
12	to your opinions about the NAPP and how they	12	MS. FORGIE: Object to the form.
13	did their analysis. The IARC in conducting	13	THE WITNESS: They did not exclude
14	its meta-analysis did not reach any	14	one of the studies.
15	conclusions with respect to the individual 03:30	15	BY MR. LASKER: 03:31
16	studies as to whether or not they found	16	Q. And they did not -- so for their
17	those studies to be internally valid;	17	purposes -- and I understand you will have
18	correct? They just used the data that was	18	your own interpretation how you do a
19	presented?	19	meta-analysis when we talk about that in a
20	A. I don't -- 03:30	20	moment, but following their methodology, if 03:31
21	MS. FORGIE: Object to the form.	21	this study was available to them, they would
22	THE WITNESS: I don't believe that	22	use as they did with every other study what
23	IARC would use estimates that they don't	23	was reported as the most adjusted odds ratio
24	believe are valid. I wouldn't.	24	which in this case was reported as 1.13;
25	I/I	25	correct? 03:31
	Page 288		Page 289
1	MS. FORGIE: Object to the form.	1	correct?
2	THE WITNESS: I don't want to	2	MS. FORGIE: Object to the form.
3	venture into what people would be doing	3	Mischaracterizes.
4	if. I would not recommend to use this	4	THE WITNESS: When we are
5	preliminary data that has obvious 03:32	5	scientists to present results, we 03:32
6	problems to replace studies that have	6	sometime like to present results that
7	been published and peer-reviewed.	7	are provocative and also have
8	BY MR. LASKER:	8	discussions. So I would consider this
9	Q. I'm sorry. This is the data except	9	one of those slides where we can then
10	for the fact that we now have adjusted odds 03:32	10	discuss how to run the analysis one way 03:33
11	ratios which you had not seen when you	11	or another.
12	prepared your expert report. This is the	12	These kind of discussions often
13	same NAPP analysis that you had put forth as	13	feed into final analyses that are
14	a basis for your expert opinion; correct?	14	published in the literature because the
15	MS. FORGIE: Objection. 03:32	15	authors then are aware of criticism from 03:33
16	Mischaracterizes her report.	16	the scientific community. That's the
17	THE WITNESS: I have not used these	17	whole reason to present these.
18	slides. I have used an abstract.	18	BY MR. LASKER:
19	BY MR. LASKER:	19	Q. I'm just a little confused now
20	Q. But it was an abstract that 03:32	20	because prior to seeing this data adjusted 03:33
21	resulted in the presentation at the exact	21	for the pesticides, you were opining, and
22	same conference where the abstract was	22	you had earlier in this deposition I
23	presented, and this is -- the exhibit we	23	thought, that the NAPP data presented at
24	have, 19-16, is a presentation that went	24	Brazil at that ISEE conference should be
25	along with that abstract at that conference; 03:32	25	considered as part of the analysis of the 03:33

	Page 290		Page 291
1	epidemiologic literature, didn't you?	1	is informed. That's what this table is
2	A. The abstract I saw, yes. But I'm	2	all about, and had I been there, I would
3	not referring to this table.	3	have made comments about this kind of
4	Q. Okay. So while you believe that	4	table.
5	the NAPP data that was prepared and 03:33	5	BY MR. LASKER: 03:35
6	presented in a one-paragraph abstract for	6	Q. I just want to be clear now if I
7	this presentation should be considered, you	7	understand your position. Is it your
8	do not believe that it would be appropriate	8	position, then, that the NAPP data is too
9	to consider the full data that was actually	9	preliminary to be considered as part of an
10	presented at that conference because it is 03:34	10	expert analysis, or is it your opinion that 03:35
11	preliminary; is that correct?	11	the NAPP data in the abstract that came out
12	MS. FORGIE: Object to the form.	12	before this conference should be considered
13	THE WITNESS: So any data that we	13	but that the data presented at the
14	are presenting and not putting into a	14	conference should not?
15	paper version is preliminary including 03:34	15	MS. FORGIE: Objection. 03:35
16	the abstract that went to this	16	Mischaracterizes her testimony.
17	conference. The only reason why I like	17	THE WITNESS: It's all the same
18	the abstract is because it referred to	18	data. It's just a question of which
19	existing data, existing studies that I	19	analyses you believe more or not.
20	had read that I understood. The 03:34	20	BY MR. LASKER: 03:35
21	methodology and the way they were	21	Q. And is it my -- is it your
22	performed. However, when we are	22	testimony then that while you believe in the
23	presenting tables at conferences, what	23	data that was presented in the abstract and
24	we are doing is allowing input into	24	you think that should be considered as
25	analyses from a scientific audience that 03:34	25	reliable evidence, epidemiological evidence 03:35
	Page 292		Page 293
1	for glyphosate and non-Hodgkin's lymphoma,	1	reviewer agree or not agree with.
2	you do not believe that the data that was	2	BY MR. LASKER:
3	actually presented at that conference should	3	Q. And am I correct in my
4	be considered as reliable evidence, separate	4	understanding that your concern with respect
5	epidemiological evidence regarding 03:35	5	to presenting the data from the NAPP for -- 03:36
6	glyphosate and NHL?	6	as compared to data that controls for 2,4-D,
7	MS. FORGIE: Object to the form.	7	dicamba, and Malathion versus data that does
8	THE WITNESS: Again, I want to say	8	not control for 2,4-D, dicamba, and
9	the same data.	9	Malathion, that you believe it is more
10	BY MR. LASKER: 03:36	10	reliable to look to the data that does not 03:37
11	Q. So in your expert report, you	11	control for 2,4-D, dicamba, and Malathion?
12	stated that we should consider the NAPP data	12	MS. FORGIE: Object to the form and
13	in our analysis; correct?	13	object to mischaracterizing her
14	A. Yes.	14	testimony.
15	Q. Okay. And so it's fair to say that 03:36	15	THE WITNESS: I never talked about 03:37
16	you also agree that we should consider the	16	reliability. That's not at issue here.
17	data that was actually presented from the	17	What is at issue is validity of the
18	NAPP in its conference in our analysis;	18	model, and I disagree with the validity
19	correct?	19	of this model, and I would suggest
20	MS. FORGIE: Object to the form. 03:36	20	additional sensitivity analyses 03:37
21	THE WITNESS: That's different.	21	concerning this.
22	The data, the way it's presented,	22	BY MR. LASKER:
23	contains a lot of what we would call	23	Q. And am I correct in my
24	sensitivity analyses and ways of	24	understanding that -- well, let me ask this:
25	presenting the data that I would as a 03:36	25	Do you have concerns of the validity of the 03:37

	Page 294		Page 295
1	NAPP model for all of the data presented or	1	does not adjust for dicamba, 2,4-D, and
2	only for the data presented that adjusts for	2	Malathion; is that correct?
3	exposures to 2,4-D, dicamba, and Malathion?	3	MS. FORGIE: Object to the form.
4	MS. FORGIE: Object to the form.	4	THE WITNESS: I have validity
5	THE WITNESS: I have validity 03:37	5	concerns about this whole table as I 03:38
6	concerns about this one table, and I	6	just told you because I would suggest
7	would like to see additional analyses	7	that, first of all, proxy respondents
8	before I would make up my mind.	8	and personal protective equipment should
9	BY MR. LASKER:	9	not be entered in the model to begin
10	Q. Do you have validity concerns for 03:38	10	with. 03:38
11	the data presented in the abstract that you	11	BY MR. LASKER:
12	relied upon in your expert report before you	12	Q. That information, and I'll just --
13	saw this data?	13	I don't have time to go through this, but if
14	A. The validity concerns are not	14	that information was in the abstract that
15	considering the data. The validity concerns 03:38	15	they controlled for that, would you have 03:39
16	are with respect to this one subanalyses	16	concerns with the data and the information
17	that I consider a sensitivity analysis.	17	presented in the abstract that you relied
18	Q. Which subanalyses are you talking	18	upon in your original expert report?
19	about?	19	MS. FORGIE: Object to the form and
20	A. The one adjusting for three 03:38	20	also asked and answered. 03:39
21	additional pesticides.	21	You can answer it again.
22	Q. So that's -- so I understand. So	22	THE WITNESS: I can only refer to
23	you do not have -- I'm just making sure I	23	this table in front of me that states
24	understand this. You do not have validity	24	very clearly what they adjusted for, and
25	concerns with respect to the NAPP data that 03:38	25	I would have asked as a conscientious 03:39
	Page 296		Page 297
1	reviewer to remove these two variables	1	Q. Yeah.
2	and tell me whether it makes a	2	A. Oh, yeah.
3	difference.	3	Q. So the duration and frequency and
4	BY MR. LASKER:	4	lifetime days analysis for the NAPP is drawn
5	Q. And do you have greater concern for 03:39	5	from the Nebraska and the Canadian case 03:40
6	the validity of the odds ratios that adjusts	6	control data because we don't have all -- we
7	for 2,4-D, dicamba, and Malathion than for	7	don't have the full data for Iowa,
8	the odds ratios that do not?	8	Minnesota. We don't have any data for
9	MS. FORGIE: Objection. Object to	9	Kansas to conduct those analyses; correct?
10	the form. Asked and answered. 03:39	10	MS. FORGIE: Object to the form. 03:40
11	You can answer it again.	11	THE WITNESS: If those Xs mean
12	THE WITNESS: That's a question I	12	there's no data, then that seems to be
13	cannot answer because I don't know what	13	the case.
14	the results would be if we did this	14	BY MR. LASKER:
15	differently. 03:39	15	Q. Okay. If we can go then to 03:41
16	BY MR. LASKER:	16	page 26 , and I want to start just with the
17	Q. Okay.	17	first column which is proxy and
18	A. And that's what we do in	18	self-respondents, and we'll talk about the
19	epidemiology. We try all sorts of things	19	self-respondents only in a second. But for
20	and see how the data behaves. 03:39	20	the -- they provide information in this 03:41
21	Q. Okay. For the analysis for	21	table for frequency with respect to days per
22	duration of exposure and days of exposure,	22	year, duration, and also lifetime days;
23	the NAPP basically had data on duration --	23	correct?
24	if you look at page 7 .	24	A. Yes.
25	A. Page 7? 03:40	25	Q. And when we do the frequency 03:41

	Page 298			Page 299
	analysis -- and this is not particularly	1	A. Yes.	
2	surprising since the Canadian case control	2	Q. But in the McDuffie paper they	
3	study was a large driver of this -- we have	3	don't report duration; correct?	
4	a somewhat similar finding to what is		A. No.	
5	reported in the McDuffie paper; correct? 03:42	5	Q. When they look at that data for 03	03:42
6	MS. FORGIE: Object to the form.	6	duration, we find that there is a lower	
7	THE WITNESS: Frequency more than		incidence of NHL with a, at least	
8	two days per year and odds ratio of 1.73		numerically, with greater duration of use of	
9	or 1.77 counts as similar to 2 , yes.	9	glyphosate; correct? Goes from either 1.28	
10	BY MR. LASKER: 03:42	10	to 0.94 or 1.17 to 0.78 ; correct? 03:43	03:43
11	Q. For duration -- so it's a different	11	A. There's basically no difference.	
12	measure -- correct? -- of how many years	12	Q. When we look at lifetime days, so	
13	they actually used glyphosate; correct?	13	this is actually figuring out the total	
14	A. Yes.	14	amount of exposure that an individual in the	
15	Q. McDuffie does not provide any indication of the duration of use in her	15	study would have -- correct? -- that last 03:43	03:43
16		16	category?	
17	analysis in her study; correct?	17	A. It's not the total amount. It's	
18	MS. FORGIE: Object to the form.	18	duration times intensity, and that could be	
19	THE WITNESS: She doesn't provide	19	seven years used minimally or -- and that	
0	tables. That doesn't mean that they 03:42didn't have it. Did they have it?	20	would give you a seven or seven days used at	ed at 03:43
21		21	the two workdays per year as we discussed.	
22	BY MR. LASKER:	22	We don't know.	
23	Q. In the McDuffie paper?	${ }^{23}$	Q. Just to be clear because your	
24	A. No. In the data.	24	answer had the word "seven years," and I	
25	Q. They did have it in the data, yes. 03:42	25	want to make sure we understand this. The	The 03:44
	Page 300			Page 301
1	lifetime days analysis is less than seven	1	years, had no effect. So if you're using	
2	days in a lifetime of exposure to glyphosate	2	duration as number of years, you are very	
3	or greater than seven days of exposure to glyphosate in the lifetime; correct?	3	likely to wipe out any intensity effect.	
4			Q. Well, the intensity just to be	
5	MS. FORGIE: Object to the form. 03:44	5	fair, the duration would include all the	03:45
6	lifetime days is similar to pack years.	6	days within each year -- the lifetime days	
7		7	has both factored into it. It has the days	
8	So it's a product of the number of years	8	per year, and it has the duration of time;	
9	times the days per year.	9	correct?	
10	BY MR. LASKER: 03:44	10	MS. FORGIE: Objection. Object to	to 03:45
11	Q. And when they did this analysis using that same McDuffie data and also the	11	the form.	
12		12	THE WITNESS: It's not correct	
13	Nebraska data was added to it, and they	13	because number of days per year has two	two
14	looked at total lifetime days of exposure to	14	categories. It has the greater than	
15	glyphosate and they looked at that higher 03:44 category, the highest category they reported	15	zero and less than two which we agreed	eed 03:45
16		16	on were the occasional users and then	
17	of greater than seven lifetime days of	17	the two or more or better two -- more	
18	exposure to glyphosate, they had an odds	18	than two. So when you're calculating	
19	ratio of either 1.08 or 1.06 for glyphosate	19	number of years times number of day per	y per
20	and non-Hodgkin's lymphoma; correct? 03:44	20	year, you're actually mixing a lot of	03:45
21		21	different things together. It's a	
22	it's not days in a lifetime. It's this	22	really bad measure. So if you don't	
23	product of years times number of days per	23	believe it is duration low level chronic	
24	year; so it's more like a pack year, and I'm not surprised because duration, number of	24	exposure, if you think it's intensity,	
25		25	you have to have a high level of 03:40,	03:46

	Page 302		Page 303
1	exposure, then lifetime days is really	1	of years -- days per year which is not
2	not a good measure.	2	really a frequency but an intensity,
3	BY MR. LASKER:	3	seems to have an effect.
4	Q. Is it your opinion that there could	4	BY MR. LASKER:
5	be intense exposure to glyphosate that is 03:46	5	Q. And your belief that this is an 03:47
6	less than seven days of exposure in a	6	intensity is based upon your understanding
7	lifetime?	7	of what a day of exposure means?
8	A. Yes.	8	A. Correct.
9	Q. And, in your opinion, when you look	9	MS. FORGIE: Objection.
10	at this analysis -- 03:46	10	BY MR. LASKER: 03:47
11	A. It's not seven days per lifetime.	11	Q. And for day of exposure, would that
12	It's seven lifetime days as defined by this	12	be different -- defined differently for a
13	product.	13	lifetime day, each day and that day of
14	Q. Okay. And you would agree that	14	exposure as compared to a frequency day?
15	when this data is analyzed for pack year 03:46	15	MS. FORGIE: Object to the form. 03:47
16	type analysis or lifetime days analysis,	16	THE WITNESS: So these frequencies
17	there's no indication of any greater risk of	17	go from zero to who knows what; correct?
18	non-Hodgkin's lymphoma in the group that has	18	Number of days per year. And when you
19	the greater than seven days lifetime	19	multiply those by years, then you could
20	exposure; correct? 03:47	20	have very high intensity days with a low 03:48
21	MS. FORGIE: Object to the form.	21	number of years landing in the lower
22	Mischaracterizes her testimony.	22	category, or you could have the
23	THE WITNESS: Well, lifetime days	23	opposite. So there's a lot of potential
24	seem to be a measure that doesn't show a	24	for exposure misclassification in terms
25	dose response here. However, frequency 03:47	25	of who's a regular user and who is not. 03:48
	Page 304		Page 305
1	BY MR. LASKER:	1	And the one with the larger span will
2	Q. And without knowing more about how	2	weight the other to nothing or to
3	a defined exposure for frequency days, there	3	whatever that is.
4	could be exposure misclassification	4	So what we're seeing in duration
5	throughout this entire analysis in duration, 03:48	5	year gets reflected in lifetime years 03:49
6	in frequency, and in lifetime days; correct?	6	only in lifetime years it's even more
7	MS. FORGIE: Object to the form.	7	misclassified because it mixes intensity
8	THE WITNESS: Well, duration is	8	with duration.
9	defined as duration, but we don't know	9	BY MR. LASKER:
10	what the intensity is. So that would 03:48	10	Q. At the time you prepared your 03:49
11	just be a measure of duration. It could	11	original expert report in this case, were
12	be a very low intensity; it could be a	12	you aware of the fact that the NAPP had
13	very high intensity. It's just	13	conducted this further analysis of duration
14	duration.	14	and lifetime days exposure to glyphosate?
15	On the other hand, frequency which 03:48	15	MS. FORGIE: Object to the form. 03:49
16	I call intensity in this case	16	THE WITNESS: At what time?
17	distinguishes the high use from the low	17	MS. FORGIE: Asked and answered.
18	occasional use. There's no duration in	18	BY MR. LASKER:
19	this. We can only assume how it relates	19	Q. At the time you prepared your
20	to duration, but they're not showing us 03:49	20	expert report in this case. 03:49
21	data that relates frequency and	21	A. I hadn't seen this.
22	duration. And then this made-up	22	Q. Okay. Also on this page there is a
23	lifetime days is a product of years,	23	sensitivity analysis for proxy respondents,
24	number of years times number of days per	24	use of proxy respondents; correct?
25	year. So a product of the two above. 03:49	25	A. You mean the same table? 03:50

	Page 306		Page 307
1	Q. Yes.	1	the record at 3:51 p.m.
2	A. The same table distinguishes	2	(Recess taken from 3:51 p.m. to
3	between proxy and self and self-respondents.	3	4:02 p.m.)
4	So it's not really a stratified analysis.	4	THE VIDEOGRAPHER: We are back on
5	It's a sensitivity analysis. 03:50	5	the record at 4:02 p.m. This marks the 04:03
6	Q. Right. That's what I said. It's a	6	beginning of videotape number 4 in the
7	sensitivity analysis; correct?	7	deposition of Beate Ritz.
8	A. Yeah, yeah.	8	BY MR. LASKER:
9	Q. When they conducted their	9	Q. Dr. Ritz, I'd like to direct you to
10	sensitivity analysis, they found that for 03:51	10	Exhibit 19-7, which is the Eriksson study. 04:04
11	the never/ever category the odds ratio for	11	I just have a few questions.
12	self-respondents only for glyphosate and	12	MS. FORGIE: Do we have it?
13	non-Hodgkin's lymphoma and all of the case	13	MR. LASKER: She's got it.
14	control studies pooled in North America,	14	BY MR. LASKER:
15	U.S. and Canada, was 0.95 with a confidence 03:51	15	Q. We previously discussed the fact 04:04
16	interval of 0.69 to 1.32; correct?	16	that --
17	A. That's what they're reporting.	17	MS. FORGIE: Hold on a second.
18	Q. And that is, in fact, the -- if	18	MR. LASKER: Let's go off the
19	we're looking at the -- just a second.	19	record.
20	Okay. Let's talk about the Eriksson paper. 03:52	20	THE VIDEOGRAPHER: We're off the 04:04
21	Let's change. I'm sorry. I got	21	record at 4:03 p.m.
22	this note. I just completely ignored it.	22	(Recess taken from 4:03 p.m. to
23	THE VIDEOGRAPHER: This marks the	23	4:03 p.m.)
24	end of videotape number 3 in the	24	THE VIDEOGRAPHER: We are back on
25	deposition of Dr. Beate Ritz. We're off 03:52	25	the record at 4:03 p.m. 04:04
	Page 308		Page 309
1	BY MR. LASKER:	1	odds ratio below 1 , and there are odds
2	Q. Dr. Ritz, we were talking about the	2	ratios above 1 , and there are lots of
3	Eriksson study. I think earlier we	3	analyses that are including the same
4	established that the only odds ratio in this	4	subjects. So if you want to do odds
5	paper or the only table that includes odds 04:04	5	ratio counting, you need to discount the 04:06
6	ratios in this paper that were adjusted for	6	ones that are using the exact same data
7	the pesticide exposure is table 7 where the	7	on the exact same people.
8	multi-variate analysis is presented on	8	BY MR. LASKER:
9	page 1661; correct?	${ }^{9}$	Q. Correct. And when you do that, the
10	A. Yes. 04:05	10	vast majority of these odds ratios reported 04:06
11	Q. Now, when you look at the other	11	in Eriksson are above 1.0; correct?
12	odds ratios in these other tables that are	12	MS. FORGIE: Object to the form.
13	not adjusted for other pesticide exposures,	13	THE WITNESS: Again, that's not how
14	virtually every odds ratio for every	14	I look at this. I look at this as odds
15	compound and every chemical that is analyzed 04:05	15	ratios reported for different agents for 04:06
16	is reported at above 1.0 ; is that correct?	16	different purposes. One is a yes/no,
17	A. That's a very simplified statement	17	ever/never. Other purposes are
18	because a lot of the odds ratios are right	18	intensity or duration measures, and
19	around 1.	19	splitting up groups into less and higher
20	Q. Virtually every single one of the 04:05	20	intensity, you can see how nicely dose 04:06
21	odds ratios that are reported in this paper	21	response patterns are starting to
22	are above 1.0; correct?	22	emerge. And the lower odds -- the lower
23	MS. FORGIE: Object to the form.	23	exposure odds ratios usually include a
24	THE WITNESS: Again, there are lots	24	close to 1 , and the confidence intervals
25	of odds ratio hover above 1. There are 04:05	25	include $1 . \quad 04: 07$

	Page 310		Page 311
1	BY MR. LASKER:	1	Correct?
2	Q. Let me ask you this question	2	A. Yes.
3	generally: If you have a case control	3	Q. So if you have all chemicals in a
4	study, and you are -- I think you refer to	4	study where you have elevated odds ratios,
5	this in your expert report at page 8 when 04:07	5	one of the things you would be concerned 04:08
6	you're talking about the fact that the De	6	about, in general, is the possibility of
7	Roos 2003 study had odds ratios below 1 and	7	recall bias; correct?
8	above 1. And one of the things you stated	8	MS. FORGIE: Object to the form.
9	there is that if you have odds ratios in a	9	THE WITNESS: In general, if it's
10	case control study for multiple agents and 04:07	10	all chemicals, yes, but in this study I 04:08
11	they're all above 1, you would have a	11	see a lot of odds ratios that are around
12	concern for -- about recall bias; is that	12	1 or even below 1 reported, and many of
13	correct?	13	the odds ratios are duplicate analyses
14	MS. FORGIE: Object to the form.	14	in terms of a dose response. So there's
15	BY MR. LASKER: 04:07	15	an analysis of an ever/never, and then 04:08
16	Q. And you can look at page 8 on your	16	for the same people we are now
17	expert report.	17	categorizing them in several categories
18	A. Where is it?	18	to explore a dose response.
19	Q. At the very top you stated, "If	19	In that case I would expect that
20	recall bias existed, you would expect all 04:07	20	the overall estimate is somewhere a 04:09
21	pesticides reported to show an association	21	weighted average of the categories that
22	with the outcome and not just one among many	22	I'm looking at. And in many cases you
23	since the tendencies to recall better and	23	can see that the specificity increases.
24	more exposures than controlled would not be	24	That's why we do this. So the
25	expected to be specific to one chemical." 04:08	25	specificity of exposure increases with 04:09
	Page 312		Page 313
1	intensity or duration of use, and that's	1	mark as --
2	informative. When it doesn't, then it	2	MS. FORGIE: Are we putting this
3	actually dissuades me that this agent is	3	away?
4	actually contributing.	4	MR. LASKER: Yeah.
5	BY MR. LASKER: 04:09	5	MS. FORGIE: Thank you. 04:10
6	Q. Dr. Ritz, if you look at Table 5 in	6	MR. LASKER: So this is 19-17.
7	the Eriksson study which looks at	7	(Exhibit Number 19-17 was
8	insecticides total, DDT, mercurial seed	8	marked for identification.)
${ }^{9}$	dressing, pyretrine, other, every single	${ }^{9}$	BY MR. LASKER:
10	odds ratio reported in that table is above 04:09	10	Q. Dr. Ritz, this is a slide deck that 04:11
11	1; correct?	11	unfortunately we received in this form.
12	MS. FORGIE: Object to the form.	12	It's a little bit difficult to read, but
13	THE WITNESS: The confidence	13	this is a slide deck you produced to us in
14	intervals, many of them include the 1 ,	14	response to our document subpoena.
15	and it is a table of subtypes meaning 04:10	15	I take it this is a slide deck 04:11
16	we're now going into very, very small	16	you've used in training in teaching of your
17	subgroups with very low exposures. So	17	class; correct?
18	essentially a lot of these estimates are	18	A. Yes.
19	non-informative.	19	Q. And the glyphosate case control
20	BY MR. LASKER: 04:10	20	studies that we've been discussing are what 04:11
21	Q. Let's skip over to --	21	are called retrospective in that they take
22	A. And some are actually below 1 .	22	individuals with NHL or without NHL, and
23	Clearly below 1.	23	then they look back in time and ask them
24	Q. Let's skip over to the De Roos 2005	24	about their prior exposures; correct?
25	cohort study. First of all, I'd like to 04:10	25	MS. FORGIE: Object to the form. 04:11

	Page 314		Page 315
1	THE WITNESS: They are case control	1	strike that. Let me just make clear. In
2	studies in which cases and controls	2	the literature you reviewed, in the case
3	report their lifetime use of pesticides.	3	control studies you reviewed for glyphosate,
4	BY MR. LASKER:	4	are all of those containing exposure
5	Q. So retrospective analyses; correct? 04:12	5	information retrospective? 04:12
6	MS. FORGIE: Object to the form.	6	MS. FORGIE: Object to form. Asked
7	THE WITNESS: It's not an analysis	7	and answered.
8	that's retrospective. It's the exposure	8	You can answer it again.
9	assessment that's retrospective.	9	THE WITNESS: They had
10	BY MR. LASKER: 04:12	10	questionnaire that were sent out to 04:13
11	Q. So the exposure amendment in the	11	cases and controls asking them about
12	case control studies are retrospective;	12	lifetime exposure. In that sense it's a
13	right?	13	retrospective exposure assessment.
14	A. Correct. Not always. In this one.	14	BY MR. LASKER:
15	In these because they're questionnaire 04:12	15	Q. And it is true as you teach your 04:13
16	based. They're case control studies that	16	students -- and this is on page 2. It's the
17	follow records, and they not retrospective.	17	top slide on the right -- that retrospective
18	Q. In the case control studies, is it	18	often is considered a less reliable design
19	your testimony that there are glyphosate	19	in an epidemiologist study; correct?
20	case control studies that are not 04:12	20	MS. FORGIE: Object to the form. 04:13
21	retrospective in their gathering of exposure	21	THE WITNESS: Well, that is a very
22	data?	22	broad statement.
23	A. Not in the literature that I	23	BY MR. LASKER:
24	reviewed.	24	Q. I'm just asking about the statement
25	Q. Okay. Strike that. Or don't 04:12	25	you make in your slide presentation -- 04:13
	Page 316		Page 317
1	A. Where is it?	1	highest to lowest, and I try to debunk it.
2	Q. -- to your students. It is the top	2	Q. And just to be clear, the "this"
3	slide on the left on page 2. "Retrospective	3	because that won't be on the record, you
4	is often considered a less reliable design."	4	start on page 1 with your Table 1, which is
5	Is that correct? 04:13	5	a listing of validity ranking from highest 04:15
6	A. Yes. And that does not refer as a	6	to lowest, and this is, I take it, what is
7	judgment to case control studies but to the	7	generally presented in the scientific
8	term "retrospective," and this is not to say	8	literature as the ranking of study designs
9	that it really is a lesser way and a less	9	by validity; correct?
10	reliable design. That's why it's in quotes. 04:14	10	A. Correct. 04:15
11	This is to stimulate my students to think	11	MS. FORGIE: Object to the form.
12	about the advantages of this kind of	12	THE WITNESS: Well, this is how
13	exposure assessment.	13	many people think about epidemiologic or
14	Q. And on page 5 in your slide deck	14	medical trials and designs, yes.
15	for your students in the top right for 04:14	5	BY MR. LASKER: 04:15
16	discussing cohort studies, you state that	16	Q. And in this ranking, randomized
17	cohort studies are generally most accepted	17	clinical trials are the highest, and
18	in scientific community; correct?	18	prospective cohort studies are directly
19	A. Again, that is to stimulate	19	below that; correct?
20	discussion about is that really a criterion 04:14	20	A. That's correct. 04:15
21	we should be using as epidemiologists even	21	Q. And there is a term for "nested
22	if the scientific community equates cohort	22	case control study." That is a case control
23	studies with higher study quality. One of	23	study that is conducted within a cohort;
24	the things I do in my class is I start with	24	correct?
25	this where there is that validity ranking 04:14	25	A. Yes. Sometimes it's used for 04:15

	Page 318		Page 319
1	population-based case control study as long	1	2005 published AHS study of glyphosate by De
2	as you know what the source of controls was.	2	Roos; correct?
3	Q. Okay. And in this sort of general	3	A. Yes.
4	ranking in the scientific community of	4	Q. You mentioned this study in your
5	design validity, where would a non-nested 04:16	5	report at page 21. You can go to that. And 04:17
6	case control study fit in this ranking?	6	you present right above that chart the odds
7	A. Right below case control study.	7	ratio for the De Roos 2005 study for
8	Q. So a case control study would be	8	glyphosate and non-Hodgkin's lymphoma as
9	below nested case control study and above	9	1.2; correct?
10	time series analysis? 04:16	10	A. Yes. 04:17
11	A. Correct.	11	Q. And if you look at De Roos in
12	Q. Okay. The one cohort study that we	12	Table 2 on page 51, the odds ratio that you
13	have for glyphosate and non-Hodgkin's	13	report in your expert report is the odds
14	lymphoma or the one cohort analysis is from	14	ratio that is minimally adjusted, only
15	the Agricultural Health Study; correct? 04:16	15	adjusted for age; correct? 04:18
16	A. Correct.	16	A. I report two -- I report 1.2 and
17	Q. So let's look to that now.	17	next to it the 1.1.
18	A. Just for the record, I'm using this	18	Q. I'm sorry. Got it. My mistake.
19	to stimulate discussion because I disagree	19	And you mention in your expert
20	with this ranking presented in Table $1.04: 16$	20	report that the confidence interval for the 04:18
21	Q. So this is 19-18.	21	finding in the De Roos study is wide, 0.7 to
22	(Exhibit Number 19-18 was	22	1.9, which you describe as a wide confidence
23	marked for identification.)	23	interval; correct?
24	BY MR. LASKER:	24	A. Yeah. And they're exactly the
25	Q. And for -- so Exhibit 19-18 is the 04:17	25	same. 04:18
	Page 320		Page 321
1	Q. And this confidence interval, if	1	studies that we've been discussing; correct?
2	you were to calculate the CLR for the De	2	MS. FORGIE: Object to the form.
3	Roos study to measure the width of the	3	THE WITNESS: For a cohort study
4	confidence interval, for the De Roos study	4	this is a rather wide confidence
5	1.9 to 0.7. That is, again, somewhat below 04:19	5	interval especially if you look at some 04:19
6	3; correct?	6	more common cancers. It should be
7	A. Slightly, yeah.	7	better. Yes, the one for all cancer.
8	Q. And that confidence limit ratio is	8	It's . 9 to 1.1. That's a nice
9	actually narrower than the CLR for the case	9	confidence interval.
10	control studies for adjusted odds ratios 04:19	10	BY MR. LASKER: 04:20
11	that we've been reporting that we've been	11	Q. I understand that. But I'd like to
12	talking about; correct?	12	ask you with respect to the case control
13	MS. FORGIE: Object to the form.	13	studies. Would it be correct to my
14	THE WITNESS: Again, that's not the	14	understanding that the confidence interval
15	only criteria to evaluate statistical 04:19	15	for glyphosate and non-Hodgkin's lymphoma in 04:20
16	significance or confidence interval or	16	the De Roos 2005 study is not wide as
17	any meaning that these estimates might	17	compared to the odds ratios for glyphosate
18	have.	18	and non-Hodgkin's lymphoma reported in the
19	BY MR. LASKER:	19	case control studies?
20	Q. I understand. I'm just trying to 04:19	20	MS. FORGIE: Object to the form. 04:20
21	get an understanding because in your report	21	Asked and answered.
22	you discuss this confidence interval as	22	You can answer it again.
23	being wide, and, in fact, this confidence	23	THE WITNESS: These confidence
24	interval is narrower than the confidence	24	intervals might be comparable. However,
25	interval that appears in the case control 04:19	25	it's even more important that the 04:20

	Page 322		Page 323
1	confidence interval safely includes the	1	of itself fair to say does not report a
2	overall meta-analytic point estimate of	2	positive association between glyphosate and
3	1.45.	3	non-Hodgkin's lymphoma; correct?
4	BY MR. LASKER:	4	MS. FORGIE: Object to the form.
5	Q. I'm sorry. I have no idea what 04:20	5	THE WITNESS: A 1.2 to 1.1 is still 04:21
6	that is. It seems like a meta conference	6	a positive association.
7	interval that was reported by --	7	BY MR. LASKER:
8	A. No, I'm talking about the point	8	Q. In your opinion, does the De Roos
9	estimate falling nicely into this wide	9	2005 cohort study provide evidence that
10	confidence interval for NHL. So this study 04:21	10	supports the hypothesis that glyphosate 04:22
11	does not contradict the meta-analysis.	11	causes non-Hodgkin's lymphoma?
12	That's what I'm saying.	12	A. It contributes very little.
13	Q. So the meta-analysis number you're	13	Q. Okay. But that's not quite
14	reporting, you're discussing here, is the	14	answering my question.
15	meta-analysis number from the -- 04:21	15	Do you believe that the De Roos 04:22
16	A. From several --	16	2005 cohort study provides some evidence,
17	MS. FORGIE: Wait for the question.	17	even if you think it's little, in favor of
18	BY MR. LASKER:	18	an opinion that there's an association
19	Q. -- from the IARC meta-analysis and	19	between glyphosate and non-Hodgkin's
20	the Chang and Delzell meta-analysis that did 04:21	20	lymphoma? 04:22
21	not include the NAPP data; correct?	21	MS. FORGIE: Object to the form.
22	MS. FORGIE: Object to the form.	22	Also, asked and answered.
23	THE WITNESS: Yes, that's correct.	23	You can answer it again.
24	BY MR. LASKER:	24	THE WITNESS: This study does not,
25	Q. And the De Roos 2005 study in and 04:21	25	in the way it's reported here and in the 04:22
	Page 324		Page 325
1	way I see these data, does not	1	Health Study has used in numerous different
2	contribute very much to the discussion.	2	epidemiological studies that were being
3	BY MR. LASKER:	3	published at the same time that you were
4	Q. Okay. And the Table 3 analysis, I	4	serving on that outside advisory committee;
5	take it, which sets forth the various risk 04:22	5	correct? 04:23
6	ratios based upon two measures of exposure,	6	MS. FORGIE: Object to the form.
7	either cumulative exposure days or intensity	7	THE WITNESS: An exposure measure
8	weighted exposure days, am I correct in my	8	for one pesticide is not exactly the
9	understanding that you do not believe this	${ }^{9}$	same as an exposure measure for another
10	data contributes much to the analysis of 04:23	10	pesticide, and I think we agreed today 04:24
11	glyphosate and non-Hodgkin's lymphoma?	11	that it depends on when these pesticides
12	MS. FORGIE: Object to the form.	12	were used and where they were used and
13	Also, asked and answered.	13	whether use changed. There's no other
14	You can answer it again.	14	pesticide for which use changed in the
15	THE WITNESS: These tables are much 04:23	15	same way that I can think of, at least 04:24
16	more complex to analyze because we're	16	as for glyphosate, during the general
17	now getting into a discussion over	17	baseline enrollment of these farmers.
18	appropriate exposure assessment which I	18	THE REPORTER: I'm so sorry. My
19	don't think is -- the exposure measures	19	computer just rebooted.
20	that are used here to derive these total 04:23	20	MR. LASKER: How much did we miss
21	cut points are most likely	21	and what do we have to do?
22	misclassified.	22	THE REPORTER: No, I've got it all
23	BY MR. LASKER:	23	the writer. I just need to go off and
24	Q. Now, these exposure measures are	24	reboot.
25	the same exposure measures the Agricultural 04:23	25	MS. FORGIE: Why don't we take a

	Page 326		Page 327
1	short break.	1	I answer.
2	THE VIDEOGRAPHER: We're off the at	2	BY MR. LASKER:
3	4:23 p.m.	3	Q. Yes.
4	(Recess taken from 4:23 p.m. to	4	MS. FORGIE: If you understand the
5	4:47 p.m.) 04:47	5	question, you can answer. 04:48
6	THE VIDEOGRAPHER: We are back on	6	THE WITNESS: So you're saying
7	the record at 4:47 p.m.	7	there's correlation between pesticide
8	BY MR. LASKER:	8	use and the AHS?
9	Q. Dr. Ritz, we were looking at De	9	BY MR. LASKER:
10	Roos 2005. I'd like to actually direct you 04:47	10	Q. I'm saying that for every pesticide 04:48
11	to Table 1 on page 50.	11	that they looked at, and there's, I think,
12	A. Yeah, I'm there.	12	ten pesticides listed on Table 1, they found
13	Q. And that table, at the bottom,	13	that with glyphosate use and with greater
14	presents data from this cohort on	14	glyphosate use, there was greater use of
15	co-exposures for glyphosate and other common 04:47	15	these other pesticides; correct? 04:48
16	pesticides or exposures in individuals not	16	MS. FORGIE: Object to the form.
17	exposed to glyphosate; correct?	17	THE WITNESS: These pesticides
18	A. Yes.	18	correlate with glyphosate, yes.
19	Q. Okay. And for every pesticide in	19	BY MR. LASKER:
20	this cohort, they found that as there was 04:48	20	Q. So you have a correlation between 04:49
21	increased use of glyphosate, there was also	21	increased glyphosate use and use of these
22	increased use of these other pesticides;	22	other pesticides; correct?
23	correct?	23	A. That's how it looks like.
24	MS. FORGIE: Object to the form.	24	Q. And if I understand correctly, if
25	THE WITNESS: I'm confused. Should 04:48	25	any of these other pesticides are, in fact, 04:49
	Page 328		Page 329
1	risk factors for NHL, that would introduce a		showing.
2	differential confounding so that you'd have	2	So all of these pesticides are
3	a greater confounding of your glyphosate	3	perfect indicators of glyphosate use.
4	measure with higher glyphosate exposure as	4	BY MR. LASKER:
5	compared to lower glyphosate exposure; 04:49	5	Q. Okay. My question -- I'm going to 04:50
6	correct?	6	try to understand this, your answer, but let
7	MS. FORGIE: Object to the form.	7	me just make sure I understand this.
8	THE WITNESS: Not necessarily.	8	Given this data showing that there
9	This really depends on how you look at	9	is increased correlation between glyphosate
10	glyphosate data in terms of, first of 04:49	10	exposure and exposure -- strike that. 04:50
11	all, is it -- is any of these other	11	Given this data that there's an
12	pesticides really a -- you said that,	12	increased correlation with use of other
13	NHL risk factor.	13	pesticides and glyphosate with increasing
14	(Simultaneous cross-talk	14	use of glyphosate, is one possibility given
15	interrupted by the reporter.) 04:50	15	this data that there is -- if any of these 04:51
16	MS. FORGIE: Wait, wait.	16	other pesticides are associated with
17	THE WITNESS: Are they correlated	17	non-Hodgkin's lymphoma, that there is
18	with glyphosate exposure, but then	18	increased confounding for higher doses of
19	couldn't you imagine that even a true	19	glyphosate exposure?
20	risk factor for NHL that's correlated 04:50	20	MS. FORGIE: Object to the form. 04:51
21	with glyphosate has two different	21	THE WITNESS: So it's not increased
22	meanings. One, it might be a risk	22	confounding. It's some -- it can be
23	factor that's on its own, but it also	23	some type of confounding. It can also
24	could be an indicator for pesticide use,	24	be a proxy for the exposure. It was all
25	glyphosate, and that's what this is also 04:50	25	highly correlated exposures. That's the 04:51

	Page 330		Page 331
	case. You have to decide whether it's a		other pesticide, or are there one or two
2	confounder or a proxy.	2	or three carcinogens, all of them
3	BY MR. LASKER:	3	contributing to the risk of NHL, and how
4	Q. Okay. And if the pesticides are	4	do we put those together in a model if
5	confounders and we determined that, for the 04:51	5	we -- if they're highly correlated, we 04:52
6	purposes of this question, that they are	6	put them all three in the model, then
7	independent causes of non-Hodgkin's	7	they will just split variance, and none
8	lymphoma, and you were to compare the odds	8	of them will show anything.
9	ratio for glyphosate exposure for the lowest		BY MR. LASKER:
10	exposed to the highest exposed, you could 04:51	10	Q. And if we have that situation, the 04:52
11	have confounding -- if you don't control --	11	real challenge we have, if I understand you
12	adjust for those other exposures, you could	12	correctly, is, let's say, if we have four
13	have confounding that would inflate the odds	13	pesticides, we have glyphosate and we have
14	ratio for the higher glyphosate exposure as	14	three other pesticides, and they are often
15	compared to the lower glyphosate exposure. 04:52	15	used together, and you have this situation 04:53
16	That's possible; correct?	16	with a correlated, and you have positive
17	MS. FORGIE: Object to the form.	17	associations popping out with each of the
18	THE WITNESS: So confounding is	18	different chemicals, then am I correct in my
19	always a possibility especially with	19	understanding that it is difficult to reach
20	highly correlated exposures. So the 04:52	20	a determination as to whether all of them 04:53
21	intellectual challenge here is to decide	21	are, in fact, associated with increased risk
22	how to treat these variables. Are they	22	of NHL or one of them is and which one is;
23	truly confounders in the sense that we	23	corre
24	are assuming that glyphosate has no	24	MS. FORGIE: Object to the form.
25	effect and all the effect comes from the 04:52	25	THE WITNESS: That's not what I'm 04:53
	Page 332		Page 333
1	saying. I'm saying that the data and	1	A. That would be the hypothetical
2	the mass will not help you. What you	2	study in glyphosate production workers.
3	have to do is design a study in which	3	Q. I'm sorry. I misspoke. My
4	you can distinguish between these three	4	question was: Has there been, in fact, an
5	exposures -- four exposures, and make up 04:53	5	epidemiological study conducted that you've 04:54
6	your mind what to call these individual	6	reviewed that would allow you to tease out
7	agents. Are they truly risk factors	7	that fact between the different pesticide
8	increasing the risk of NHL, or are they	8	exposures?
9	not.	9	MS. FORGIE: Object to the form.
10	If all four of them are risk 04:54	10	THE WITNESS: That depends on which 04:54
11	factors, and they are highly correlated	11	study we are talking about because
12	so every time one person is exposed to	12	confounding is a study-specific issue.
13	one, they're also exposed to all three	13	So in some studies, one of these
14	others, then you don't have a study that	14	pesticides may be a confounder. In
15	you can actually -- from which you then 04:54	15	another study, it might not be, and that 04:55
16	can come with a conclusion on one of	16	would depend on the timing of exposure.
17	them.	17	So for this study, the AHS where we
18	All you can say is all four of them	18	only have farmers who are coming for a
19	seem to increase risk of NHL.	19	pesticide exam at baseline. Right?
20	BY MR. LASKER: 04:54	20	That's how they were enrolled. They 04:55
21	Q. And has there been a study, to your	21	came to an exam in Iowa or North
22	mind, that has allowed -- that would allow	22	Carolina to get their pesticide
23	one to parse that out?	23	application license.
24	A. Yes.	24	So we know from the beginning that
25	Q. Which study would that be? 04:54	25	this is a cohort that will have multiple 04:55

	Page 334		Page 335
1	pesticide exposures, and a lot of them	1	40-some pesticides, the effect of
2	will be highly correlated. In other	2	glyphosate is still apparent.
3	populations, it might not be as much of	3	BY MR. LASKER:
4	a problem because certain farmers may	4	Q. And is that in the hierarchical
5	just use glyphosate and nothing else. 04:55	5	regression analysis? 04:56
6	BY MR. LASKER:	6	A. That is in the logistic regression,
7	Q. I understand.	7	and I stated before that I do not think that
8	My question to you, though, is:	8	the hierarchical is the way to go for many
9	You've reviewed all the epidemiologic	9	reasons because it makes all these
10	literature; so if there is a study, that's 04:55	10	assumptions about carcinogenicity of 04:56
11	fine. You can let me know what study that	11	substances we don't know anything about.
12	is.	12	Q. Other than De Roos 2003, is there a
13	Is there an epidemiological study	13	study that you believe allows you to tease
14	that you've identified in the literature	14	out the effects of glyphosate versus another
15	that allows you to distinguish between 04:55	15	pesticide to determine which of those are 04:56
16	glyphosate and other pesticides that are	16	risk factors and which of those are just
17	potentially being used by that population to	17	correlated?
18	determine whether all of them are risk	18	A. I believe that the Eriksson study
19	factors, one of them is a risk factor, or	19	also made multiple adjustments and
20	distinguish between them? 04:56	20	glyphosate survived those, but it is real 04:57
21	MS. FORGIE: Object to the form.	21	study to study. We could go through all of
22	Also asked and answered.	22	them.
23	THE WITNESS: Well, I think the De	23	Q. The De Roos 2005, in their dose
24	Roos 2003 study is actually a very good	24	response analysis, as they performed their
25	example where even after we adjust for 04:56	25	analysis for cumulative exposure days, they 04:57
	Page 336		Page 337
1	reported risk ratios of below 1 for the	1	MS. FORGIE: Wait, let her finish.
2	higher tertiles of exposure for cumulative	2	THE WITNESS: -- whatever we're
3	exposure days and also intensity-weighted	3	assuming is the introduction of
4	exposure days; correct?	4	glyphosate and the first person in this
5	A. That's how it looks like. 04:57	5	cohort having used it. Some of these 04:58
6	Q. The number of days of exposure to	6	farmers -- or actually the bulk of these
7	glyphosate in the exposed members of the AHS	7	farmers were less than $45-40$ years --
8	cohort in the highest exposure group was	8	50 years of age when they were enrolled.
9	significantly higher than the reported days	9	So I don't think they might have used
10	of exposure to glyphosate in any of the case 04:58	10	glyphosate -- well, depends on the age 04:59
11	control studies; correct?	11	they started farming; right?
12	MS. FORGIE: Object to the form.	12	BY MR. LASKER:
13	THE WITNESS: I'm actually very	13	Q. Yes.
14	surprised to see this number. I can't	14	A. So it could be 1975 to enrollment.
15	imagine anybody was spraying glyphosate 04:58	15	So that would be -- the latest enrollment is 04:59
16	on a daily basis for seven years.	16	1997; so we have 22 years maximum.
17	BY MR. LASKER:	17	Q. Okay. And is it your testimony
18	Q. The data in this study for De Roos	18	that you believe that the data presented in
19	would span 27 years of potential glyphosate	9	this table with the maximum, and it is the
20	use; correct? 04:58	20	single maximum exposure of 2,678 days, do 04:59
21	MS. FORGIE: Object to the form.	21	you believe that that data point is
22	THE WITNESS: It would be -- no.	22	incorrect?
23	It would be use between -- let's see.	23	MS. FORGIE: Object to the form.
24	BY MR. LASKER:	24	THE WITNESS: I have no idea, but
25	Q. Between -- 04:58	25	I'm very surprised to see it. On the 04:59

	Page 338		Page 339
1	other hand, these are farmers who are	1	you're now having is a situation where you
2	high intensive users of pesticides; so	2	don't know anything about what people in
3	maybe there's something to it.	3	1993 did. You know who changed in 1995 to
4	BY MR. LASKER:	4	glyphosate-intensive farming, but you would
5	Q. Am I correct that the 2005AHS data 04:59	5	not know who was interviewed in 1993 also 05:01
6	presents data for exposures that are	6	changed to glyphosate-intensive farming.
7	significantly more intense than any of the	7	You would keep them in the low exposure even
8	exposures that are assessed in any of the	8	though they may have changed to a much
9	case control studies that we've talked	9	higher level.
10	about; correct? 05:00	10	Q. My question was not that, though; 05:01
11	MS. FORGIE: Object to the form.	11	so let me ask my question again and see what
12	A. So now we are coming to the	12	the answer is. Am I correct in my
13	exposure assessment that was done in 1993 to	13	understanding that the cohort that was
14	1997. As we know in 1995-'6 there was a big	14	analyzed in the De Roos study had
15	change in glyphosate use due to genetically 05:00	15	significantly more intense exposures both by 05:01
16	modified crops. So the individuals who were	16	cumulative exposure days and to intensity
17	enrolled in 1993 would report general use	17	measure to glyphosate than any of the
18	among farmers where glyphosate is just one	18	individuals who were assessed in the case
19	among several herbicides; right? Could be	19	control studies we've been discussing?
20	2,4-D. Could be atrazine, could be all 05:00	20	MS. FORGIE: Object to the form. 05:01
21	sorts of thing. And then we have this big,	21	Also asked and answered.
22	big switch in 1995, and you're still	22	You can answer again.
23	enrolling these farmers, and now they have	23	THE WITNESS: So I'm having a hard
24	started to use modified crops, and they're	24	time comparing them because the other
25	using glyphosate at a huge amount. And what 05:00	25	studies had more than two days. That 05:02
	Page 340		Page 341
1	could also be a hundred days; right? So	1	controls. We have a cutoff of 10 days
2	plus those were days per year. Here we	2	cumulative for the Eriksson study, and we
3	have a cumulative exposure meaning this	3	have a cutoff in the De Roos 2005 cohort
4	could be an average that's actually less	4	that goes 1 to 20 days cumulative for the
5	than what was reported in the other 05:02	5	low exposure group, 21 days to 56 days for 05:03
6	studies depending on the number of	6	the mid exposure group, and 57 days to
7	years.	7	2,678 days in the high exposure group;
8	BY MR. LASKER:	8	correct?
9	Q. The two data points we have from	9	A. Correct.
10	Eriksson, it was ten days -- more than ten 05:02	10	MS. FORGIE: Object to the form. 05:03
11	days or less than ten days; correct?	11	THE WITNESS: Over 22 years.
12	A. Yes, but I'm not sure that it was	12	BY MR. LASKER:
13	ten days per year or ten days cumulative.	13	Q. And my question -- and for the
14	Q. Okay. I'll represent, and if I'm	14	Eriksson study, you'd have that same time
15	wrong, the court will know and everybody 05:02	15	period generally, the number of years of 05:03
16	will know that it was ten days cumulative.	16	exposure -- of potential exposure; correct?
17	The NAPP data we just looked at	17	MS. FORGIE: Object to the form.
18	reported seven days cumulative as the cutoff	18	THE WITNESS: That was --
19	point; correct?	19	BY MR. LASKER:
20	MS. FORGIE: Object to the form. 05:02	20	Q. The 2008 study? 05:03
21	THE WITNESS: That was the	21	A. I have to look. When did they get
22	cumulative, yes.	22	their cases? 1993? So it's shorter. It's
23	BY MR. LASKER:	23	actually shorter because the cases were
24	Q. So we have a cutoff of seven days	24	ascertained in the early '90s and these
25	cumulative for the NAPP U.S.-based case 05:03	25	cases were ascertained after. 05:04

	Page 342		Page 343
1	Q. And we're not going to go back. I	1	to glyphosate but to all the pesticides that
2	don't think that's correct, but we'll move	2	they analyzed; correct?
3	on and address that later.	3	MS. FORGIE: Object to the form.
4	The cumulative exposure in the	4	THE WITNESS: What was that.
5	De Roos study, measured in the De Roos study 05:04	5	BY MR. LASKER: 05:05
6	for glyphosate associated with non-Hodgkin's	6	Q. The measure of intensity that the
7	lymphoma was significantly greater than the	7	Agricultural Health Study uses is a measure
8	cumulative exposure measures in any of the	8	that they have validated not only for
9	case control studies; correct?	9	glyphosate but for all the different
10	MS. FORGIE: Object to the form. 05:04	10	pesticides that they're analyzing; correct? 05:05
11	THE WITNESS: Again, this is a	11	MS. FORGIE: Object to the form.
12	measure that's cumulative over 22 years,	12	THE WITNESS: They actually did not
13	and it is not a measure of intensity.	13	validate that for all the pesticides.
14	BY MR. LASKER:	14	They used two or three pesticides for
15	Q. Okay. And the intensity-weighted 05:04	15	the validation procedure, and I wouldn't 05:05
16	exposure days that was presented, that is	16	call that validated because they are
17	based upon an analysis of intensity in the	17	only measuring biomarkers over a very
18	AHS that looks at mixing status, application	18	short period of time, and they are
19	method, equipment repair status, and	19	saying that these short time periods
20	personal protective equipment; correct? 05:04	20	cannot be set to be the same as a 05:05
21	A. Yes.	21	lifetime exposure.
22	Q. And that is a measure that has been	22	In fact, we tried in my own studies
23	looked at and validated through the	23	for occupational exposures to pesticides
24	De Roos -- through the AHS to try and	24	to reproduce these intensity measures
25	measure the intensity of exposures not only 05:05	25	and compared them with very simple 05:06
	Page 344		Page 345
1	measures. So we went through all the	1	measures of, you know, how many times
2	trouble of weighing in exactly the same	2	per year did you apply, or how many days
3	way. We asked the same questions, and	3	per year did you apply made no
4	it made just about no difference whether	4	difference.
5	you used a very simple measure such as 05:06	5	BY MR. LASKER: 05:07
6	in Eriksson and Hardell, et cetera, or	6	Q. In your discussion of the 2005
7	you used this very complicated measure.	7	De Roos dose response analysis in your
8	BY MR. LASKER:	8	expert report at page 23 , you state that the
9	Q. When you say the measure that was	9	investigators' decision to conduct their
10	used in Eriksson and Hardell you're assuming 05:06	10	dose response analysis with comparisons only 05:07
11	the measure they used because they don't	11	between low, mid, and high exposure without
12	report it in those studies; correct?	12	an unexposed group reduces the exposure
13	MS. FORGIE: Object to the form.	13	contrast between the three dose groups;
14	Mischaracterizes her prior testimony.	14	correct?
15	Asked and answered. 05:06	15	A. Where do I say that? 05:07
16	You can answer it again.	16	Q. Page 23. Right above
17	THE WITNESS: No, because what	17	industry-sponsored studies.
18	Eriksson describes is very similar to	18	A. Yes.
19	the methods that I know I used. So we	19	Q. "This type of approach also reduces
20	had several measures that we tried with 05:06	20	any remaining exposure contrast." 05:08
21	and without protective equipment, with	21	A. Yes.
22	and without frequency of applications,	22	Q. The exposure contrast, though, in
23	et cetera. We are using -- we tried to	23	the De Roos study were greater than the
24	use everything in the same way as the	24	contrast between the exposure groups in the
25	AHS and going back to fairly simple 05:06	25	McDuffie study and the Eriksson study; 05:08

	Page 346		Page 347
1	correct?	1	exposures over time; right?
2	MS. FORGIE: Object to the form.	2	MS. FORGIE: Object to the form.
3	THE WITNESS: That's an assumption,	3	THE WITNESS: It's a case control
4	and the assumption is that there's not a	4	study so they would ask cases and
5	major exposure misclassification in the 05:08	5	controls to remember their lifetime 05:09
6	way I described before.	6	exposure which, by definition, would be
7	BY MR. LASKER:	7	prior to the onset of the cancer, yeah.
8	Q. Okay. This exposure	8	BY MR. LASKER:
9	misclassification, to the extent that	9	Q. So if the Eriksson study is asking
10	Eriksson analyzed data exposures going into 05:08	10	that question after 1997 for all past 05:09
11	the 1990s, if that's the case, they gathered	11	exposures and using that data for their
12	their data after 1997, would that same issue	12	analysis, would they have the same
13	arise with the Eriksson study?	13	misclassification problem that you believe
14	A. If they gathered it after 1997, no,	14	exists for the AHS study?
15	because then they would have actually 05:09	15	A. No, it would not. 05:09
16	already gotten past the change.	16	Q. The -- there has been a further
17	Q. Well, they --	17	analysis of the Agricultural Health Study
18	MS. FORGIE: Wait. Let her finish.	18	data, and you address this in your rebuttal
19	THE WITNESS: The problem is that	19	report. This is the document we received
20	this study had the change happen in the 05:09	20	from Dr. Blair presenting data from 2013. 05:10
21	middle of the enrollment period.	21	Let me ask first at the time that
22	BY MR. LASKER:	22	you prepared your initial expert report in
23	Q. The Eriksson study would be looking	23	this matter, had you seen that 2013AH
24	back over time so it would be a	24	analysis?
25	questionnaire and be asking about prior 05:09	25	A. First time I was aware of it was in 05:10
	Page 348		Page 349
1	that attachment to Dr. Blair's statements.	1	to the time you read Dr. Neugut's
2	Q. Okay. But were you -- did you see	2	deposition?
3	that attachment -- had you seen that	3	MS. FORGIE: Object to the form.
4	attachment at the time you prepared your	4	THE WITNESS: I really don't know.
5	initial expert report in this matter? 05:10	5	BY MR. LASKER: 05:11
6	MS. FORGIE: Object to the form.	6	Q. The 2013 -- why don't we mark that
7	THE WITNESS: I don't believe so or	7	analysis.
8	else I would have known because the	8	(Exhibit Number 19-19 was
9	deposition was after -- when was it? Do	9	marked for identification.)
10	we have a date? 05:10	10	MS. FORGIE: Tell me which version
11	BY MR. LASKER:	11	you're using.
12	Q. We do have a date. I'll represent,	12	MR. LASKER: March, 2013.
13	and counsel can correct me if I'm wrong, the	13	MS. FORGIE: So the earlier one.
14	deposition was taken before your expert	14	MR. LASKER: The later one.
15	report was submitted. That doesn't mean you 05:11	15	MS. FORGIE: Oh, the later one, I'm
16	saw it then?	16	sorry.
17	A. No, exactly. I don't think I saw	17	THE WITNESS: Are there more than
18	any depositions prior to my expert report,	18	one.
19	so that's fine.	19	MR. LASKER: There's February and
20	Q. And do you recall whether you saw 05:11	20	March. The data doesn't change. 05:12
21	the AHS2013 data prior to -- you obviously	21	MS. FORGIE: I object to that
22	saw it prior to the time you did your	22	comment. It does change. You know it.
23	rebuttal report.	23	MR. LASKER: I don't think it
24	A. Yes.	24	changes actually, but maybe I'm wrong.
25	Q. Do you recall if you saw it prior 05:11	25	//]

	Page 350		Page 351
1	BY MR. LASKER:	1	yet. She needs some time to read a
2	Q. The -- Dr. Blair in his deposition	2	couple pages before and after, so give
3	testified that the 2013 data, although for	3	her a minute, please.
4	the glyphosate it is reported in a	4	THE WITNESS: What are we talking
5	dose-response analysis that includes a never 05:12	5	about? 05:14
6	exposure category and then three exposure	6	BY MR. LASKER:
7	categories, he calculated that the	7	Q. On page 172 Dr. Blair is -- I'm
8	ever/never risk ratio for glyphosate and NHL	8	asking him some questions about the 2013
9	in this 2013 data would be about 0.9. Do	9	data.
10	you recall that? 05:13	10	Do you see that? 05:14
11	MS. FORGIE: Object to the form.	11	A. Yes.
12	Mischaracterizes the testimony.	12	Q. I ask him the question at line 11.
13	THE WITNESS: I don't recall that.	13	"This 2013 cohort study finds no
14	BY MR. LASKER:	14	association -- no evidence of association
15	Q. Okay. Let's look at Dr. Blair's 05:13	15	between exposure to glyphosate and 05:14
16	deposition. I think we marked it as an	16	non-Hodgkin's lymphoma; correct?"
17	exhibit.	17	And Dr. Blair answers, "Correct."
18	MS. SHIMADO: 6.	18	Do you see that?
19	BY MR. LASKER:	19	A. Yes.
20	Q. I'm going to hand it to you. It's 05:13	20	Q. And then I ask Dr. Blair, "And 05:14
21	Exhibit 6 after we find it.	21	based upon the data that's set forth here,
22	And Dr. Blair on page -- it's 172.	22	if you look at individuals who had no
23	We're looking at the 2013 cohort study data;		exposure to glyphosate, which is that first
24	correct?	24	row, and you look at the three categories of
25	MS. FORGIE: Well, she's not there 05:14	25	individuals who did have exposure to 05:14
	Page 352		Page 353
1	glyphosate, if we were to do an ever/never	1	those numbers. But if we were to look at
2	analysis of glyphosate and non-Hodgkin's	2	page 34 in the 2013 study for glyphosate, do
3	lymphoma, the relative risk here would be	3	you see that data?
4	something below 1.0; correct? About 0.9?"	4	A. Yes.
5	"Answer: That's a reasonable guess 05:15	5	Q. And if we were to calculate from 05:15
6	I think, yes."	6	this data an ever/never risk ratio for
7	Do you see that?	7	glyphosate and non-Hodgkin's lymphoma, do
8	A. Yes.	8	you agree with Dr. Blair that the risk ratio
9	Q. Do you have any reason to disagree	9	would be about 0.9?
10	that if one were to do an ever/never 05:15	10	MS. FORGIE: Object to the form. 05:16
11	analysis of the 2013AHS data for glyphosate,	11	Asked and answered.
12	the risk ratio that would be reported would	12	You can answer again.
13	be something on the order of 0.9?	13	THE WITNESS: Again, it would be
14	MS. FORGIE: Object to the form.	14	hovering somewhere around the 1.
15	THE WITNESS: I would have to look 05:15	15	However, I don't think that these 05:16
16	at the data, but, in general, I don't	16	categories are sufficiently well
17	believe any of those analyses because I	17	established to even make this
18	don't believe the exposure assessment.	18	comparison.
19	So it doesn't matter.	19	BY MR. LASKER:
20	BY MR. LASKER: 05:15	20	Q. Okay. But just so the record is 05:16
21	Q. I understand that, but let me just	21	clear, we have the non- -- the never use is
22	make sure I understand and see if you agree	22	the reference of 1.0; correct?
23	with what the numbers would be, and	23	A. That's the reference, correct.
24	obviously others will decide whether or not	24	Q. And in the exposure groups, we have
25	those numbers are the -- the significance of 05:15	25	odds ratios of either below 1 or just at 1; 05:16

	Page 354		Page 355
1	correct?	1	about the 2013 analysis relates to the
2	MS. FORGIE: Object to the form.	2	imputation method that was used; correct?
3	Asked and answered.	3	A. That's correct.
4	You can answer it again.	4	Q. And the AHS investigators -- and
5	THE WITNESS: Well, the relative 05:16	5	just to be clear, the issue with the 05:17
6	risks here which they are not odds	6	imputation method is in their second phase
7	ratios --	7	of gathering information on pesticide
8	BY MR. LASKER:	8	exposures. They had, I think, 36 percent of
9	Q. I'm sorry.	9	individuals who responded to the first
10	A. -- are actually hovering around the 05:16	10	survey who didn't respond to the second; 05:18
11	1.	11	correct?
12	Q. So the relative risks are either	12	MS. FORGIE: Object to the form.
13	$0.8,0.9$, or 1.0 for use of glyphosate as	13	THE WITNESS: So the AHS is a
14	compared to non-use of glyphosate as the	14	cohort study that has, because there's
15	data is reported here; correct? 05:17	15	so many people to be interviewed, a long 05:18
16	MS. FORGIE: Object to the form.	16	period of enrollment which is about four
17	Asked and answered.	17	or five years. And by the time the last
18	You can answer again.	18	person was enrolled, they pretty much
19	THE WITNESS: Well, the relative	19	decided they had to update their
20	risks are rate ratios hover around the $1 \quad 05: 17$	20	exposures because they realized that 05:18
21	and the confidence intervals include the	21	exposures change.
22	1, but they go out to 1.4.	22	So in the next phase starting in
23	BY MR. LASKER:	23	1999, I believe, through 2003, they
24	Q. The -- in your rebuttal report, you	24	tried to recontact all these farmers who
25	state one of the main concerns you have 05:17	25	they enrolled in the first phase, and 05:18
	Page 356		Page 357
1	yes, among those that they reached	1	Q. Used that as well to impute for
2	again, that was about 62 percent.	2	them?
3	BY MR. LASKER:	3	A. Yes.
4	Q. And because of that, the AHS	4	Q. And the AHS investigators have used
5	investigators used an imputation method to 05:19	5	that same imputation method for every 05:19
6	impute what the values would be, the	6	pesticide study that they have published
7	exposure values would be for the individuals	7	that includes data from the phase 2 surveys;
8	who did not respond to the second phase	8	correct?
9	questionnaire based upon the prior	9	MS. FORGIE: Object to the form.
10	information that they had from those 05:19	10	THE WITNESS: Yes. They used a 05:20
11	individuals and the information they had	11	general method of imputation for all
12	from the 60 plus percent of subjects who	12	pesticides, whether or not these
13	responded to both questionnaires; correct?	13	pesticides were actually still in use or
14	MS. FORGIE: Object to the form.	14	not, and whether or not the use changed
15	THE WITNESS: From what I 05:19	15	over time specifically between the first 05:20
16	understand is they basically used the	16	and the second survey.
17	baseline information to impute the	17	BY MR. LASKER:
18	follow-up.	18	Q. So every publication that has come
19	BY MR. LASKER:	19	out of the AHS that looks at pesticides
20	Q. So is it your understanding then 05:19	20	since they've had this phase 2 exposure 05:20
21	that they did not use data from the 60 some	21	information, all of the published studies,
22	odd percent who responded to both	22	all the peer-reviewed published studies from
23	questionnaires --	23	the AHS have used this same imputation
24	A. Oh, yes, because they used the	24	method that was used in the 2013 analysis
25	baseline for all of them. 05:19	25	included glyphosate; correct? 05:20

	Page 358		Page 359
1	MS. FORGIE: Object to the form.	1	study; is that correct?
2	Asked and answered. It mischaracterizes	2	MS. FORGIE: Object to the form.
3	her prior testimony.	3	Also asked and answered. She's answered
4	You can answer it again.	4	this twice.
5	THE WITNESS: They used one single 05:21	5	You can answer it a third time. 05:22
6	imputation method to apply to every	6	THE WITNESS: Again, this
7	single pesticide whether the pesticide	7	imputation method is one and the same
8	has been banned and supposedly not been	8	imputation method for every single
9	used since '72 which is DDT and lindane	9	exposure, and there are big differences
10	shortly after, or whether it's a 05:21	10	between the exposures, the timing of the 05:22
11	pesticide that came on the market and	11	exposure and, therefore, the validity of
12	went and was gone by 1993 when they	12	this method. So every other paper that
13	started this study or whether it's a	13	comes out has to be judged by how valid
14	pesticide which is unique such as	14	this method is, not only for the
15	glyphosate that changed use in the 05:21	15	pesticide but also the outcome. 05:22
16	middle of their inrollment period. And	16	BY MR. LASKER:
17	they're using the same method for all of	17	Q. I understand that. But I just want
18	these pesticides.	18	to make sure that I'm clear that every paper
19	BY MR. LASKER:	19	that has come out of the AHS and including
20	Q. Just so I understand, every 05:21	20	all the papers that have been peer-reviewed 05:22
21	publication that's come out of the AHS since	21	and published from the AHS have used the
22	the second phase data was incorporated into	22	same imputation method that is used in the
23	their analysis, every peer-reviewed	23	2013 study; is that correct?
24	published study has made use of this general	24	MS. FORGIE: Object to the form.
25	imputation method that was used in the 2013 05:21	25	Asked and answered. She's answered it 05:22
	Page 360		Page 361
1	four times now.	1	AHS looking at pesticides since that second
2	You can answer it again.	2	survey was conducted has used the imputation
3	THE WITNESS: So it's a perfectly	3	methodology that is used in the 2013 study?
4	fine imputation method for something	4	MS. FORGIE: Objection. I object
5	like DDT that supposedly hasn't changed 05:22	5	to the form also. You are badgering the 05:24
6	since 1972, and it's a perfectly fine	6	witness now. This is the sixth time
7	method for any pesticide that was	7	you've asked the exact same question,
8	discontinued in use since 1993 because	8	the exact same question.
9	what would change over time since 1993?	9	MR. LASKER: And one of these times
10	Nothing. Right? Because supposedly all 05:23	10	I'll get an answer. 05:24
11	the exposures you could ever have had	11	MS. FORGIE: Wait. Don't do that.
12	for this pesticide would have been	12	You've gotten answers. You're badgering
13	recorded at baseline. This is not the	13	the witness. I object to that. Don't
14	case for any exposure that changed and	14	do that.
15	especially not for an exposure that 05:23	15	MR. LASKER: Mark the record here. 05:24
16	changed dramatically. There's only one	16	MS. FORGIE: Good. Please do.
17	I'm aware of in this study, and that was	17	MR. LASKER: I'm going to ask it
18	glyphosate for which that changed.	18	again because it's a pretty simple
19	BY MR. LASKER:	19	question.
20	Q. Just so I understand this 05:23	20	BY MR. LASKER: 05:24
21	correctly, and I think you'll agree with me	21	Q. Am I correct -- and it's a question
22	on this, but I just need to understand this	22	that has a yes or no. There may be an
23	for the record, am I correct that every	23	explanation you want to give afterwards.
24 25	study that has been published by the AHS, every peer-reviewed published paper from the $05: 23$	24 25	But it's a yes or no question. Am I correct that every peer-reviewed publication from 05:24

	Page 362		Page 363
1	the AHS that has come out since that phase 2	1	did a study in which they tried to test
2	exposure data was collected has used the	2	their imputation methodology and to look at
3	same imputation that is used in the 2013	3	how well it performed with respect to the
4	study that included the glyphosate data?	4	different pesticides; correct?
5	MS. FORGIE: Objection. You are 05:24	5	MS. FORGIE: Object to the form. 05:25
6	really badgering this witness. This is	6	THE WITNESS: It was a very special
7	now like the eighth time. I'm counting.	7	type of pesticide they looked at. It
8	Objection. Asked and answered.	8	wasn't glyphosate from what I recall.
9	You can answer it again.	9	BY MR. LASKER:
10	THE WITNESS: There is no yes or no 05:25	10	Q. Let me ask you about the study. 05:25
11	answer to this. And, also, I don't	11	Maybe we're not talking about the same
12	know. Because, for example, if you're	12	study. The Heltshe study?
13	assessing lindane and DDT, you don't	13	A. Yeah, Heltshe.
14	need an imputation method because you	14	(Exhibit Number 19-20 was
15	have all the data you want which is the 05:25	15	marked for identification.) 05:26
16	data you collected at baseline.	16	BY MR. LASKER:
17	However, for any pesticide still in	17	Q. This will be Exhibit 19-20. This
18	use where you have no updated pesticide	18	Exhibit 19-20 by Heltshe entitled, "Using
19	information, you would use this	19	Multiple Imputation to Assign Pesticide Use
20	imputation method. Whether that's an 05:25	20	for Non-Responders in the Follow-Up 05:26
21	appropriate method is a totally	21	Questionnaire in the Agricultural Health
22	different question. For glyphosate, I	22	Study"; correct?
23	don't believe so.	23	A. Yes.
24	BY MR. LASKER:	24	Q. And in this study, they reported
25	Q. And the AHS investigators actually 05:25	25	that their imputation methodology, and they 05:26
	Page 364		Page 365
1	report this in their abstract, that the	1	Q. And they compared that to the
2	distribution of prevalence and days per year	2	actual data because they had actual data
3	of use for specific pesticides were similar	3	from those individuals; correct?
4	across observed and imputated in the holdout	4	MS. FORGIE: Object to the form.
5	sample. 05:26	5	THE WITNESS: They have actual data 05:27
6	Do you see that?	6	from those individuals that they are
7	MS. FORGIE: Take your time.	7	putting in the holdout sample, correct.
8	BY MR. LASKER:	8	BY MR. LASKER:
9	Q. It's towards the bottom in the	9	Q. And they then used that analysis to
10	abstract. 05:27	10	check on the accuracy of their imputation 05:27
11	A. Oh, in the abstract.	11	method. And if you look at figure 2 on
12	Yes, they're using the data to	12	page 414, they measure the relative errors
13	predict the data.	13	on page 414 for -- it's got to be 40 maybe,
14	Q. Right. And what they did in this	14	I didn't count them, but 40 different
15	analysis is they took of the people who had 05:27	15	pesticides starting with methyl bromide on 05:28
16	responded to the second phase, they randomly	16	the top down to coumaphos on the bottom;
17	selected 20 percent of them; correct?	17	correct?
18	MS. FORGIE: Object to the form.	18	A. Yes.
19	THE WITNESS: Yes.	19	Q. And for each of those pesticides
20	BY MR. LASKER: 05:27	20	they checked to see how well their 05:28
21	Q. And then they used their imputation	21	imputation methodology worked; correct?
22	method to predict what the imputation method	22	A. Correct.
23	would say was the exposure experience of	23	Q. And for glyphosate, they found that
24	that 20 percent holdout sample; correct?	24	their imputation methodology worked about in
25	A. That's correct. 05:27	25	the middle of the pack for all of these 05:28

	Page 366		Page 367
1	specifically identified pesticides as far as	1	pesticides that they were analyzing, they
2	how well their imputation methodology works;	2	found that glyphosate was about in the
3	correct?	3	middle of the pack for prevalence as far as
4	MS. FORGIE: Object to the form.	4	how well the imputation methodology worked;
5	THE WITNESS: Well, it's not the 05:28	5	correct? 05:29
6	middle of the pack. It's in relative	6	MS. FORGIE: Object to the form and
7	error on the left of the zero. So they	7	asked and answered.
8	are underestimating.	8	You can answer it again.
9	BY MR. LASKER:	9	THE WITNESS: I don't think this
10	Q. But there's also one, two, three, 05:29	10	answers to what I've just tried to 05:29
11	four, five at the top. I've done the	11	explain. They can only use to predict
12	counting. I think there's maybe 17 that are	12	from data they actually have; so we
13	more relative error, maybe 20 that have less	13	don't still know anything about the
14	relative error. But if you want to do the	14	people for whom they don't have the
15	counting, you can. 05:29	15	follow-up data. 05:30
16	A. But this is a prevalence, and we	16	They are just assuming that those
17	are talking about a relative error to	17	people behaved in the same way as the
18	predict a ever/never, and 75 percent of all	18	people they have data for.
19	people at baseline already reported use. So	19	BY MR. LASKER:
20	you can get, you know, this number very 05:29	20	Q. I understand. 05:30
21	easily just because of the high prevalence.	21	And the people they have data for
22	Q. But my question to you is: In this	22	would be people who cover this period that
23	published paper from the AHS in which	23	you're concerned about where glyphosate
24	they're checking the validity of their	24	exposure increased. The folks who responded
25	imputation methodology for the individual 05:29	25	to the second survey and the first survey, 05:30
	Page 368		Page 369
1	that's the hold-out sample; correct? The	1	representative sample of the 38 percent.
2	20 percent?	2	Q. Okay. I understand that. That's a
3	MS. FORGIE: Objection. Object to	3	different question, but I want to get at
4	the form. And asked and answered.	4	this issue of changes in glyphosate use over
5	You can answer it again. 05:30	5	time. 05:31
6	THE WITNESS: This was done within	6	The individuals who responded to
7	the 62 percent who answered twice.	7	the first survey and the second survey would
8	BY MR. LASKER:	8	obviously have gone through that period for
9	Q. Right.	9	glyphosate -- correct? -- where there was
10	A. These 62 percent, as they describe 05:30	10	expanded use? 05:31
11	in here, are actually different in many ways	11	A. Only a small number would have gone
12	from the 30-some percent that did not --	12	through -- no. Okay. We have 1993 through
13	38 percent that did not answer. So they are	13	1997. So the 62 percent supposedly come
14	using the 62 percent who are very different	14	from that whole time period; correct?
15	in many ways, and they actually 05:30	15	Q. And the second phase because they 05:32
16	acknowledging that they're also different in	16	responded to the second phase as well.
17	pesticide use to predict what would have	17	A. Right.
18	happened to 38 percent that they did not	18	Q. So '97 to 2001 as well. So for
19	have that second answer from.	19	62 percent, they have exposure data that
20	It's easy to predict from people 05:31	20	spans before that first phase period and 05:32
21	who are answering and are -- and are	21	then also into the 1990s during that period
22	captured because they want to be captured.	22	where glyphosate use was impacted by GMOs;
23	They could be younger. They could be more	23	correct?
24	educated. All of that is described in here.	24	A. So some of these people, at
25	So the people, 62 percent is not a 05:31	25	baseline, would have reported use prior to 05:32

	Page 370		Page 371
1	1995, and some would have responded past	1	glyphosate, potentially, I think we talked
2	1995.	2	about 20-plus years; correct?
3	Q. And they had that data?	3	MS. FORGIE: Objection.
4	MS. FORGIE: Wait. Let her finish	4	Mischaracterizes the testimony, and I'll
5	her answer. 05:32	5	object to the form. 05:33
6	MR. LASKER: Well, I mean --	6	THE WITNESS: So potential for
7	MS. FORGIE: No. She gets to	7	exposure. We really don't know how far
8	finish her answer.	8	it goes back because none of the Eghal
9	THE WITNESS: So some people	9	study papers actually describe for
10	changed, and other people didn't. Some 05:32	10	glyphosate how much in, you know, the 05:33
11	of this error is because some people	11	past these people reported use.
12	changed, and it was a very simple	12	BY MR. LASKER:
13	change. So what they're talking about	13	Q. Okay. And what they're trying to
14	here is a change from yes, no.	14	measure in the second phase is how much
15	There's only 25 percent at baseline 05:32	15	exposure there was from the end of the first 05:33
16	who did not report glyphosate use. So	16	phase to the second phase -- correct? --
17	that's the only group that could have	17	which is a much shorter time period?
18	actually reported a change. Everybody	18	MS. FORGIE: Objection.
19	else stayed the same if you say yes, no.	19	Mischaracterizes the study itself.
20	That tells us nothing about the amount 05:33	20	THE WITNESS: So what they're 05:33
21	of use.	21	trying to do is to update the exposure
22	BY MR. LASKER:	22	information. Of course, the update is
23	Q. Okay. Let me just break this down.	23	much more drastic in terms of amounts
24	First of all, in the original phase 1 study,	24	that somebody who reported in 1993 still
25	we are looking at exposures over -- for 05:33	25	use glyphosate but increased use in 1995 05:34
	Page 372		Page 373
1	enormously and then responds again.	1	reflected in Table -- or Figure 2 on
2	Right.	2	page 414; correct?
3	BY MR. LASKER:	3	MS. FORGIE: Objection. Object to
4	Q. And so for the 62 percent that	4	the form. Also asked and answered.
5	responded to the questionnaire, that would 05:34	5	She's answered this question at least 05:35
6	be information that you'd get from their	6	three times.
7	second survey response; correct?	7	You can answer again.
8	MS. FORGIE: Objection. Asked and	8	THE WITNESS: And there are at
9	answered and object to the form as well.	9	least two wrong statement here. First
10	You can answer again. 05:34	10	of all, that's not correct for all the 05:35
11	THE WITNESS: You get updated	11	pesticides. The pesticides that did not
12	information from these people who	12	have this extreme change don't have this
13	respond. However, to then use that data	13	problem. This problem only has occurred
14	to predict how many people would use	14	because glyphosate use changed
15	what who did not respond is a big step. 05:34	15	dramatically. 05:35
16	BY MR. LASKER:	16	Second, this imputation method is a
17	Q. And I understand that step, and	17	method that not only is used for a
18	that's a step that we have for all of the	18	prevalence of glyphosate yes/no, but to
19	pesticides, but for glyphosate, in looking	19	also impute the amount used. And what
20	at the individuals who responded at least 05:34	20	they're showing you in this little graph 05:35
21	and who had gone through that period of	21	is just a prevalence yes/no. That's the
22	increased use that you're talking about,	22	least you could do and the least piece
23	that introduced whatever error it would	23	of information you can have about this
24	introduce into the imputation methodology,	24	method actually working.
25	and for those people, that error is 05:35	25	Plus it makes the assumption that 05:36

Page 374			Page 375		
	the 62 percent are representative of the		1	can say that because when you have such	
2	38 percent, and we have to make that		2	a high prevalence of use to begin with,	
	assumption, and it's not right. They're		3	75 percent, then it is like a couple	
	stating that in this paper that it's not		4	value where you're asking, well, how	
	correct. 05:36		5	much agreement is there in a measure	05:37
6	BY MR. LASKER:		6	when 98 percent say no, I never used	
	Q. Within the 62 percent that		7	this pesticide, and 2 percent do use it,	
8	responded when the AHS investigators looked		8	and then you're, you know, getting --	
9	to see for prevalence how well the		9		
10			10	yes, but the 94 percent or the 05:37	
11	fact that for those 62 percent, it spanned		11	75 percent are the overwhelming group	
12	over that period when glyphosate use was		12	that is consistent.	
13	expanding, the -- they found that the error		13	So because they already said yes at	
14	in that 62 percent through the use of that		14	the baseline, they will consistently be predicted in the future because a yes is	
15	imputation method when they tested it for 05:36 glyphosate was somewhere in the middle of		15		05:37
16			16	a yes.	
17	the pack for all the pesticides that they		17	BY MR. LASKE	
18	analyzed, and that's reflected on Figure 2;		18	Q. The concern that you are raising	
19	orrect?		19	now about glyphosate and this imputation methodology is not raised as a concern by	
${ }^{20}$	MS. FORGIE: Objection. Object to 05:36 the form. You're badgering the witness.		20		05:37
21			21	the investigators, Dr. Heltshe and others,	
22	This is now about the fifth time you'veasked that same exact question.		22	who presented the data for their validation	
23			23	study of the imputation method in which they	
24	You can answer it again.		24	presented glyphosate data along with the	
25	THE WITNESS: I don't believe you	05:37	25	other pesticides; correct? 05:38	
	Page 376			Page 377	
1	MS. FORGIE: Object to the form.		1	they made might be holding for most of these	
2	THE WITNESS: I don't understand		2	pesticide, but they themselves actually say	
3			3	including the missing at random assumption	
4	BY MR. LASKER:		4		
5	Q. The AHS investigators, including 05:38		5	that they're making in this imputation, and 05:39	
6	Dr. Heltshe, conducted a validation test of their imputation methodology in this		6		
7			7	the time -- the exposure period change and	
8	publication; correct?		8	the huge increase in glyphosate and that	
9	MS. FORGIE: Object to the form.		9	happening in the middle of the first enrollment period, this is not the method to	
10	THE WITNESS: What? A validation	05:38	10		05:39
11	method? No.		11	test this.	
12	BY MR. LASKER:		12	Q. I understand that that's what	
13			13	you're saying.	
14	including Dr. Heltshe, published this paper		14		
15	in 2002 presenting their data on how well 05:38		15	the other investigators who published this 05:39	
16	the imputation methodology worked throughthe analyses that they conducted in this		16	analysis and presented the data on	
17			17	glyphosate in Figure 2 and also the findings	
18	paper for various pesticides; correct?		18	for the other pesticides -- so in glyphosaterelative error to be in the middle of the	
19	MS. FORGIE: No. Object to the		19		
20	form.THE WITNESS:		20	pack, they do not anywhere in this 05:39	
21			21	publication state that this finding for	
22	BY MR. LASKER:		22	glyphosate alone is not reliable; correct?	
23	Q. Sorry.		23	MS. FORGIE: Objection. That's the	
24	A. And they conducted this method under lots of assumptions. The assumptions	05:39	24	exact question you just asked twice. She's answered -- 05:40	
25			25		

	Page 378		Page 379
1	MR. LASKER: It's not the exact	1	MS. FORGIE: Objection. Object to
2	question. You're coaching the witness.	2	the form. Asked and answered.
3	You're coaching witness. I'm asking a	3	You can answer again.
4	different question.	4	THE WITNESS: These authors
5	MS. FORGIE: I'm not coaching the 05:40	5	investigated lots of pesticides. They 05:41
6	witness. I object. I object to the	6	are not making any reference to any
7	form. Asked and answered.	7	single pesticide. They are just
8	You can answer it again.	8	treating them as if they are equal in
9	MR. LASKER: I'll ask the question	9	terms of their method.
10	again because I can't imagine how you're 05:40	10	BY MR. LASKER: 05:41
11	going to remember it at this point.	11	Q. They do not state that their method
12	BY MR. LASKER:	12	does not work for glyphosate in this
13	Q. Dr. Heltshe and her	13	analysis; correct?
14	co-investigators who presented this analysis	14	MS. FORGIE: Objection. Asked and
15	in checking on the validation -- checking on 05:40	15	answered. 05:41
16	the imputation methodology that they used	16	You can answer again.
17	and reported the relative errors for all of	17	THE WITNESS: In this paper, they
18	these various pesticides, including	18	are not stating anything specific for
19	glyphosate, showing glyphosate to be in the	19	any of the pesticides.
20	middle of the pack for the different 05:40	20	BY MR. LASKER: 05:41
21	pesticides looked at in the AHS, nowhere in	21	Q. Well, that's not true. In
22	this publication do they state that there is	22	Figure 2, they have specific information on
23	a different concern about glyphosate that	23	each of the pesticides. In Figure 1, they
24	should be taken into account in analyzing	24	report specific information -- or Table 3,
25	the results that they present; correct? 05:41	25	I'm sorry. They present specific 05:41
	Page 380		Page 381
1	information for specific pesticides;	1	a relative error for glyphosate that was in
2	correct?	2	the middle of the pack for all the
3	MS. FORGIE: Objection. It's not	3	pesticides that they are -- for which
4	appropriate to tell the witness one of	4	they're using the imputation methodology;
5	her answers is not true. 05:41	5	correct? 05:42
6	Objection. Also object to the	6	MS. FORGIE: Objection. You're
7	form. Asked and answered.	7	badgering the witness. You've asked her
8	You can answer again.	8	the same question so many times.
9	THE WITNESS: I may have misspoken.	9	You may answer it again.
10	What I tried to do is answer your 05:42	10	THE WITNESS: I think you don't 05:42
11	questions in terms of whether the	11	understand what I'm getting at, and I'm
12	authors actually commented on glyphosate	12	sorry that I can't express myself in
13	being different. They did not comment	13	more lay terms or whatever I need to do,
14	on these pesticides being one or the	14	but this is not the same as a validation
15	other different. They are, of course, 05:42	15	study of the imputation method, and the 05:43
16	producing all of these data for all of	16	authors clearly state that this multiple
17	the pesticides they imputed.	17	imputation makes lots assumptions and
18	BY MR. LASKER:	18	that, you know, for simplicity of
19	Q. And the data that they presented	19	modeling, they only used a single set of
20	and they decided to present to the world in 05:42	20	observed complete data, et cetera, 05:43
21	this peer-reviewed publication so that	21	et cetera.
22	people could understand their imputation	22	So it is not -- and they also say
23	methodology when they're reading these AHS	23	that some of these assumptions may not
24	studies that all now use this imputation	24	be correct and may have to be updated.
25	methodology, the data they presented showed 05:42	25	//I

	Page 382		Page 383
1	BY MR. LASKER:	1	the 2013 study was not appropriate for
2	Q. Can you point to anything in the	2	glyphosate?
3	published literature, in the AHS website,	3	MS. FORGIE: Object to the form.
4	anywhere, anyone other than you has stated	4	THE WITNESS: I can't remember.
5	that the imputation methodology that the AHS 05:43	5	BY MR. LASKER: 05:44
6	study is using is uniquely inappropriate for	6	Q. In the -- in your role on the
7	glyphosate?	7	executive -- I'm sorry. Not the executive,
8	MS. FORGIE: Object to the form.	8	the external advisory committee for the AHS
9	THE WITNESS: Well, I haven't	9	to the present, have you ever heard anybody
10	looked; so I don't know. 05:43	10	say that the imputation method that they're 05:45
11	BY MR. LASKER:	11	using for the phase 2 respondents is not
12	Q. You're not aware of any statement	12	appropriate for glyphosate?
13	from any of the AHS investigators that the	13	MS. FORGIE: Object to the form.
14	imputation method that they are using for	14	THE WITNESS: This is a 2012 paper.
15	their phase 2 results are not appropriate 05:44	15	We have not met since they started doing 05:45
16	for glyphosate; correct?	16	this. So nobody could have objected.
17	MS. FORGIE: Object to the form.	17	BY MR. LASKER:
18	THE WITNESS: I don't understand	18	Q. And there is nothing in the draft,
19	why they should be doing this if they	19	the 2013 document that you've reviewed, that
20	haven't published on glyphosate. 05:44	20	includes the glyphosate data that says 05:45
21	BY MR. LASKER:	21	anything about the imputation methodology
22	Q. Are you aware -- and I deposed	22	being inappropriate for glyphosate; correct?
23	Dr. Blair. In Dr. Blair's deposition when I	23	MS. FORGIE: Objection to the form.
24	deposed him, did he at any point state that	24	Mischaracterizes the draft manuscript.
25	the imputation method that was being used in 05:44	25	THE WITNESS: As far as I know, 05:45
	Page 384		Page 385
1	this manuscript actually does refer back	1	the record at 5:54 p.m.
2	to the imputation method, and there was	2	BY MR. LASKER:
3	some back and forth between authors	3	Q. Dr. Ritz, in your role as the chair
4	about how to present it.	4	of the external advisory committee to the
5	BY MR. LASKER: 05:45	5	AHS, have you spoken with anyone at the AHS 05:54
6	Q. Right.	6	to share the opinion that you've been
7	But in that back and forth, is	7	offering here today that the imputation
8	there any specific discussion that for	8	method that they're using is inappropriate
9	glyphosate the method is not appropriate?	9	for glyphosate?
10	MS. FORGIE: Objection. Do you 05:46	10	MS. FORGIE: Objection. Asked and 05:54
11	want her to review to find it?	11	answered.
12	MR. LASKER: If you want to take a	12	You can answer again.
13	break, we can do that.	13	THE WITNESS: I have not talked to
14	MS. FORGIE: No, we're not going to	14	them about glyphosate.
15	take a break. 05:46	15	BY MR. LASKER: 05:55
16	THE WITNESS: So am I supposed to	16	Q. In your rebuttal report at page 7,
17	look.	17	you're talking about -- bottom of page 7,
18	MR. LASKER: Let's take a break.	18	you're talking about the differences between
19	MS. FORGIE: You're not going to	19	peer-reviewed and unpublished -- a
20	look during the break, though. 05:46	20	peer-reviewed paper and the unpublished 05:55
21	THE VIDEOGRAPHER: We're off the	21	manuscript for the Agricultural Health Study
22	record at 5:46 p.m.	22	2013 analysis; correct?
23	(Recess taken from 5:46 p.m. to	23	A. I think I do. Where is it?
24	5:54 p.m.)	24	Q. Bottom of page 7, continuing to
25	THE VIDEOGRAPHER: We are back on 05:54	25	page 8. 05:55

	Page 386		Page 387
1	A. Oh, yes.	1	THE WITNESS: This is the
2	Q. All right. One of the things that	2	insecticide paper. Fungicide and
3	you state is that there is a footnote in the	3	fumigant, right.
4	2013 AHS analysis that includes glyphosate	4	BY MR. LASKER:
5	that states that numbers do not sum to 05:55	5	Q. And if you look at the 05:56
6	totals due to missing data; correct?	6	corresponding tables in the peer-reviewed
7	A. Correct.	7	published literature -- published study in
8	Q. Now, the manuscript that was the	8	2014 and you look at the same footnotes that
9	2013 draft was subsequently published	9	you were looking at in the 2013 study on
10	without herbicide data, so without the 05:55	10	those same tables, the peer-reviewed 05:57
11	glyphosate data in 2014; correct?	11	published article in 2014 likewise has the
12	A. There is a 2014 paper, and I went	12	footnote that says that the number of cases
13	to that, yes.	13	do not total -- do not equal the total NHL
14	MR. LASKER: So let's mark that.	14	cases because of missing data; correct?
15	This is 19-21. 05:56	15	A. Where is that? 05:57
16	(Exhibit Number 19-21 was	16	Q. If you look at page 6, footnote 2 .
17	marked for identification.)	17	A. The subtype, yeah. The subtypes
18	BY MR. LASKER:	18	due to missing data.
19	Q. And 19-21 -- Exhibit 19-21 is the	19	Q. If you look at page 10 for the dose
20	2014 publication that was the subsequent 05:56	20	response analyses of NHL, in general, 05:57
21	revisions to the actual -- the 2013 study	21	footnote 2 , the same statement, "The number
22	but without the herbicide data and	22	of cases do not sum the total number of NHL
23	substituted in fungicide and fumigant data;	23	cases because of missing data"; correct?
24	correct?	24	A. Yes.
25	MS. FORGIE: Object to the form. 05:56	25	Q. So that statement which appears 05:58
	Page 388		Page 389
1	both in the peer-reviewed published 2014		pesticides that stayed in the analysis?
2	paper and the 2013 draft; correct?	2	MS. FORGIE: Object to the form.
3	MS. FORGIE: Object to the form.	3	THE WITNESS: That's not what I
4	THE WITNESS: Well, it probably	4	said. I said that it's not exactly
5	refers to different types of data 05:58	5	referring to the same data or missing 05:59
6	because missing data are defined by what	6	data because, by definition, they have
7	you're looking at, and this manuscript	7	to be different.
8	looked at the subpopulation of	8	BY MR. LASKER:
9	pesticides; so the missing data must be	9	Q. Okay. But the fact that there is
10	different. 05:58	10	missing data noted in the 2013 paper is not 05:59
11	BY MR. LASKER:	11	something that will prevent that paper from
12	Q. This study looked at some of the	12	being published in a peer-reviewed
13	same pesticides -- I know that the	13	literature; correct?
4	herbicides are dropped out, but it looked at	14	MS. FORGIE: Object to the form.
15	some of the same pesticides as the 2013 05:58	15	THE WITNESS: It depends on what 05:59
16	draft; correct?	16	missing data does, and obviously here
17	A. Yes. It overlaps in terms of all	17	nobody in the peer review community
18	pesticides, but this paper should have less	18	thought that it was an issue.
19	missing data because it dropped out the	19	BY Mr. LASKER:
20	herbicides. The missing herbicide data 05:58	20	Q. Okay. You also state in your 05:59
21	should not be affecting this.	21	expert report on page 8, you talk about
22	Q. So is it your testimony, just so I	22	page 19 in the March 15, 2013, draft, and if
23	understand, is that you think that the	23	you can go to that --
24	herbicide, there's more missing data for the	24	A. Well, we --
25	glyphosate than there were for other 05:59	25	Q. I'm sorry. In your rebuttal report 05:59

	Page 390		Page 391
1	on page 8 as another concern that you raise	1	question raised in the draft if you would
2	about the unpublished 2013 paper, you point	2	have pointed out the above-mentioned
3	to a comment that appears on page 19	3	problems -- and let me make sure, let me see
4	about -- in the section that starts	4	if this is one of them. This data I had
5	"although this is a large prospective study, 06:00	5	gotten closer to publication. So let me 06:01
6	there are limitations," and then there is a	6	first ask this. The comment that you're
7	reference in the 2013 draft that you talk	7	pointing out in the March 15, 2013, draft
8	about need to add a paragraph of exposure	8	following "although this is a large
9	assessment, discuss the information on our	9	prospective study," is that a comment that
10	exposure scale in relation to the monitoring 06:00	10	in your mind will lead you to conclude that 06:01
11	work, discuss the likely magnitude of	11	this study should not be published in
12	misclassification and its likely impact on	12	peer-reviewed literature, specifically that
13	the estimates of relative risk"; correct.	13	comment?
14	A. Correct.	14	MS. FORGIE: Object to the form.
15	Q. And you mention this as another 06:00	15	Asked and answered. 06:01
16	indication of why the 2013 analysis was not	16	You can answer it again.
17	something that would have withstood peer	17	THE WITNESS: This statement was
18	review; correct?	18	specific to glyphosate, not to anything
19	MS. FORGIE: Objection.	19	that's published.
20	THE WITNESS: This I cite because 06:00	20	BY MR. LASKER: 06:01
21	I'm asked to review glyphosate.	21	Q. The comment in the draft that
22	BY MR. LASKER:	22	you're referring to is not discussing
23	Q. Okay. You stated that in the next	23	glyphosate; correct?
24	paragraph for the above-stated reasons	24	MS. FORGIE: Object to the form.
25	including the fact that there's this 06:00	25	THE WITNESS: The comment is 06:01
	Page 392		Page 393
1	probably more general, but my idea is	1	this is a large prospective study" is the
2	that they took glyphosate out because	2	same statement that appears in the draft at
3	that was the one that had most of the	3	page 19 where you are mentioning this
4	problems.	4	concern that was being raised -- this
5	BY MR. LASKER: 06:02	5	comment that was raised in the draft 06:02
6	Q. And if you can look at the 2014	6	document; correct?
7	paper again, and you can go to the very end	7	MS. FORGIE: Object to the form.
8	of the paper on page 15 above the section --	8	Misstates the draft.
9	above the conclusion, do you see where	9	THE WITNESS: There are two things
10	conclusion is in the same column? 06:02	10	conflated: One is the statement that 06:03
11	A. Yeah, uh-huh.	11	was commented on, and the other is the
12	Q. The paragraph above that which	12	comment.
13	starts, "Although this is a large	13	BY MR. LASKER:
14	prospective study."	14	Q. The comment that you note that
15	Do you see that? 06:02	15	appears in the draft of potential limitation 06:03
16	A. Yes.	16	in the 2013 study, that is, in fact,
17	Q. And that is the same language that	17	discussed in the peer-reviewed published
18	appeared in the draft in 2013, the same	18	study in 2014; correct?
19	start of that paragraph; correct?	19	MR. BAUM: Object to the form.
20	MS. FORGIE: Object to the form. 06:02	20	Again, mischaracterizes the draft. 06:03
21	THE WITNESS: What was the	21	THE WITNESS: So, again, the
22	question?	22	statement I pulled out, I'm referencing
23	BY MR. LASKER:	23	this early -- this sentence that starts
24	Q. The phrase that starts in the	24	on this paragraph in order to tell you
25	peer-reviewed published study, "Although 06:02	25	which comment I'm referring to. The 06:03

	Page 394		Page 395
1	comment I'm referring to states, "Need	1	paragraph, plus what this statement or
2	to add a paragraph of exposure	2	this comment requests inserts in the
3	assessment, discuss the information on	3	message section, and I haven't reviewed
4	exposure scale in relation to monitoring	4	the message section.
5	work, discuss the likely magnitude of 06:03	5	BY MR. LASKER: 06:04
6	misclassification and its likely impact	6	Q. In making this criticism in your
7	on the estimates of RR." None of that	7	expert rebuttal report of the 2013 draft, am
8	could be done in this publication	8	I correct that you did not compare this
9	because they're not publishing on	9	comment with what was actually included in
10	glyphosate. 06:04	10	the 2014 peer-reviewed published study? 06:04
11	BY MR. LASKER:	11	MS. FORGIE: Object to the form.
12	Q. But the comment that they're saying	12	THE WITNESS: I would not need to
13	-- the note they're saying about what needs	13	do that because the peer-reviewed study
14	to be added to the manuscript was, in fact,	14	does not address glyphosate, and it is
15	added to the manuscript as it was published 06:04	15	with glyphosate that I have this problem 06:04
16	in 2014; correct? That's what the rest of	16	and not with these other pesticides.
17	that paragraph does. It responds exactly to	17	BY MR. LASKER:
18	that comment.	18	Q. Okay. The -- I want to make sure I
19	MS. FORGIE: Object to the form.	19	talked about it. I think there's one study
20	THE WITNESS: I have -- 06:04	20	that I did not talk about. I don't think 06:05
21	MS. FORGIE: Wait. Also asked and	21	I'm going to have time to go through it in
22	answered.	22	detail, but there was a case control study
23	You may answer it again.	23	in France by Dr. Orsi, and that I know you
24	THE WITNESS: I can't read it this	24	have certain concerns about that I don't
25	fast. I would have to read the whole 06:04	25	think we'll have time to go through in 06:05
	Page 396		Page 397
1	detail. But am I correct that that case	1	correct?
2	control population in France, the	2	MS. FORGIE: Object to the form.
3	investigators reported an odds ratio for	3	THE WITNESS: I remember that
4	glyphosate of 1.0 that was not statistically	4	table, and my problem was that self --
5	significant? 06:05	5	was excluding the proxies is that you're 06:06
6	MS. FORGIE: Object to the form.	6	actually excluding the sickest
7	THE WITNESS: They are reporting	7	individuals who died before they could
8	that for NHL. They also had other	8	be interviewed. So the difference
9	outcomes for which the odds ratios were	9	between the two estimates might be that
10	slightly different including multiple 06:05	10	you're actually throwing out the people 06:06
11	myeloma and some sub groups.	11	who are the sickest.
12	BY MR. LASKER:	12	BY MR. LASKER:
13	Q. But for NHL in the French case	13	Q. Just so I understand for the NAPP
14	control study, they reported an odds ratio	14	data for pooling together all the case
15	of 1.0 ; is that correct? 06:05	15	control studies in U.S. and Canada control 06:07
16	A. With a wide confidence interval and	16	adjusted for those three other pesticides,
17	very few exposed subjects.	17	the odds ratios and the two ways that they
18	Q. Okay. And then for the NAPP data	18	reported it were either 1.13 or 0.95 ;
19	which would be the pooled data of all the	19	correct?
20	case control studies in Canada and the U.S. 06:06	20	MS. FORGIE: Object to the form. 06:07
21	for their ever/never analysis when they	21	Asked and answered.
22	adjusted for three pesticides, they reported	22	You can answer it again.
23	an odds ratio for glyphosate and	23	A. Those are reported for models that
24	non-Hodgkin's lymphoma of 1.13 or for	24	included three pesticides that I am
25	self-respondents only an odds ratio of 0.95; 06:06	25	questioning whether or not they should be 06:07

	Page 398		Page 399
1	included, and the model that didn't include	1	new data unless somebody can show me
2	these pesticides was 1.43 and also for a	2	that the exposure assessment for
3	subgroup analysis with intensity of	3	glyphosate was not severely
4	exposures more than two days per year it	4	misclassified.
5	actually didn't change at all. 06:07	5	BY MR. LASKER: 06:08
6	Q. I understand that you have --	6	Q. I understand that. But the odds
7	MS. FORGIE: Let me ask a question.	7	ratio reported in that data, and I
8	How much time do we have left, please?	8	understand you have reasons why you don't
9	THE VIDEOGRAPHER: 11 minutes.	9	want to rely upon that was, according to
10	MS. FORGIE: Okay, so you'll let us 06:07	10	Dr. Blair, around 0.9 and you agree it's 06:08
11	know when seven hours is up, please.	11	somewhere around 1.10; correct?
12	BY MR. LASKER:	12	MS. FORGIE: Object to the form.
13	Q. For the De Roos 2005 cohort study,	13	Also asked and answered.
14	they reported a never/ever use risk ratio	14	You can answer it again.
15	adjusted for other exposures of 1.1; 06:07	15	THE WITNESS: That was my answer. 06:08
16	correct?	16	I don't think I have to repeat myself.
17	A. Yes.	17	BY MR. LASKER:
18	Q. And in the 2013 AHS data the	18	Q. And for the Swedish study for
19	never/ever odds ratio, you said, would be	19	Eriksson in the multi-regressional analysis,
20	somewhere around 1.0. Dr. Blair said it 06:08	20	they had an odds ratio of glyphosate 06:09
21	would be around 0.9; correct?	21	non-Hodgkin's lymphoma of 1.5; correct?
22	MS. FORGIE: Objection.	22	MS. FORGIE: Object to the form.
23	Mischaracterizes her testimony.	23	THE WITNESS: It was about 1.5 in a
24	THE WITNESS: So I would not rely	24	multi-variated adjusted, yes. 1.53,
25	on De Roos, and I would not rely on the 06:08	25	yes. 06:09
	Page 400		Page 401
1	BY MR. LASKER:	1	MS. FORGIE: Object to the form.
2	Q. We discussed now there was -- the	2	Mischaracterizes the testimony -- the
3	Cocco study very small. The Hardell study	3	studies.
4	was very small. But the four largest study	4	THE WITNESS: That's not correct.
5	populations then would be that French study, 06:09	5	We would have to go study by study. For 06:10
6	the NAPP study, the Eriksson study, and the	6	example, 1.35 is not hovering around 1.
7	De Roos or the AHS cohort. Those are the	7	BY MR. LASKER:
8	four largest datasets; correct?	8	Q. 1.13, 1.0, 1.1 --
9	MS. FORGIE: Object to the form.	9	A. There was a 2 --
10	THE WITNESS: Orsi is the wrong one 06:09	10	MS. FORGIE: Wait, wait. There's 06:10
11	to mention. I don't think that Orsi is	11	no question.
12	one we should be looking because the	12	BY MR. LASKER:
13	power was very low and it's a case	13	Q. For ever/never use; correct?
14	control study that's hospital-based.	14	MS. FORGIE: Object to the form.
15	There are lots of problems with 06:09	15	Asked and answered. 06:10
16	hospital-based controls.	16	THE WITNESS: Can we go back to De
17	BY MR. LASKER:	17	Roos 2003 and check that?
18	Q. Okay. You would -- and I know you	18	BY MR. LASKER:
19	don't agree with -- you have concerns about	19	Q. Let's -- well, the NAPP includes --
20	all of those numbers. But for all of these 06:09	20	pools all the data that's in De Roos and in 06:10
21	adjusted odds ratios you have as they're	21	McDuffie; correct?
22	reported by the investigators, you have odds	22	A. Well, you asked me about all these
23	ratios that are bordering around 1.0 when	23	substudies before.
24	adjusted for other exposures to pesticides;	24	Q. In your expert report you discuss
25	correct? 06:10	25	biological plausibility; correct? 06:10

	Page 402		Page 403
1	A. Yes.	1	and I believe that mischaracterizes the
2	Q. And you discuss in there data	2	deposition testimony, but you can show
3	points for some studies on genotoxicity and	3	her a portion from that.
4	oxidative stress; correct?	4	THE WITNESS: Do you want to show
5	A. Where's that? 06:11	5	me? 06:11
6	Q. It's the last page of your expert	6	BY MR. LASKER:
7	report, I believe.	7	Q. No.
8	A. It's the regular expert?	8	MS. FORGIE: Object to the form.
9	Q. Yes.	9	THE WITNESS: Then I can't comment.
10	A. The first one. 06:11	10	BY MR. LASKER: 06:11
11	MR. WISNER: Second to last page?	11	Q. Do you have an independent opinion
12	MR. LASKER: Yes.	12	as to whether or not the glyphosate
13	THE WITNESS: Yes.	13	mutagenicity studies present evidence that
14	MR. WISNER: Page 24.	14	glyphosate or glyphosate-based formulations
15	BY MR. LASKER: 06:11	15	is mutagenic? 06:12
16	Q. First of all, let me ask you, and I	16	MS. FORGIE: Object to the form.
17	don't know if you've read Dr. Portier's	17	THE WITNESS: It has never been a
18	deposition. He goes through the genotox	18	point of discussion. It's genotoxicity,
19	studies in some detail. Dr. Portier	19	not mutagenicity.
20	testified that in his review of all of the 06:11	20	BY MR. LASKER: 06:12
21	glyphosate studies, he did not find evidence	21	Q. So sitting here today, do you have
22	from those studies showing that glyphosate	22	any opinion one way or the other as to
23	is mutagenic. Do you agree with his	23	whether or not glyphosate is mutagenic?
24	assessment?	24	MS. FORGIE: Object to the form.
25	MS. FORGIE: Object to the form, 06:11	25	Asked and answered. 06:12
	Page 404		Page 405
1	You can answer it again.	1	You can answer it again.
2	THE WITNESS: It's beside the point	2	A. I was not evaluating mutagenicity
3	because the topic here is genotoxicity	3	here. I was evaluating genotoxicity, and my
4	and oxidative stress and not	4	statement is about genotoxicity, not
5	mutagenicity. 06:12	5	mutagenicity. 06:13
6	BY MR. LASKER:	6	Q. Okay. And last document I'll show
7	Q. Do you have an opinion as to	7	you -- and we'll have a statement for the
8	whether glyphosate is mutagenic?	8	record -- is the 2017 slide deck.
9	MS. FORGIE: Objection. Asked and	9	MR. LASKER: Has been marked as an
10	answered. 06:12	10	exhibit? 06:13
11	You can answer it again.	11	MS. SHIMADO: Yes.
12	THE WITNESS: Mutagenicity is	12	MR. LASKER: This will be my last
13	affect in bacteria. Genotoxicity we can	13	question. I have a question on one of
14	assess in human cells and animals, and I	14	the slides in there.
15	believe that the studies that looked at 06:12	15	MR. WISNER: Exhibit $5.06: 13$
16	genotoxicity showed that there is	16	MR. LASKER: Yeah, 19-5.
17	genotoxicity as I report.	17	THE WITNESS: My slide deck?
18	BY MR. LASKER:	18	BY MR. LASKER:
19	Q. Do you have any opinion one way or	19	Q. Yeah, it's this one.
20	the other as to whether or not glyphosate is 06:12	20	A. Got it. 06:13
21	mutagenic? Yes or no.	21	Q. And slide 16 in your slide deck --
22	MS. FORGIE: Objection. She	22	MS. FORGIE: You mean page 16?
23	doesn't need to give yes or no. You're	23	MR. LASKER: Page 16, slide 16.
24	badgering the witness. You've asked her	24	The number 16 on the slide.
25	three times now. 06:13	25	THE WITNESS: Oh, yeah, the Ames 06:14

	Page 406		Page 407
1	test.	1	6:32 p.m.)
2	BY MR. LASKER:	2	THE VIDEOGRAPHER: We are back on
3	Q. Right.	3	the record at 6:32 p.m.
4	So you present data here on the	4	BY MR. LASKER:
5	Ames test for assessing carcinogens, and you 06:14	5	Q. Dr. Ritz, in your opinion, can 06:32
6	report data that for truly carcinogenic	6	scientific studies looking at the issues of
7	compounds and truly non-carcinogenic	7	genotoxicity and oxidative stress standing
8	compounds and positive and negative on the	8	alone provide evidence that can establish
9	Ames test; correct?	9	that a compound causes cancer in humans?
10	A. That's correct. 06:14	10	MS. FORGIE: Object to the form. 06:32
11	Q. My question is: The data in this	11	THE WITNESS: These are two
12	table, is that data that you made up, or is	12	criteria that are used by IARC to
13	that data --	13	establish carcinogenicity, but they are
14	A. Not even my data. It's actually	14	just two criteria within the animal
15	Dr. Olson who loves to make these up. 06:14	15	study -- within the mechanistic study 06:32
16	Q. So this is all made-up data?	16	section. There are several others.
17	A. Yes.	17	BY MR. LASKER:
18	MR. LASKER: Okay. Let's take a	18	Q. And you would agree that
19	break. I've got about four minutes	19	genotoxicity and oxidative stress studies by
20	left. I'm going to see if I've got any 06:14	20	themselves would not be sufficient for you 06:32
21	questions after that point, and I've got	21	to be comfortable reaching an opinion of
22	a comment for the record.	22	carcinogenicity; correct?
23	THE VIDEOGRAPHER: We're off the		MS. FORGIE: Object to the form.
24	record at 6:14 p.m.	24	THE WITNESS: I cannot subtract
25	(Recess taken from 6:14 p.m. to 06:14	25	from what I know about animal studies, 06:32
	Page 408		Page 409
1	mechanism, and human studies, and I	1	MS. FORGIE: I'm not going to
2	would never start with a genotoxicity	2	respond to that. I believe her expert
3	study. Because I'm an epidemiologist, I	3	report speaks for itself.
4	always start with human data.	4	MR. LASKER: You just responded.
5	MR. LASKER: I want to make a 06:33	5	MS. FORGIE: That's not a response. 06:34
6	statement for the record, and then I'll	6	Just a statement.
7	suspend my questioning. There's a	7	MR. LASKER: Second, we marked a
8	couple of issues here.	8	number of points in the transcript where
9	One is I mentioned earlier on the	9	the witness would not respond to a
10	record, Dr. Ritz earlier in the 06:33	10	simple yes-or-no question and kept going 06:34
11	deposition suggested, and I don't know	11	into soliloquies on issues that were not
12	whether she does or she does not, that	12	part of the question. We marked that in
13	she might have opinions regarding the	13	the transcript numerous times.
14	animal cancer bioassays.	14	By doing so, the witness, I think,
15	I have reviewed her expert reports 06:33	15	intentionally was eating into our 06:34
16	multiple times. I don't see any mention	16	questioning time. As a result of that,
17	of animal cancer bioassays. To the	17	we have not had sufficient time to
18	extent that plaintiff's counsel -- and	18	explore Dr. Ritz's opinions both on the
19	we don't have to discuss this now -- but	19	studies that we actually at least
20	if there's going to be the position of 06:33	20	mentioned or discussed somewhat in 06:34
21	plaintiffs that they're reserving the	21	passing or in connection with some of
22	right for Dr. Ritz to offer opinion	22	the studies, some of the smaller studies
23	testimony regarding animal cancer	23	like Hardell and Cocco and also the Orsi
24	bioassays, we'll move to strike all that	24	study where we did not have time to ask
25	testimony. 06:33	25	questions pretty much at all, and also 06:34

	Page 410		Page 411
1	the numerous issues dealing with the	1	about them.
2	Eriksson study in particular and the	2	MS. FORGIE: And for the record,
3	other studies where because of the	3	how much time is left of his seven
4	witness' refusal to answer questions, we	4	hours, or has he used it all? He's out.
5	did not have time to go through all 06:35	5	Could I just have a statement on the 06:35
6	those questions.	6	record that he's out?
7	I will raise an option for	7	THE VIDEOGRAPHER: Yeah. He's at
8	plaintiff's counsel that if plaintiff's	8	seven hours.
9	counsel is agreeing to further	9	MS. FORGIE: Okay. Of course, we
10	questioning at this time for us to ask 06:35	10	don't agree at all with your 06:36
11	those questions, we are prepared to stay	11	characterization. In fact, there were
12	longer to do so.	12	multiple times, I would guess hundreds
13	If plaintiff's counsel is not	13	of times where you asked the same
14	prepared to provide us the time	14	question over and over and over again,
15	necessary to ask those questions and get 06:35	15	and that's what ate up into your time. 06:36
16	Dr. Ritz's opinions, we reserve our	16	I wrote down at least three times where
17	right, and I'm only going to be	17	you asked the same question ten times.
18	suspending my questioning at this point	18	Simply because you don't like the
19	in time to go back to the Court to get	19	answer doesn't give you the right to ask
20	additional time because significant 06:35	20	the same question over and over again. 06:36
21	portions of time, in our opinion, were	21	That's what ate up your time, and I'm
22	taken up because the witness would not	22	not going to agree to any further time.
23	answer a simple yes-or-no question, and	23	You can do whatever you want.
24	we've marked those in the record, and	24	That's outrageous.
25	the Court can reach its own conclusions 06:35	25	MR. LASKER: As I said, the Court 06:36
	Page 412		Page 413
1	will be able to look at the transcript.	1	be able to read that, and the Court will
2	The witness didn't answer the questions;	2	be able to decide whether or not the
3	so of course, I had to ask them again.	3	witness was responsive to questions.
4	MR. WISNER: Just for the record, a	4	MS. FORGIE: The court certainly
5	large portion of the time during this 06:36	5	will. 06:37
6	deposition was eaten up by yourself	6	MR. LASKER: Also one more thing I
7	commenting on the proprietary or	7	want on the record as well. There was
8	responsiveness of the witness' answer,	8	objections to virtually every question,
9	which, quite frankly, is both	9	other than what is your name, by
10	argumentative, a waste of the testimony 06:36	10	plaintiff's counsel which also ate into 06:37
11	because it would never be admissible in	11	the time.
12	court, and a large portion of your	12	MS. FORGIE: And I'll respond to
13	commentary was also eaten up.	13	that. You make incredibly compound,
14	So I think at this point -- how	14	complex questions which are
15	much time are you saying you want? Just 06:36	15	objectionable. I have to object to 06:37
16	curious. What's the amount of time	16	questions as to form if I want to
17	you're asking for?	17	preserve them, which I do, and you make
18	MR. LASKER: I probably need	18	these declaratory statements beforehand
19	another two hours or so.	19	about all kinds of things; so that's why
20	MR. WISNER: Okay. 06:37	20	I had to object, and the Court can look 06:37
21	MS. FORGIE: All right. So I have	21	at that as well.
22	a few questions.	22	Okay. I have a few questions,
23	MR. LASKER: And further	23	Doctor.
24	commentary, I'm going to respond to.	24	
25	It's in the transcript. The Court will 06:37	25	EXAMINATION 06:37

	Page 414		Page 415
1	BY MS. FORGIE:	1	the meta-analyses pooled analyses. You also
2	Q. Dr. Ritz, can you explain how you	2	go to the original literature and check all
3	went about arriving at your opinions as	3	the references they have because normally
4	expressed in your report?	4	every paper refers to papers in this same
5	A. Yes. When I'm asked to write a 06:38	5	area prior -- that was published prior. So 06:39
6	report of a review paper, I use standard	6	you do that to make sure that you have all
7	methods common to epidemiology which is I go	7	the information that you need.
8	to PubMed, and I put in search terms,	8	In addition, I, of course, read not
9	multiple search terms to find the biggest	9	only the meta-analyses, the pooled analyses
10	amount of literature that I can on PubMed. 06:38	10	but also previous reports. I also read all 06:39
11	However, I know that certain search	11	of the different meta-analyses that kind of
12	terms don't work as well on PubMed; so we	12	keep repeating information about the
13	also go to Google Scholar which usually	13	singular studies. I read the singular
14	gives you a larger number of papers, and a	14	studies. I read the IARC report, and I read
15	lot of those then have to be weeded out 06:38	15	the EPA CARC report, and all of it together 06:39
16	because they're not relevant for the	16	I used for my opinion.
17	question, but it at least allows you to	17	Q. And you mentioned that you read the
18	check the literature very thoroughly. So	18	CARC report. How did you decide how much
19	it's a lot of work, but you, you know, go	19	weight, for example, to give the CARC
20	through it. 06:38	20	report? 06:39
21	Then in addition, you're going to	21	A. The CARC report was not weighted
22	the published literature that is	22	very heavily because the epidemiology
23	meta-analyses, pooled analyses to	23	section was rather cursory, and the animal
24	cross-reference and make sure you haven't	24	section, that one I actually studied more
25	missed anything that's mentioned in one of 06:39	25	intensively, seemed to make a lot of use of 06:40
	Page 416		Page 417
1	criteria that were contradictory in terms of	1	describes viewpoints, he calls them,
2	which studies they were throwing out or	2	according to which one can review the
3	throwing in, but it stimulated me to go back	3	scientific literature. It's not just
4	to some of the original studies they are	4	epidemiology. It's all of science more or
5	citing, but overall, it did not make a big 06:40	5	less. 06:41
6	impact on my assessment.	6	Although he meant it for
7	Q. You mentioned you reviewed the IARC	7	observational studies in order to help us
8	monograph; is that correct?	8	gauge how the data is performing, how the
9	A. That's correct.	9	studies are performing in terms of causal
10	Q. Did you rely on the IARC monograph, 06:40	10	assessments because, as you may have 06:41
11	or did you form your own opinions?	11	gathered while I was talking today, there is
12	A. I formed my own opinion. It is	12	more to data than just, you know, numbers.
13	very interesting to read the IARC monograph	13	We have to put these data into context, and
14	because it summarizes information in an	14	that's what his viewpoints do. They put
15	interesting way. However -- and I use it to 06:40	15	these data into context of validity, 06:41
16	cross check, and I use it to understand	16	biologic plausibility, et cetera.
17	their argumentation.	17	Q. And with regard to glyphosate-based
18	It was published in 2015. There is	18	formulations and non-Hodgkin's lymphoma, did
19	additional data that came out since.	19	you perform a Bradford Hill analysis?
20	Q. Are you familiar with something 06:40	20	A. I did, and I talked about it in my 06:42
21	known as the Bradford Hill analysis?	21	report.
22	A. Of course, yes. We teach that.	22	Q. And what conclusion did you reach
23	Q. Can you explain briefly what it is?	23	after performing your Bradford Hill
24	A. Well, Dr. Bradford Hill in the	24	analysis?
25	early 1960s, wrote a commentary in which he 06:41	25	A. After that, I concluded that there 06:42

	Page 418		Page 419
1	is reasonable scientific certainty that NHL	1	Q. What is the difference?
2	is associated with glyphosate use in these	2	A. So a hazardous assessment is an
3	data.	3	assessment in which we are categorizing an
4	Q. And did you also -- are you aware	4	agent according to its ability to be toxic
5	as to whether or not IARC also performed a 06:42	5	including being carcinogenic, but you can 06:43
6	Bradford Hill analysis?	6	also assess reproductive toxicity or other
7	A. I would presume they did.	7	types of toxicity.
8	Actually, they are talking about it; so I	8	While a risk assessment is
9	think they did.	9	something that regulatory agencies use in
10	Q. Okay. And what is your 06:42	10	order to come up with standard setting 06:43
11	understanding of the conclusion that the	11	methods.
12	IARC reached with regard to their Bradford	12	Q. So would it be accurate --
13	Hill analysis?	13	THE VIDEOGRAPHER: I'm going to
14	A. Well, they used their Bradford Hill	14	have to change tapes.
15	analysis in the way I just described to put 06:42	15	This marks the end of videotape 06:43
16	the different pieces together. First, they	16	number 4 in the deposition of Dr. Beate
17	might have done it work group for work	17	Ritz. We're off the record at 6:43 p.m.
18	group, but they also do this as a whole	18	(Recess taken from 6:43 p.m. to
19	group in which they are putting together the	19	6:45 p.m.)
20	human data, the animal data, the mechanistic 06:42	20	THE VIDEOGRAPHER: We are back on 06:45
21	data and put that in context of these	21	the record at 6:45 p.m. This marks the
22	criteria that Bradford Hill suggested.	22	beginning of videotape number 5 in the
23	Q. Is there a difference between	23	deposition of Dr. Beate Ritz.
24	hazard assessment and risk assessment?	24	BY MS. FORGIE:
25	A. Absolutely. 06:43	25	Q. Doctor, we are discussing the 06:46
	Page 420		Page 421
1	difference between -- we were discussing	1	BY MS. FORGIE:
2	what a hazardous assessment is.	2	Q. And did you read the deposition of
3	Do you recall that before we	3	Dr. John Acquavella in this case?
4	changed tapes?	4	A. Yes, I did.
5	A. Yes, I do. 06:46	5	Q. From reading that deposition, is it 06:47
6	Q. Would it be fair to say that a	6	your understanding that Dr. Acquavella is an
7	hazardous assessment gives you an idea, in	7	epidemiologist?
8	general, as to whether or not a particular	8	A. Yes.
9	product is capable of causing a disease?	9	Q. Is it also your understanding that
10	MR. LASKER: Object to the form. 06:46	10	Dr. Acquavella was a -- is a former employee 06:47
11	THE WITNESS: A hazard assessment	11	of Monsanto?
12	is a general evaluation of an agent's	12	A. Yes.
13	potential to be toxic in different ways.	13	Q. And is it also your understanding
14	BY MS. FORGIE:	14	that he is a -- that Dr. Acquavella is a
15	Q. And in this case, would it be 06:46	15	current consultant to Monsanto? 06:47
16	accurate to say that a hazard assessment	16	MR. LASKER: Objection to form.
17	determines whether or not glyphosate is	17	THE WITNESS: I read that in the
18	capable of causing non-Hodgkin's lymphoma?	18	deposition, I believe, and I met him
19	MR. LASKER: Objection to form.	19	while he was an employee of Monsanto at
20	THE WITNESS: So, in fact, this 06:46	20	some of these meetings. 06:47
21	what IARC is performing is a hazardous	21	BY MS. FORGIE:
22	assessment. They are making a	22	Q. Do you recall reading what
23	categorical -- they're taking a	23	Dr. Acquavella said about IARC's hazard
24	categorical approach with a conclusion	24	assessment?
25	of carcinogenicity. 06:47	25	A. Yes. I understood his testimony as 06:47

	Page 422		Page 423
1	stating that IARC got the hazard assessment	1	THE WITNESS: So since IARC based
2	right but that there are questions about the	2	its evaluation on NHL and quotes a
3	risk assessment.	3	positive association with NHL, I assume
4	MR. LASKER: Objection to form.	4	that that was what he meant.
5	BY MS. FORGIE: 06:47	5	BY MS. FORGIE: 06:48
6	Q. So Dr. Acquavella's testimony was	6	Q. Can you look at Exhibit 16, please.
7	that IARC got it right in that in	7	MR. LASKER: Which one is that?
8	categorizing glyphosate as 2 A ; is that	8	MS. FORGIE: It's the Brazil slide
9	correct?	9	show, slide deck, PowerPoint, whatever
10	MR. LASKER: Objection to form. 06:48	10	you want to call it. 06:49
11	Mischaracterizes the testimony.	11	THE WITNESS: Yeah.
12	THE WITNESS: I did understand from	12	BY MS. FORGIE:
13	reading his testimony that he actually	13	Q. And on that, can you turn to the
14	referred to a correct hazard assessment,	14	Section 26, page 26, "Proxy Versus
15	and if he meant correct, then he would 06:48	15	Self-Respondent," please. 06:49
16	have included the assessment of	16	A. Yes.
17	carcinogenicity in terms of a 2A.	17	MR. LASKER: Page 26?
18	BY MS. FORGIE:	18	MS. FORGIE: Yes. This one.
19	Q. And likewise, it would be correct	19	"Proxy Versus Self-Respondents."
20	that in agreeing with IARC's hazard 06:48	20	MR. LASKER: Thanks. 06:49
21	assessment, he would have agreed that	21	MS. FORGIE: Do you have it?
22	glyphosate is capable of causing	22	MR. LASKER: I do.
23	non-Hodgkin's lymphoma; is that correct?	23	BY MS. FORGIE:
24	MR. LASKER: Object to the form.	24	Q. Okay. Do you see the section where
25	Mischaracterizes testimony. 06:48	25	they're talking about frequency of greater 06:49
	Page 424		Page 425
1	than two days per year?	1	discussed earlier by the defense counsel?
2	Do you see that?	2	MR. LASKER: Objection to form.
3	A. Yes.	3	THE WITNESS: Absolutely. It's
4	Q. And what is the odds ratio there	4	much more important to look at higher
5	for proxy and self-respondents? 06:49	5	intensity because oftentimes that is 06:50
6	A. So for proxy and self-respondents,	6	where we see effects when we're
7	meaning for everyone, it's 1.73 with a	7	evaluating carcinogens.
8	confidence interval of 1.02 to 2.94.	8	BY MS. FORGIE:
9	Q. And is that odds ratio controlled	9	Q. And with regard to the seven -- the
10	for use of 2,4-D, dicamba, and malathion? 06:50	10	category greater seven lifetime days, years, 06:51
11	A. Yes, it is.	11	number of years times number of days per
12	Q. And are those the only three	12	year.
13	pesticides that you're aware of that are	13	Do you see that?
14	associated as risk factors for non-Hodgkin's	14	A. Yes.
15	lymphoma? 06:50	15	Q. And it looks like the odds ratio 06:51
16	A. I am aware that $2,4-\mathrm{D}$ is a 2 B	16	has actually gone down in that section.
17	category according to IARC. Malathion is a	17	Do you see that?
18	2A. I'm not aware that dicamba is	18	A. Yes. The odds ratio hovers around
19	categorized.	19	the 1 .
20	Q. Okay. And with the 1.73 odds 06:50	20	Q. Can you explain why the odds ratio 06:51
21	ratio, is that statistically significant?	21	is lower for that category than for the
22	A. It is.	22	greater than 2 category where the odds ratio
23	Q. And is the greater than two days of	23	is 1.73?
24	use per year category there more important	24	A. Yeah. These are two different --
25	than the never/ever use category that was 06:50	25	very different measures. One is the 06:51

Case 3:16-md-02741-VC Document 652-12 Filed 10/28/17 Page 109 of 806

	Page 426		Page 427
1	intensity, and the other is duration, and	1	what really is an interesting finding in
2	the lifetime days is the product of duration	2	terms of worker health.
3	and intensity meaning that, in essence, I am	3	Q. And one last question. You see
4	watering out any intensity via duration.	4	there's two categories here, proxy and
5	I can get the same numbers with a 06:51	5	self-respondents category A and 06:52
6	very low intensity over long duration as	6	self-respondents only category B.
7	with a shorter duration and a higher	7	Do you see that?
8	intensity. So that measure really is more	8	A. Yes, I see that.
9	closely related to duration than to	9	Q. Do you see that under greater than
10	intensity. 06:52	10	two days of use per year, while the odds 06:53
11	Q. And does that explanation -- how	11	ratio goes up from 1.73 for proxy and
12	does that tie into whether or not this	12	self-respondents to 1.77 for
13	information tells you -- what information	13	self-respondents only, it is not
14	this gives you about glyphosate-based	14	statistically significant for
15	formulations causing non-Hodgkin's lymphoma? 06:52	15	self-respondents only. 06:53
16	A. So in terms of occupational	16	Do you see that?
17	epidemiology, we are very interested in high	17	A. Yes, I see that.
18	level exposures which we often have a much	18	Q. Is there any way to -- what happens
19	better way in assessing a much more reliable	19	when you take out the proxy group?
20	way in assessing and also believe that high 06:52	20	A. You are pretty much reducing sample 06:53
21	intensity exposures are really what we have	21	size, and when you reduce sample size, you
22	to worry about, and we have to protect	22	automatically lose statistical power to show
23	workers from.	23	a statistically significant effect. So
24	So I would think that the high	24	that's what happens here.
25	intensity more than two days per year is 06:52	25	Q. With regard to if you remove 06:53
	Page 428		Page 429
1	proxies from the category, is there any		Q. And you also have seen abstracts
2	reason you would want to include proxies?	2	and posters with regard to a Canadian
3	A. Well, the one reason I can think of	3	presentation?
4	is that proxies are responding because the	4	A. Yes.
5	self-respondent isn't available which means 06:53	5	Q. Have you also seen a slide show, 06:54
6	the self-respondent would be too sick to	6	abstracts, or posters related to an IARC
7	answer or dead.	7	presentation?
8	So what you're doing is you're	8	A. To the IARC presentation, yes.
9	pretty much removing the sickest individuals	9	Q. And did any of the information --
10	if you're removing the proxy respondents. 06:54	10	with regard to your expert report, you, I 06:54
11	Q. Okay. And then can you turn -- oh,	11	believe, testified that you only used the
12	a couple more questions about the NAPP	12	Brazil abstract when you were drafting your
13	study.	13	expert report; is that correct?
14	You were shown Exhibit 16. Do you	14	A. That's correct.
15	see at the bottom where it says, on the 06:54	15	Q. So with regard to all of the other 06:55
16	front page, it says Sao Paulo Brazil?	16	materials related to the NAPP study, all
17	A. Yes.	17	these other slide shows, other abstracts,
18	Q. Okay. So is it your understanding	18	other posters, did any of them affect or
19	this is a PowerPoint presentation that	19	change your opinion as stated in your expert
20	accompanied the Brazil presentation? 06:54	20	report? 06:55
21	A. That's what I understand.	21	A. The only way it changed my opinion
22	Q. Were you also made -- or have you	22	is that it solidified the opinion that there
23	also seen slide shows with regard to a	23	is, in fact, carcinogenicity to go after.
24	presentation in Canada?	24	Q. In assessing the risk of cancer in
25	A. Yes, I was shown that. 06:54	25	glyphosate, is there any potential bias in 06:55

	Page 430			Page 431	
1	controlling for concurrent pesticide use?		1	one by one by one in order to assess their	
2	A. Yes. It's always a problem with		2	affect on household counts.	
3	concurrent exposures. We haven't really		3	Q. Doctor, you were asked many	
4	found a mathematical way to get around it.		4	questions about your criticisms of the draft	
5	There is probably none to get around it.	06:55	5	manuscripts of unpublished AHS data.	06:56
6	If exposures are highly correlated,		6	Do you recall those questions?	
7	you have to sit down and ask the question is		7	A. Yes.	
8	it more or less likely that these exposures		8	Q. You've made several criticisms of	
9	are independent risk factors or indicators		9	the draft manuscripts and the unpublished	
10	or proxies for the actual exposure under	06:56	10	glyphosate data with regard to the AHS	06:57
11	investigation?		11	study; is that correct?	
12	So when you're putting these in the		12	A. That's correct.	
13	same statistical model, then something		13	Q. With regard to those criticisms of	
14	occurs that we call co-linearity, and what		14	the AHS study, have you ever publicly made	
15	that means is that there's some technical	06:56	15	those criticisms prior to being retained in	06:57
16	term. These variables split the variants or		16	this litigation?	
17	the explained variants. And in essence, if		17	A. Yes.	
18	you put enough highly correlated variables		18	Q. And in what format is that?	
19	into the same model, none of them will		19	A. Well, in my teaching. When I teach	
20	explain anything anymore. All of them will	06:56	20	my students about the cohort design, I warn	06:57
21	go towards the one.		21	them against the limitations of cohorts	
22	I've seen that multiple, multiple		22	because I think I pointed out that this	
23	times in air pollution studies where the air		23	validity slide in the beginning of one of my	
24	pollutants are highly correlated, and this		24	slide shows is there to actually cause	
25	is what you see. Therefore, you are going	06:56	25	discussion with my students about these	06:57
	Page 432			Page 433	
1	blanket validity statements in terms of studies.		1	talking about retro and prospective data	
2			2	collection and what the problems are, and	
3	So I'm using the AHS study and the loss to follow up as a good example of what		3	then I'm showing them the composition of the	
4			4	cohort and data collection progress in	
5	to be careful of when you're conducting a	06:57	5	different phases and specifically on page 6, 06:59	
6	cohort study.		6	I show them a slide that was given to me	
7	Q. And, Doctor, I'd like you to turn		7	during phase 2 data collection in which I	
8	to Exhibit 17, please.		8	point out how many people are actually not	
9	A. Yes.		9	completing phase 2 in different parts of	
10	Q. And, Doctor, do you see a date on	06:58	10	phase $2 . \quad 06: 59$	
11	this slide presentation?		11	And I'm then directing them to the	
12	A. Yeah. That was on my old slides		12	issue of exposure assessment being	
13	from fall 2012.		13	incomplete when you have a time varying	
14	Q. So this was approximately four		14	exposure that you cannot capture at a second	
15	years before you were retained as an expert	06:58	15	time of follow-up. 06:59	
16	in this litigation; is that correct?		16	Q. So, Doctor, is it accurate to state	
17	A. That's correct.		17	that approximately four years before being	
18	Q. And, Doctor, in Exhibit 17, these		18	retained as an expert in this litigation,	
19	slide presentations that you use in your		19	you were teaching -- you were using the AHS	
20	teaching at UCLA, do you have criticisms of	06:58	20	problems, exposure assessment problems you 06:59	
21	the AHS study incorporated in there?		21	described with the AHS cohort study as it	
22	A. I believe so.		22	relates to glyphosate as a teaching tool to	
23	Q. Can you point those out, please?		23	your students as to how not to conduct an	
24	A. So what I'm doing here is		24	epidemiological study?	
25	introducing the AHS cohort to the students	06:58	25	A. Not as not to conduct but what to 0	06:59

	Page 434		Page 435
1	be careful of when you're conducting studies	1	MS. FORGIE: I'm not going to allow
2	that otherwise seem so perfect.	2	any time. No more questions. I'm
3	Q. Doctor, you were asked a lot of	3	sorry.
4	questions today, and you were shown a lot of	4	MR. WISNER: Let him have one
5	documents. Do any of the documents or 07:00	5	follow-up. 07:01
6	questions that you were asked change your	6	MS. FORGIE: You guys are a lot
7	opinion as expressed in your expert report	7	nicer than me.
8	that to a reasonable degree of scientific	8	
9	certainty glyphosate causes non-Hodgkin's	9	FURTHER EXAMINATION
10	lymphoma? 07:00	10	BY MR. LASKER: 07:01
11	A. I still stand to my conclusions as	11	Q. Dr. Ritz, you provided your slide
12	cited.	12	deck for teaching students in fall of 2012.
13	Q. And, Doctor, same question, in	13	Do you have any other slide decks of your
14	other words, you were asked a lot of	14	teaching of your students that mention the
15	questions and shown a lot of documents 07:00	15	AHS study? 07:01
16	today. Do any of them change your opinion	16	A. Yes. Many. Every year.
17	to a reasonable degree of scientific	17	Q. Okay. I will for the record object
18	certainty glyphosate-based formulations	18	to the fact --
19	including Roundup cause non-Hodgkin's	19	A. It's the same slide deck. It's
20	lymphoma? 07:00	20	updated. 07:01
21	A. Nothing changes my opinion.	21	MR. LASKER: I'll ask those slide
22	MS. FORGIE: That's it.	22	decks be produced if they refer to the
23	MR. LASKER: I have one follow-up	23	AHS study. Obviously, we understand all
24	question. It's not going to take me	24	slide decks deal with case control
25	five seconds. 07:00	25	studies or cohort studies is over the 07:01
	Page 436		Page 437
1	top, but if she has other slide decks	1	THE VIDEOGRAPHER: This concludes
2	that refer to AHS, that seems pretty	2	today's proceedings in the deposition of
3	squarely in line --	3	Dr. Beate Ritz. The total number of
4	MR. WISNER: To the extent they're	4	videotapes used today was five, and
5	different than the one you have. 07:01	5	we're off the record at 7:02 p.m. 07:02
6	MS. FORGIE: He just said it's the	6	(Time noted: 7:02 p.m.)
7	same.	7	
8	MR. LASKER: I don't know.	8	
9	THE WITNESS: It is the same.	9	
10	MR. LASKER: I don't understand 07:01	10	
11	that. I don't know if you've looked at	11	
12	them or not. You can look at them. If	12	Beate Ritz, MD, PhD
13	they're the exact same slide deck,	13	
14	that's fine. But if they're not the	14	
15	exact same slide deck, we ask they be 07:02	15	Subscribed and sworn to before me
16	produced. And you don't have to commit	16	this day of , 2017.
17	to that. You can look at them.	17	
18	THE WITNESS: Fine.	18	
19	MS. FORGIE: She said they're the	19	(Notary Public)
20	same. I believe her. All right. Done? 07:02	20	
21	MR. LASKER: I'm sorry. We're off	21	My Commission expires:
22	the record.	22	
23	(Testimony continues on the	23	
24	following page in order to	24	
25	include jurat.) 07:02	25	

A	accurately (1)	addressed (2)	1:24 2:15 438:5,23	165:4 168:9,10,11
a.m (15)	91:18	27:3 48:1	admissible (1)	171:4 176:9 185:2
2:6 8:2,17 72:20,21	acknowledging (1)	addressing (2)	412:11	195:13 205:15
2.6 82:22,24 96:15,17	368:16	26:5 224:4	advantages (1)	248:12 292:16
96:18,20 144:17,18	Acquavella (8)	adds (3)	316:12	293:1,1 302:14
144:19,21	24:10,22 25:8 421:3,6	168:3 175:18,19	advice (1)	352:22 353:8
Aaron (1)	421:10,14,23	adheres (1)	31:12	360:21 399:10
5:24	Acquavella's (2)	42:15	advising (3)	400:19 402:23
abbreviated (1)	24:16 422:6	adjust (23)	13:18 26:15,16	407:18 411:10,22
181:8	act (1)	152:11 216:15 218:11	advisor (1)	agreed (6)
ability (3)	152:22	218:12 236:2,13	14:6	95:16 125:8 243:2
55:25 170:10 419:4	acting (1)	238:3,7 239:10	advisory (20)	301:15 325:10
able (25)	169:16	240:16,20,25	18:24 20:17 21:6,17	422:21
29:14 42:12 51:7	action (1)	241:24 242:11	21:23,25 22:17 23:2	agreeing (2)
54:25 78:14 80:23	438:13	247:16 248:17,22	23:8,9,11,17 24:1	410:9 422:20
91:18 102:18	ACTIONS (1)	279:10 286:2,6	25:5,18 32:2,10	agreement (1)
118:25 120:19	1:7	295:1 330:12	325:4 383:8 385:4	375:5
122:8 124:12 126:9	active	334:25	affect (3)	agrees (1)
136:17 145:5	17:7 22:2 77:25	adjusted (60)	404:13 429:18 431:2	61:25
173:22 174:23	activities (2)	152:9,10,18 153:9,13	affiliated (1)	agricultural (22)
176:16 181:14	25:22,25	153:15 154:16,21	14:20	6:23 20:18 23:19 24:3
184:16 212:12	activity (1)	157:6,12,21,21	age (17)	27:12 31:8 32:19
278:16 412:1 413:1	25:17	158:11,12,21,25	152:13 179:5 180:5	141:13,17 146:18
413:2	acts (1)	159:3,14 179:3	187:20 188:24,25	147:1 149:21
above-mentioned (1)	159:18	180:4,22 181:18	189:10,14 237:5	199:20 200:17
391:2	actual (10)	215:2,18 217:1,19	238:7 240:18	201:8 202:19
above-stated (1)	135:22 148:6 160:16	237:19 239:6 240:1	242:13 248:17	318:15 324:25
390:24	181:9 209:2 365:2,2	242:13 248:4	279:4 319:15 337:8	343:7 347:17
absolutely (4)	365:5 386:21	249:10 253:12	337:10	363:21 385:21
235:1 238:6 418:25	430:	279:4,18,24 280:	aged (1)	agriculture (1)
425:3	acutely (1)	280:18,22 281:8	189:14	149:14
abstract (20)	150:6	282:6,19 283:18,2	agencies	ahead (2)
38:4,20 283:21	add (6)	285:1 287:	419:9	90:18 127:18
288:18,20,22,25	132:14 222:21 272:4	288:10 289:20	Agency (1)	AHS (71)
290:2,6,16,18	283:2 390:8 394:2	295:24 308:6,13	6:11	20:23 23:12 25:18
291:11,23 294:11	added (6)	319:14,15 320:10	agent (8)	26:16 27:2,2,17,2
295:14,17 364:1,10	171:22 215:4 222:15	396:22 397:16	42:7,15,16 171:8	28:9,14,17 29:17
364:11 429:12	300:13 394:14,15	398:15 399:24	203:7 264:16 312:3	30:12 31:5 32:3,6
abstracts (7)	adding (2)	400:21,	419:4	32:11,16,23 33:14
37:8,18,22 38:12	173:9 219:12	adjusting (9)	agent's (1)	124:2,20 150:18
429:1,6,17	addition (2)	105:10 106:12 152:13	420:12	151:2 319:1 327:8
accept (2)	414:21 415:8	216:14 220:20	agents (12)	333:17 336:7
32:7 286:1	additional (15)	240:17 247:21	18:14 244:22,24	342:18,24 344:2
accepted (1)	26:18 69:17 72:7 82:2	279:25 294:20	245:20 246:9,11,18	347:14 355:4,13
316:17	175:17 215:23	adjustment (8)	262:17 273:22	356:4 357:4,19,23
access (2)	219:12,13 277:20	151:21,24 159:12	309:15 310:10	358:21 359:19,21
220:19 226:12	282:13 293:20	216:23 236:25	332:7	360:24 361:1 362:1
accompanied (1)	294:7,21 410:20	238:25 253:6	ago (3)	362:25 366:23
428:20	416:19	281	33:7,8 98:2	374:8 376:5,13
account (4)	additivity (2)	adjustments (6)	agree (42)	378:21 380:23
151:21 193:2,14	235:6,11	214:21 237:15,17	41:3 46:21 67:2,25	382:3,5,13 383:8
378:24	address (10)	239:16 282:18	68:7,25 71:6 80:11	385:5,5 386:4
accuracy (1)	27:6 32:4 39:13 83:25	335:19	88:14 93:8,14 94:20	398:18 400:7 431:5
365:10	84:16 144:10	adjusts (3)	94:25 105:22	431:10,14 432:3,21
accurate (3)	226:18 342:3	279:12 294:2 296:6	106:10 130:2 147:4	432:25 433:19,21
419:12 420:16 433:16	347:18 395:14	Administrator (4)	148:16 149:11	435:15,23 436:2

AHS's (1)	338:25 370:20	305:13,23 306:4,5,7	49:21 50:17 56:8	404:1,11 405:1
32:18	373:19 412:16	306:10 308:8	57:18 58:24 59:16	410:4,23 411:19
AHS2013 (1)	414:10	311:15 314:7	60:1,2 61:20 63:19	412:2,8 428:7
348:21	amounts (1)	318:10,14 324:4,10	64:22 65:17 66:8	answerable (1)
air (2)	371:23	335:5,24,25 342:17	68:5,20 69:13 70:16	242:6
430:23,23	analyses (35)	345:7,10 347:12,17	71:1,19 81:9 91:10	answered (134)
al (4)	22:10,21 23:20 24:16	347:24 349:7 350:5	93:20 101:19	44:18 45:11,23 46:12
224:6 243:25 244:13	24:24 28:10 49:9	352:2,11 355:1	102:13 103:8,21	47:6 57:17 58:23
245:15	50:8,8 115:21 185:6	357:24 358:23	104:17 105:17	59:15 61:19 63:18
Alaska (1)	231:22 233:12	364:15 365:9	106:19 111:10	64:21 65:16 66:17
3:5	244:21 249:13	377:16 378:14	112:13 120:25	67:11 68:19 69:12
Alavanja (2)	254:1 263:9 279:2	379:13 385:22	121:15 123:20	70:15,25 71:17
7:4 21:8	287:11 289:13	386:4 389:1 390:16	124:12,17 126:19	90:17 91:9 93:19
Aldrin (1)	290:25 291:19	396:21 398:3	126:23 127:1,9,22	100:5 101:18
247:24	292:24 293:20	399:19 416:21	128:16 130:21	102:12 103:7,20
algorithm (1)	294:7 297:9 309:3	417:19,24 418:6,13	137:18 149:10	104:15 106:18
75:2	311:13 314:5	418:15	158:1 162:12 202:3	111:9 112:12
algorithms (1)	352:17 376:17	analyze (5)	203:3 209:18	120:23 121:14,24
29:8	387:20 414:23	40:1 43:19 44:14	210:19 212:3	123:2,18 124:16
all-encompassing (2)	415:1,9	224:16 324:16	215:14 217:15	125:19 127:10
255:9 257:18	analysis (149)	analyzed (11)	218:3 219:5 220:14	128:14 130:20
allow (9)	23:4 25:7 46:24 47:11	60:6 88:17 91:7	220:23 222:6	137:17 149:9
42:22,24 48:3 52:15	47:17,20 52:25 54:2	223:24 277:2	224:11,25 225:10	157:25 162:11
189:9 207:25	54:8,22,23 69:20	302:15 308:15	226:15,17,22	202:1,1 203:2
332:22 333:6 435:1	70:6 126:4 138:17	339:14 343:2	227:12 231:4	209:17 210:18
allowed (2)	138:22 139:14	346:10 374:18	236:17 237:23	211:5,17 212:2
190:7 332:22	155:12 159:12	analyzing (6)	238:12,16 239:4,20	218:2 219:4 220:13
allowing (3)	163:10,14,19	45:19 48:14 145:2	239:22 240:7,22,23	221:8 222:4 224:10
190:10,13 290:24	165:12 170:11,12	343:10 367:1	241:4,11,11,13,14	225:8,9 227:9,11
allows (5)	170:21 199:8	378:24	241:18 242:3	236:16 237:22
46:9 111:4 334:15	206:11 210:13,23	and/or (2)	246:15 247:11	238:15 239:3 240:4
335:13 414:17	211:1,19,22 212:22	145:14 169:7	257:13 258:13,20	241:8 242:2 246:15
alongside (1)	212:22 214:8,9	Andrus (2)	258:21,24 259:10	247:10 257:12
136:20	215:17 216:21	3:3 9:1	259:19,23 260:18	258:12 259:9 261:6
alternate (4)	217:8 219:10	Angeles (5)	261:7,22 262:11	261:21 262:8,22
97:12,17,18 99:6	227:23,24 230:1	1:17 2:12 3:13	265:2,13 266:1,22	265:11,12,25
alternative (21)	231:23 232:19	animal (44)	267:11,24 268:10	266:21 267:10
50:25 51:12 94:18	233:6,16,19 234:4,6	33:19 54:21,23 55:14	268:11 269:21	268:7,25 269:12
95:2 97:6,23,24,24	234:14 235:23	56:2 59:21 60:14	270:11,18 273:1	270:8 272:12,25
98:5,12 99:18	236:10,12 240:9	62:15 63:7 71:24	275:12 276:4,7	273:15 274:9,22
100:10 101:4,15,22	243:25 244:14	73:5,7,17 74:5,8,11	295:21 296:11,13	275:9 276:2,5
102:16 103:14,17	250:6,12,16 251:5	74:12,15,20 75:21	299:24 315:8	295:20 296:10
104:3,12,24	262:20,25 263:5	76:8,16 77:3,4,5	321:22 323:23	305:17 315:7
amendment (1)	264:9,14 265:4,15	78:6,8,21 79:5,19	324:14 327:1,5	321:21 323:22
314:11	265:16 266:23	79:22 80:1,14,20	329:6 339:12,22	324:13 334:22
amendments (2)	267:13,14 268:13	81:5,23 150:24	344:16 352:5	339:21 344:15
18:24 19:17	271:5 276:17,23,24	407:14,25 408:14	353:12 354:4,18	353:11 354:3,17
America (1)	277:14 278:23	408:17,23 415:23	358:4 359:5 360:2	358:2 359:3,3,25,25
306:14	279:15 280:7	418:20	361:10 362:9,11	362:8 367:7 368:4,7
American (3)	284:13,22 286:13	animals (3)	367:8 368:5,13,19	372:9 373:4,5
6:16 276:17 277:10	288:13 289:10,25	77:8 82:23 404:14	370:5,8 372:10	377:25 378:7 379:2
Ames (3)	291:10 292:13,18	announced (1)	373:7 374:24 378:8	379:15 380:7
405:25 406:5,9	294:17 296:21	35:7	379:3,16 380:8,10	385:11 391:15
amount (11)	297:4 298:1,17	answer (173)	381:9 385:12	394:22 397:21
185:10 209:23 210:1	300:1,11 302:10,16	11:4 16:16 23:23	391:16 394:23	399:13 401:15
266:7 299:14,17	302:16 304:5	35:13 44:19 46:13	397:22 399:14,15	403:25 404:10

answering (2)	approval (4)	126:20 128:14	assessed (5)	212:13 223:8,18,19
323:14 368:21	201:7,11 202:13,22	130:20 137:17	38:15,16 199:1 338:8	224:7 225:4 227:6
answers (5)	approved (4)	149:9 157:25	339:18	230:17 249:15
269:23 351:17 361:12	199:20 200:16 202:19	162:11 202:1 203:2	assessing (13)	250:8 310:21 323:2
367:10 380:5	208:16	209:17 210:18	48:9 122:23 123:14	323:6,18 351:14,14
anticipated (1)	approximately (3)	211:5,17 212:2,15	125:15 149:12	423:3
14:25	8:17 432:14 433:17	218:2 219:3 220:12	199:9 203:5 210:14	associations (3)
anybody (4)	arbitrarily (1)	221:8,9 222:4	362:13 406:5	71:23 104:8 331:17
25:5 112:22 336:15	94:24	224:10 225:8 227:9	426:19,20 429:24	assume (7)
383:9	area (3)	236:16 237:22	assessment (46)	27:24 146:7 197:4
anymore (3)	12:2 55:2 415:5	239:3 240:4 241:8	24:5 27:2 49:2,3	202:17 210:12
17:7 221:12 430:20	areas (2)	242:2 246:5,15	52:18 62:12,13,15	304:19 423:3
apparent (1)	38:13 39:2	247:9 257:12	62:17 65:3 145:15	assumed (1)
335:2	argue (4)	258:12 259:9	175:12 182:12	211:14
appear (3)	67:19 82:20 83:5	260:16 261:5,20	183:8 220:9 266:4	assumes (1)
92:12 161:14 162:8	95:11	262:8 265:11,24	273:18 314:9	165:19
appeared (2)	arguing (1)	266:21 267:9	315:13 316:13	assuming (7)
23:13 392:18	94:4	268:24 269:11	324:18 338:13	143:17 144:2 191:22
appears (6)	argument (1)	270:7 272:11,24	352:18 390:9 394:3	330:24 337:3
114:17 320:25 387:25	143:2	273:3,14 274:8,11	399:2 402:24 416:6	344:10 367:16
390:3 393:2,15	argumentation (1)	274:14,21,25 275:8	418:24,24 419:2,3,8	assumption (10)
appendix (1)	416:17	276:1 295:20,25	420:2,7,11,16,22	130:9,18 200:12,21
134:8	argumentative (1)	296:10 305:17	421:24 422:1,3,14	201:17 346:3,4
application (3)	412:10	315:6 321:21	422:16,21 433:12	373:25 374:3 377:4
227:17 333:23 342:18	Aristei (2)	323:22 324:13	433:20	assumptions (15)
applications (2)	2:11 3:10	334:22 339:21	assessments (4)	130:22,25 202:5
36:23 344:22	arriving (1)	344:3,15 353:11	22:16 26:23 29:6	207:10 215:23
apply (4)	414:3	354:3,17 358:2	417:10	216:8,10 217:10
215:4 345:2,3 358:6	arsenicals	359:3,25 361:7	Assign (1)	233:23 335:10
applying (5)	149:16	362:8 367:7 368:4	363:19	376:25,25 377:3
185:18 275:16,20	article (9)	372:8 373:4 374:23	assistant (1)	381:17,23
276:12,14	5:15 86:14,18,24 87:3	377:24 378:7 379:2	13:14	asthma (1)
appoint (1)	88:5 97:4 114:18	379:14 380:7 381:7	associated (15)	239:8
37:19	387:11	385:10 390:21	33:15 51:23 124:13	asthmatics (7)
appointed (1)	articles (6)	391:15 394:21	128:11 142:3	236:10,21 238:1,4
21:6	77:5 78:6 80:14 82:14	397:21 399:13	145:11 150:15	239:14 240:10
appointment (1)	83:1 86:12	401:15,22 403:25	151:2 252:17 269:4	242:9
21:10	ascertained (2)	404:9,24 411:13,17	329:16 331:21	ate (3)
appoints (1)	341:24,25	414:5 431:3 434:3,6	342:6 418:2 424:14	411:15,21 413:10
37:19	aside (2)	434:14	association (66)	atrazine (9)
approach (4)	39:8 113:10	asking (19)	8:22 48:17 50:10,11	231:23 232:3,11
44:12 160:2 345:19	asked (148)	10:18 28:7 50:4 62:19	64:6 65:11 66:12	233:6,17 234:7
420:24	21:9,15 44:17 45:11	74:18 104:23 123:6	67:5 68:10 69:7	235:2,9 338:20
approached (1)	45:22 46:11 47:6	157:17 174:21	70:8,18,19 71:3	attachment (3)
21:7	57:16 58:23 59:14	241:13 245:24	87:9 91:19 101:7	348:1,3,4
appropriate (15)	61:18 63:17 64:20	315:11,24 346:25	110:6 111:7 120:8	attend (2)
83:14 105:22 106:23	65:15 66:16 67:11	347:9 351:8 375:4	120:19 121:21	26:2 38:22
125:11 128:8,25	68:18 69:11 70:14	378:3 412:17	122:8,24 123:15	attorneys (8)
159:15 290:8	70:24 71:16 90:17	aspect (1)	125:15 131:3,6	3:3,4,11,19 4:4,11
324:18 362:21	91:9 93:18 100:5	174:16	142:12,18 143:5	10:22 81:13
380:4 382:15 383:1	101:18 102:12	assess (13)	147:5 148:11,18	attributable (1)
383:12 384:9	103:7,20 104:15	101:23 120:19 122:8	149:1 165:14,18,19	194:24
appropriately (1)	106:17 111:9	144:7 151:25 167:6	166:2,19 167:15	attribute (2)
110:22	112:12 120:22,24	176:16 184:12,21	168:21 170:17	195:4 253:20
appropriateness (1)	121:13,23 123:2,18	240:13 404:14	171:8 174:1,3	audience (1)
159:21	124:16 125:19	419:6 431:1	176:19 185:7 195:6	290:25

Page 5				
418:14,22	122:17 129:20,21	179:6 180:6 189:2,4	care (4)	126:5 133:17 134:2
brain (1)	175:14 200:24	189:15,22 190:13	12:16,18 13:5 138:3	134:13 135:22
12:25	202:24 301:18	190:18 192:13	career (2)	136:11 137:15
Brazil (6)	calculation (4)	194:20 197:21,22	16:24 225:18	139:7,8 170:13
38:23 289:24 423:8	110:3 111:4 201:1	197:22 279:6 321:7	careful (3)	171:24 177:7
428:16,20 429:12	203:9	347:7 407:9 408:14	19:12 432:5 434:1	186:13 190:9 198:7
break (15)	calibrating (2)	408:17,23 429:24	carefully (2)	204:7,9 215:7,10
27:22 73:2 144:14	105:9 106:11	cancers (11)	191:8 197:6	216:20 224:17
177:21 184:24	California (8)	29:15 90:6,15 103:4,5	Carolina (1)	226:3 227:23,24
203:11 264:4	1:2,17 2:13,14 3:13	150:21 188:6	333:22	228:3 232:25
270:19 326:1	8:11,15 438:2	189:11 196:17	carrying (1)	236:21 237:4 238:5
370:23 384:13,15	call (22)	197:1 321:6	39:19	255:7 257:22
384:18,20 406:19	36:11 37:17 81:18	candidate (1)	case (111)	259:15 311:22
breaking (4)	110:1 127:17,24	33:1	1:6 8:9,12 44:5 51:22	314:2 315:11
72:12 143:9 255:10	135:15 153:4,5	Cantor (46)	52:13,18 54:4 78:10	341:22,23,25 347:4
264:3	157:9 159:23 235:3	6:8 178:13,22 179:10	79:4 97:10 100:18	387:12,14,22,23
Brent (2)	245:25 250:16	180:4,20 181:2,4,20	107:25 117:12	casual (1)
3:15 9:5	292:23 300:6,21	182:3,5 183:13,15	124:3 133:13	267:18
briefly (2)	304:16 332:6	184:9,9 186:9,12	134:25 136:1	catching (1)
235:15 416:23	343:16 423:10	187:24 189:18	137:10 139:22	215:10
bring (2)	430:14	192:2 194:10	140:4,11,13,25	categorical (7)
82:3,4	called (7)	198:17 200:22	141:2,4 146:15	58:10,12,14 61:9
broad (7)	10:8 109:5 133:5	201:19 202:25	149:3 161:19	164:21 420:23,24
27:21 28:3,5 29:20	152:25 170:5 277:9	204:9 205:2,18	168:19 169:3,17,21	categories (13)
148:24 149:2	313:21	212:11 213:16	171:22 173:9 175:6	63:21 66:18 67:13,15
315:22	calls (4)	214:11,16,23 215:2	177:3 182:4 188:13	68:17 165:15
broadly (2)	25:23 26:5 104:1	217:2,16 218:4,20	190:21 193:9	301:14 311:17,21
29:9 78:20	417:1	219:7,9,14 221:16	194:19 197:14	350:7 351:24
bromide (1)	camp (1)	221:19 222:9 243:7	208:21 218:10	353:16 427:4
365:15	106:21	243:11	223:4,7 225:1 226:4	categorization (1)
build (1)	Canada (6)	capable (5)	227:3 230:2 238:3	164:24
170:3	183:13 243:22 306:15	136:21 185:21 420:9	243:21 247:15	categorize (1)
bulbs (1)	396:20 397:15	420:18 422:22	254:8 259:14 269:3	273:23
96:1	428:24	capture (6)	276:24 277:1 278:3	categorized (1)
bulk (1)	Canadian (4)	190:9,11,20 193:9	279:17 284:13	424:19
337:6	277:1 297:5 298:2	198:6 433:14	287:24 297:5,13	categorizing (3)
business (1)	429:2	captured (4)	298:2 304:16	311:17 419:3 422:8
36:14	Canadian-based (1)	194:17,19 368:22,22	305:11,20 306:13	category (32)
busy (1)	279:17	capturing (3)	310:3,10 311:19	27:25 62:8 63:15
22:13	cancer (80)	192:4 193:1 198:11	313:19 314:1,12,16	116:24 131:11
buying (1)	12:18,19 13:5 16:1	CARC (6)	314:18,20 315:2	185:18 232:25
208:15	27:24 28:21,24,25	80:18 82:13 415:15	316:7 317:22,22	257:25 259:12,16
	29:4,9,10,13 41:19	415:18,19,21	318:1,6,7,8,9 320:9	259:17 266:6,9,25
C	41:22 73:5,7,17	carcinogen (3)	320:25 321:12,19	271:12 272:15
C (7)	74:5,15,20 75:22	62:9 150:10 188:10	330:1 336:10 338:9	282:16 299:16
3:1 4:1 116:25 117:11	76:8,16 77:3,7,15	carcinogenic (5)	339:18 340:25	300:16,16 303:22
117:20 438:1,1	78:8 79:5,20,23	18:15 230:24 231:13	342:9 346:11 347:3	306:11 350:6
calculate (14)	80:1 81:5,24 83:1	406:6 419:5	360:14 395:22	424:17,24,25
102:18 104:5,6 113:3	90:13 91:6 100:2,3	carcinogenicity (9)	396:1,13,20 397:14	425:10,21,22 427:5
129:7,13,25 163:20	102:6,9,10,25	75:15 90:3 187:16	400:13 420:15	427:6 428:1
163:23 172:9	103:14,15 142:13	335:10 407:13,22	421:3 435:24 439:1	causal (27)
180:12 205:20	142:22 143:15,18	420:25 422:17	case-by-case (1)	5:16 50:7,12 64:9
320:2 353:5	143:20 145:22	429:23	137:10	65:12 66:13 67:6
calculated (2)	146:18 150:22	carcinogens (5)	cases (51)	68:11 69:8 70:10,18
272:9 350:7	168:2,4 170:11,13	149:24 150:12 331:2	29:4,9 123:11 124:1,5	71:3,23 88:1,21
calculating (7)	171:23,24 172:2	406:5 425:7	124:19 125:1,25	90:22 91:19 93:6

111:6 120:8 121:10	438:6	5:15 86:14	251:22 252:8 259:3	114:21 116:2,12,18
121:20 122:24	certify (2)	chart (2)	263:5 277:15	116:23 117:1,12
131:6 191:21	438:7,12	154:17 319:6	390:20	118:25 119:6,14
230:17 417:9	cetera (12)	check (10)	cited (2)	129:25 180:11,19
causally (1)	98:24 149:16 194:7,7	180:25 183:3 189:4	218:18 434:12	180:20 181:11,24
124:13	255:11,13 274:13	236:5 274:10	citing (2)	212:15 213:3,10,14
causation (10)	344:6,23 381:20,21	365:10 401:17	229:18 416:5	213:16 214:7,10
5:13 45:21 46:3,7	417:16	414:18 415:2	City (1)	320:2,9 438:4,22
49:19 87:23 88:18	chain (1)	416:16	204:14	CLRs (3)
101:15,24 104:9	197:25	checked (1)	clarify (2)	118:10 129:7,13
cause (21)	chair (8)	365:20	220:2 439:4	club (1)
40:1 41:22 49:22	20:19,23 21:3,12,13	checking (3)	class (9)	34:2
50:21 51:7 97:11,13	21:15 25:17 385:3	366:24 378:15,15	47:11 49:17 115:17	co-adjustments (1)
98:11,14 100:3	challenge (3)	chemical (11)	134:9 255:22	214:23
101:3 102:8,9	50:1 330:21 331:11	245:20 246:9,11,18	261:24 262:13	co-authors (1)
103:13,15 159:18	chance (31)	246:23 255:21	313:17 316:24	230:13
190:18 191:18	47:3,8,21 48:15 64:10	261:13,24 262:13	classes (1)	co-exposure (2)
198:4 431:24	65:13 66:14 67:7	308:15 310:25	261:13	250:9,24
434:19	68:12 69:9 70:11,21	chemicals (11)	classification (1)	co-exposures (1)
caused (10)	71:13 72:10 84:1,3	149:14,17,21,23,25	67:3	326:15
90:5,15 91:6 100:2	84:6,18 85:6 90:5	244:20 247:21	classify (1)	co-investigators (4)
103:3,4 190:21	91:23 98:24 105:4	254:10 311:3,10	272:17	228:7,17 229:22
194:18 198:7 215:7	107:11 108:10	331:18	clear (29)	378:14
causes (13)	110:5 114:24 117:4	chicken (1)	15:3 21:16 53:15	co-linearity (1)
87:20 100:20 102:25	118:8,17 190:20	150:25	58:17 59:24 64:2	430:14
143:17 145:18,22	Chang (4)	child (1)	65:2 75:5 76:21	co-worker (1)
152:21 188:10	284:10,21 285:12	77:14	80:22 82:6,21 89:16	136:16
215:8 323:11 330:7	322:20	children (1)	120:4 159:1 180:3	coaching (3)
407:9 434:9	change (24)	12:25	186:20 245:23	378:2,3,5
causing (7)	26:21,22 114:12	chlorines (1)	248:19 249:1	coauthor (1)
100:13 187:11 191:9	241:19 280:10	150:1	266:14 283:16	147:1
420:9,18 422:22	282:6 306:21	choice (1)	291:6 299:23 315:1	Cocco (18)
426:15	338:15 346:16,20	140:7	317:2 353:21 355:5	122:4,6,20,22 123:7,7
cell (4)	349:20,22 355:21	Christopher (1)	359:18	123:8,9,13,21,24
156:3 189:4 280:21	360:9 370:13,14,18	18:22	clearly (9)	124:10,18 125:13
281:10	373:12 377:7 398:5	chronic (3)	80:12 83:14 127:10	125:24 126:8 400:3
cells (2)	419:14 429:19	198:13,25 301:23	162:23 260:22	409:23
190:23 404:14	434:6,16	chunk (1)	269:4 295:24	cofactors (1)
cellular (1)	changed (16)	205:11	312:23 381:16	216:23
188:12	325:13,14 339:3,6,8	circle (2)	clever (2)	coffee (6)
certain (21)	357:14 358:15	70:5 154:11	267:14 268:12	142:12,20 143:14,23
23:9 33:18 35:20	360:5,14,16,18	circles (1)	clinical (3)	143:25 144:4
40:24 55:25 127:21	370:10,12 373:14	40:21	12:11 13:5 317:17	cohort (40)
150:21,25 179:11	420:4 429:21	circumstance (2)	clinically (1)	6:18 22:3,12 26:7,18
186:25 192:11,15	changes (4)	97:9 192:16	89:8	31:10 140:12,21,24
202:5,12 209:23,25	282:24 349:24 369:4	circumstances (1)	close (5)	141:1 144:7 312:25
224:16 334:4 377:3	434:21	136:15	24:11 56:3 112:19	316:16,17,22
395:24 414:11	characterization (1)	circumvented (1)	137:21 309:24	317:18,23 318:12
certainly (5)	411:11	140:21	closely (2)	318:14 321:3 323:9
35:4 73:13 81:16	characterize (1)	citation (1)	142:17 426:9	323:16 326:14,20
195:13 413:4	14:19	229:1	closer (1)	333:25 336:8 337:5
certainty (3)	charge (1)	citations (2)	391:5	339:13 341:3
418:1 434:9,18	18:4	77:6,10	CLR (38)	350:23 351:13
certificate (2)	charged (1)	cite (12)	1:23 2:14 110:1,2,3	355:14 398:13
11:19 12:6	22:18	74:3 217:25 228:23	110:16 111:3,4,12	400:7 431:20 432:6
Certified (1)	Charles (2)	228:24 229:9,24	111:24 112:7	432:25 433:4,21

435:25	393:5,12,14,25	complete (3)	437:1	conducting (20)
cohorts (1)	394:1,12,18 395:2,9	122:15 234:15 381:20	concluding (1)	25:8 27:23 36:14,24
431:21	403:9 406:22	completed (2)	228:9	52:25 54:1,7 86:4
collaborative (2)	commentary (5)	11:4 26:13	conclusion (29)	129:22 145:2
226:5,7	238:15 259:25 412:13	completely (5)	48:16 56:24 57:7 58:1	163:13 170:20
colleagues (2)	412:24 416:25	133:19 143:18 262:10	59:1 61:8,16 62:3	173:25 195:10
15:20 50:3	commented (2)	264:16 306:22	62:20,25 63:1,2,2	245:8 283:9 284:11
collect (2)	380:12 393:11	completing (1)	63:13 66:21 72:6	286:13 432:5 434:1
225:16,22	commenting (2)	433:9	88:9,18 128:9 228:9	confer (1)
collected (3)	230:9 412:7	complex (2)	229:21 230:16	58:12
22:9 362:2,16	comments (1)	324:16 413:14	233:6 332:16 392:9	conference (20)
collection (3)	291:3	complicated (1)	392:10 417:22	25:23 36:18,25 37:1,3
433:2,4,7	Commission (1)	344:7	418:11 420:24	37:21 38:2,3,23
collegial (1)	437:21	composition (1)	conclusions (41)	277:15 288:22,25
19:9	commit (1)	433:3	52:24 53:8,9,10,13,16	289:24 290:10,17
collegially (1)	436:16	compound (5)	53:18,22 54:1 55:12	291:12,14 292:3,18
14:20	committee (23)	75:10 254:4 308:15	56:1,21 57:11,12,14	322:6
Collegium (7)	20:17,19,24 21:2,6,12	407:9 413:13	58:5,9,9,14,19,20	conferences (3)
33:23 34:1,24 35:6,18	21:23 22:1,17 23:3	compounds (4)	59:8,12,17,22 60:3	37:9,14 290:23
35:22 36:1	23:11,17 25:6 26:16	18:15 254:3 406:7,8	60:16,19,24 61:9,11	conferred (1)
Colorado (1)	31:12 32:2,11 36:18	comprehensive (1)	61:23 66:6 69:22	69:18
3:6	36:20 38:2 325:4	95:19	70:2 88:2,7,21	confidence (112)
column (9)	383:8 385:4	comprehensively (1)	286:15 410:25	43:9 64:11 65:14
92:6 179:17,20 184:3	common (9)	199:1	434:11	66:15 67:9 68:14
184:4 228:16 244:7	63:24 106:6 184:18	computer (1)	concomitantly (1)	69:10 70:13,23
297:17 392:10	224:21 225:20,21	325:19	239:6	71:15 86:15 107:6
combination (1)	321:6 326:15 414:7	concept (5)	concur (11)	107:12,13,16,19,23
230:14	communicate (1)	39:24 167:3,5,8	52:24 53:9,25 57:12	108:2,6,8,13,14,17
combined (6)	137:22	186:21	58:4,19,20 59:12,21	108:20,24 109:5,8
231:18,23 232:4	community (8)	conceptual (1)	66:5,9	109:10,14,15,21,22
233:7,17 238:24	32:19 95:15,15	169:12	concurrent (3)	110:2,9,15 111:21
come (22)	289:16 316:18,22	concern (20)	163:21 430:1,3	112:1,15,17 114:23
15:14 27:9 36:24 57:7	318:4 389:17	131:14 133:13 189:17	concurring (2)	115:9 117:14 118:9
60:16 61:8 69:23	comparable (1)	194:10,14 197:19	58:25 59:8	118:18,23 119:4,6,8
88:8 96:2 128:3	321:24	198:19,20,23	concurs (1)	119:14,17 130:7,12
154:11 190:12	compare (13)	214:14,18 217:22	53:12	130:16,23 131:4
197:9 205:21 272:4	110:3 111:4 139:23	293:4 296:5 310:12	Conditional (1)	152:19 155:17
332:16 357:18	181:25 235:1 239:9	375:18,20 378:23	115:3	157:1 158:17
358:21 359:19	239:11,13 240:11	390:1 393:4	conditioned (1)	159:16 160:19,20
362:1 369:13	242:8 264:23 330:8	concerned (5)	117:5	161:6,12 162:16,19
419:10	395:8	138:22 194:5 214:15	conditioning (2)	178:25 180:12
comes (6)	compared (15)	311:5 367:23	105:10 106:12	212:24 213:2
31:17 61:22 72:5	43:12,13 45:1 134:14	concerning (1)	conditions (1)	214:20,20,24
170:25 330:25	215:2 254:22	293:21	92:9	216:18,19,24 217:5
359:13	269:17 293:6	concerns (14)	conduct (11)	217:7,11 232:18,21
comfortable (2)	303:14 321:17	25:6 217:17 242:21	28:9 35:8 54:22	233:15 249:7 251:1
198:11 407:21	328:5 330:15	293:25 294:6,10,14	138:16 170:10	279:20 280:11
coming (9)	343:25 354:14	294:15,25 295:5,16	231:23 287:8 297:9	281:5,17,22 282:12
22:21 26:1 50:6 88:21	365:1	354:25 395:24	345:9 433:23,25	283:1 306:15
94:22 181:17	comparing (5)	400:19	conducted (17)	309:24 312:13
197:11 333:18	170:25 175:13 234:25	conclude (4)	37:7,14 38:16 78:5	319:20,22 320:1,4,8
338:12	235:4 339:24	125:13 216:25 285:10	115:21 159:4	320:16,22,23,24
comment (21)	comparison (3)	391:10	195:11 211:23	321:4,9,14,23 322:1
57:25 159:2 349:22	171:10 182:10 353:18	concluded (3)	251:6 305:13 306:9	322:10 354:21
380:13 390:3 391:6	comparisons (3)	65:9 67:25 417:25	317:23 333:5 361:2	396:16 424:8
391:9,13,21,25	86:6 171:11 345:10	concludes (1)	376:6,17,24	confirm (2)

213:20 283:22	176:19 184:17	contradictory (1)	conversation (1)	140:2,3,7,9,21
confirmed (2)	195:1 247:13 289:8	416:1	32:13	141:12,14 142:5
74:24 75:14	290:9 292:12,16	contrast (4)	conversations (2)	143:16 144:11
confirms (1)	294:17	345:13,20,22,24	28:8 30:12	145:6,7,18 149:7
41:16	considerable (1)	contribute (1)	convince (3)	150:16 151:3,22
conflated (1)	280:10	324:2	46:2 49:9 167:13	152:15,22,23 153:3
393:10	consideration (1)	contributes (4)	copy (1)	153:11,12 154:8,17
conform (1)	117:16	42:7 89:6 323:12	82:8	155:13,18,20,24
439:4	considered (23)	324:10	corner (1)	156:19 157:8,13
confounded (1)	16:10 17:11 33:6	contributing (2)	114:11	158:13 159:5,19
286:8	43:17 107:20	312:4 331:3	correct (600)	160:11,25 161:17
confounder (19)	111:24 135:20	control (66)	11:16,17,21 13:7,11	162:9 163:6,10,14
142:2,8 143:15 144:6	136:10 137:13	133:14 134:25 140:4	13:15,16,19,20,22	163:25 164:14
146:4,11 151:12	159:8 244:22	140:11,13,25 141:2	13:23 15:4 20:20,21	165:20,21 166:20
152:22 159:19	245:14 247:8	141:4 145:23	22:25 23:1 32:11	168:22 170:7,14,21
167:7,14,23 168:19	277:20 283:9	149:18 163:5,8,13	33:24,25 35:18,22	171:17 172:2,16
169:7,11,13,15	289:25 290:7 291:9	163:17 167:5 182:4	36:1,5,6,19 37:9,10	174:5 176:7,21
330:2 333:14	291:12,24 292:4	203:24 223:4,8	39:16,21 40:2,12	177:8 179:1,2,8,13
confounders (8)	315:18 316:4	225:1 243:21	41:12,22 42:5,13	180:8,15,23 181:12
145:6 163:9 165:13	considering (3)	247:15 276:24	43:1,3,22 44:16	182:22 185:10
165:15 167:2 169:2	47:9,15 294:15	277:1 279:17	45:9,21 46:10 49:23	186:10,17,18,22
330:5,23	considers (1)	284:13 293:8,11	50:21 51:24 52:3,4	187:5 188:6,14
confounding (41)	231:12	297:6 298:2 306:14	52:19 53:2,6,10,19	189:24 191:1,4,21
47:22 48:15 64:10	consistent (3)	310:3,10 313:19	56:18,19,25 57:15	192:7 193:3,5,18
65:13 66:14 67:8	51:2 102:4 375:12	314:1,12,16,18,20	60:7 61:17 62:4,17	194:13 195:5
68:13 69:9 70:12,22	consistently (1)	315:3 316:7 317:22	63:16 64:12,13,19	196:13,14,20
71:14 142:2 143:3,3	375:14	317:22 318:1,6,7,8	65:14 73:6 74:6,16	199:11 200:13,21
144:11,25 145:8	constantly (1)	318:9 320:10,25	75:8 76:24 77:22	200:25 204:10,24
151:22,25 152:12	216:9	321:12,19 330:11	84:1,8,18 85:19,23	206:6,14,22 207:7
163:2,6,13,17	consult (1)	336:11 338:9	86:17 87:10,20	207:11,20 208:5
164:23 165:24	23:17	339:19 342:9 347:3	89:20,20 90:6,15	209:1,5,15 211:3,15
166:18 167:5,6	consultant (1)	395:22 396:2,14,20	91:7,19 92:13,18,24	211:25 212:19,20
169:5,8 264:20	421:15	397:15,15 400:14	93:17 94:18,19,20	212:25 213:12,17
328:2,3 329:18,22	containing (1)	435:24	95:3 97:14 98:15	214:11,12,13
329:23 330:11,13	315:4	controlled (5)	99:12 100:3 101:16	216:11 217:9
330:18 333:12	contains (1)	227:3 230:2 295:15	102:10 103:18	219:21 221:18
confuse (1)	292:23	310:24 424:9	104:13 105:14,23	223:5,20 224:8
169:2	context (18)	controlling (5)	107:7,8,13,22,25	225:6 227:7,25
confused (3)	71:5,24 88:23 93:3,22	165:13,24 166:16,17	108:10 109:6,10,11	228:4,10,18,24
221:12 289:19 326:2	95:6,8 100:18 102:5	430:1	109:16,24 110:6	229:7,10,17 230:6
connecting (1)	110:22 113:1	controls (30)	111:7 112:10 114:2	231:24 232:6,15,22
237:11	114:25 117:5	123:12 124:2,3,21	115:1,6,10,22,24,25	232:23 233:9,20
connection (5)	118:21 200:3	125:2 126:1,6	116:6,15 117:6	234:16,23 235:24
37:7 54:4 212:11	417:13,15 418:21	133:19 135:1,22	118:10,20,25	235:25 236:3,14,19
234:7 409:21	continents (1)	136:12 137:15	119:25 120:10,21	237:2,20 239:1
conscientious (1)	51:15	139:7,9 140:7	121:12,22 122:4,10	240:2,24 241:21
295:25	continue (4)	215:18 216:20	122:25 123:16	242:22 243:8,22
consensus (1)	14:10 17:4,12 185:1	232:25 237:4 238:6	124:14 128:12	244:1,15 245:15,17
216:12	continues (2)	255:8 257:23	129:8,18 130:1,9,11	246:13 247:8,17,20
consequences (1)	93:24 436:23	259:16 293:6 314:2	130:18 131:7,18,22	248:5,23,24 249:7,9
198:13	continuing (1)	315:11 318:2 341:1	131:23 132:8 133:9	249:16 250:9,13
conservative (1)	385:24	347:5 400:16	133:10,14,15,19	251:2,3,8,14 252:5
159:23	continuum (2)	convention (4)	134:11,15 135:3,4	252:6,11,19 253:9
consider (14)	95:21 97:25	41:6 85:10 107:16,19	135:12,22 136:12	253:14 254:22
47:16 57:24 88:21	contradict (1)	conventional (1)	137:15 138:19,20	256:2,7,13 257:10
151:12 160:1	322:11	111:23	138:25 139:16	258:7,18 259:7

260:12 261:4 263:3	383:22 385:22	137:24 298:9 431:2	cross (1)	88:22 95:18,24 96:6
263:7,25 266:15	386:6,7,11,24	couple (5)	416:16	98:22 107:24
271:4,7,16,24	387:14,23 388:2,16	190:25 351:2 375:3	cross-reference (1)	110:21 116:19,22
272:10,23 275:7,25	389:13 390:13,14	408:8 428:12	414:24	119:18,24 129:14
277:2,16 278:25	390:18 391:23	course (13)	cross-talk (1)	129:16,24 135:19
279:1,8,13,14,21	392:19 393:6,18	57:23 80:12 105:1	328:14	136:9,11 137:12,14
280:4,15,19,20,25	394:16 395:8 396:1	129:2 195:16 208:3	CRR (4)	138:18 139:16
281:12,24 282:7,21	396:15 397:1,19	222:19 371:22	1:23 2:14 438:4,22	142:17 145:25
283:10,20 284:5,6	398:16,21 399:11	380:15 411:9 412:3	CSR (4)	146:1 158:19
284:16 285:2,8,15	399:21 400:8,25	415:8 416:22	1:23 2:14 438:4,22	164:20 167:7 169:9
286:18 287:7,11,25	401:4,13,21,25	court (25)	cumulative (16)	183:13,13 205:1
288:14 289:1	402:4 406:9,10	1:1 8:10,20 10:4,24	187:13 324:7 335:25	206:19,19 207:4
290:11 292:13,19	407:22 416:8,9	11:1,5 59:25 80:2	336:2 339:16 340:3	210:11,13,14 211:2
293:3,23 295:2	422:9,14,15,19,23	81:17,18,25 83:10	340:13,16,18,22,25	212:16,18 219:9,9
297:9,23 298:5,12	429:13,14 431:11	126:25 170:2	341:2,4 342:4,8,12	219:13 220:18
298:13,17 299:3,9	431:12 432:16,17	226:19 340:15	curious (2)	222:9,14,15 223:3
299:10,15 300:4,20	439:5	410:19,25 411:25	79:13 412:16	224:4,19 225:2,11
301:9,12 302:20	correctly (11)	412:12,25 413:1,4	current (3)	225:16 226:5,8,12
303:8,17 304:6	134:7 142:20 160:10	413:20	164:8,9 421:15	227:4,13,14,16
305:24 306:7,16	169:20 185:4 188:7	cover (1)	currently (2)	230:1 231:18
308:9,16,22 309:9	198:18 265:20	367:22	20:22 132:7	232:24 238:2
309:11 310:13	327:24 331:12	covering (1)	Curriculum (1)	242:20 243:6,11
311:1,7 312:11	360:21	222:17	5:9	246:8,8 249:14
313:17,24 314:5,14	correlate (1)	create (2)	cursory (1)	250:7,22 253:16
315:19 316:5,18	327:18	135:9 176:17	415:23	265:21 266:16
317:9,10,19,20,24	correlated (13)	created (1)	Curwin (1)	267:5 268:1,21
318:11,15,16 319:2	174:9 328:17,20	275:14	24:7	270:2 278:22
319:9,15,23 320:6	329:25 330:20	credible (9)	cut (1)	279:16 280:8 283:7
320:12 321:1,13	331:5,16 332:11	64:9 65:12 66:13 67:7	324:21	283:8,10,15,17,18
322:21,23 323:3	334:2 335:17 430:6	68:12 69:8 70:11,19	cutoff (4)	283:25 284:2,13
324:8 325:5 326:17	430:18,24	71:3	340:18,24 341:1,3	285:11 286:18
326:23 327:15,22	correlation (9)	credited (1)	CV (10)	287:4 288:5,9
328:6 330:16	174:13 175:5 177:11	34:8	11:10,19 19:19,21	289:20,23 290:5,9
331:18,23 336:4,11	177:12,17 327:7,20	crews (1)	20:2,15 33:22 36:16	290:13,19 291:8,11
336:20 338:5,10	329:9,12	201:10	39:7 82:8	291:13,18,23 292:2
339:12 340:11,19	corresponding (1)	criteria (12)	cytotoxic (2)	292:9,12,17,22,25
341:8,9,16 342:2,9	387:6	59:18 159:8 179:11	74:13 76:2	293:5,6,7,10 294:1
342:20 343:2,10	coumaphos (1)	269:1,8,25 270:1	cytotoxicity (1)	294:2,11,13,15,25
344:12 345:14	365:16	320:15 407:12,14	82:25	295:16 296:20,23
346:1 348:13	council (2)	416:1 418:22		297:6,7,8,12 298:24
350:24 351:16,17	37:15,19	criterion (3)	D	298:25 299:5
352:4 353:22,23	counsel (13)	47:9 125:23 316:20	D (9)	300:12,13 302:15
354:1,15 355:2,3,11	8:23 9:15 55:16 79:23	critical (2)	5:1 111:20 114:22	304:21 309:6
356:13 357:8,25	81:21 96:10 348:13	50:2 140:14	115:18 116:12,20	314:22 322:21
359:1,23 360:23	408:18 410:8,9,13	critically (1)	117:2,2,16	324:1,10 326:14
361:21,24 363:4,22	413:10 425:1	197:6	D.C (1)	328:10 329:8,11,15
364:17,24,25 365:3	counselor (2)	criticism (2)	4:13	332:1 336:18
365:7,17,21,22	36:4,7	289:15 395:6	daily (1)	337:18,21 338:5,6
366:3 367:5 368:1	count (3)	criticisms (5)	336:16	340:9,17 346:10,12
369:9,14,23 371:2	137:25 207:10 365:14	431:4,8,13,15 432:20	data (274)	347:11,18,20
371:16 372:7 373:2	counties (1)	critique (1)	22:9 27:13 41:15	348:21 349:20
373:10 374:5,19	51:16	73:12	42:17,21 43:20,21	350:3,9,23 351:9,21
375:25 376:8,18	counting (5)	critiquing (1)	44:14 45:8,19 46:8	352:11,16 353:3,6
377:22 378:25	133:6 309:5 362:7	73:11	47:16 49:9,11 52:14	354:15 356:21
379:13 380:2 381:5	366:12,15	crops (2)	69:23 70:7 71:24,25	357:7 358:22 362:2
381:24 382:16	counts (3)	338:16,24	72:7 88:1,6,8,16,17	362:4,15,16 364:12

364:13 365:2,2,5	298:8 299:12,20	19:3	143:3 179:10	DEPONENT (1)
367:12,15,18,21	300:1,2,3,7,9,14,17	debate (4)	definitely (4)	439:3
369:19 370:3	300:21,22,23 301:6	31:6 80:25 89:9	123:25 144:12 150:11	deposed (2)
372:13 375:22,24	301:6,7,13 302:1,6	215:24	197:19	382:22,24
376:15 377:16	302:11,12,16,19,23	debated (1)	definition (8)	deposition (42)
380:16,19,25	303:1,18,20 304:3,6	215:24	64:18,25 65:24 83:24	1:15 2:9 5:23 8:6,13
381:20 383:20	304:23,24 305:14	debunk (2)	179:15 201:21	10:19,23 80:3,11
386:6,10,11,22,23	324:7,8 335:25	50:5 317:1	347:6 389:6	81:10 82:2 83:12
387:14,18,23 388:5	336:3,4,6,9 337:20	December (6)	definitions (2)	96:22 146:14
388:6,9,19,20,24	339:16,25 340:1,2	200:14,25 201:12,22	84:2,6	203:14,21 262:24
389:5,6,10,16 391:4	340:10,11,11,13,13	202:17,22	degree (6)	277:24 278:12,15
396:18,19 397:14	340:16,18,24 341:1	decide (14)	11:20,23 13:10 140:6	289:22 306:25
398:18 399:1,7	341:4,5,5,6,7	41:4 50:13 105:1	434:8,17	307:7 348:9,14
401:20 402:2 406:4	342:16 345:2 364:2	108:17 110:18	deliberately (1)	349:2 350:2,16
406:6,11,12,13,14	398:4 424:1,23	169:12 187:15	67:12	382:23 402:18
406:16 408:4	425:10,11 426:2,25	245:20 246:23	Delzell (4)	403:2 408:11 412:6
416:19 417:8,12,13	427:10	330:1,21 352:24	284:10,21 285:13	419:16,23 421:2,5
417:15 418:3,20,20	DDT (4)	413:2 415:18	322:20	421:18 437:2 438:8
418:21 431:5,10	312:8 358:9 360:5	decided (6)	demarcation (1)	438:10 439:2
433:1,4,7	362:13	18:13,17 26:19 150:2	196:12	depositions (1)
dataset (3)	De (80)	355:19 380:20	demonstrates (1)	348:18
177:12 227:19,20	6:12,20 22:24 32:25	deciding (1)	48:17	derive (2)
datasets (1)	33:5 125:14,25	94:23	Denmark (1)	165:17 324:20
400:8	126:11 153:12,16	decision (1)	34:22	describe (8)
date (13)	154:3,12 181:1,3,8	345:9	denominator (1)	37:6,11 243:24,25
8:15 188:11 199:9	181:24 182:2	decision-making (2)	184:18	244:13 319:22
200:15 202:18	184:10 203:24	94:2 95:25	department (2)	368:10 371:9
208:12,23 210:16	205:16 212:15	deck (20)	12:15 14:2	described (5)
211:13 348:10,12	213:14 214:9,18,22	131:24 132:5,19	depend (5)	272:6 346:6 368:24
432:10 439:2	215:17 217:23	165:6 277:19,23	51:10 141:24 171:15	418:15 433:21
dated (1)	218:23 219:1 220:7	278:2,14 313:10,13	177:10 333:16	describes (2)
6:11	220:10,15 221:3,23	313:15 316:14	depended (1)	344:18 417:1
dates (3)	222:7 224:5 225:3	405:8,17,21 423:9	23:7	design (11)
149:21 209:7,7	226:6 227:5,18,19	435:12,19 436:13	dependent (2)	42:3,10 49:1 88:23
dating (2)	227:22 228:6,16	436:15	144:4 189:8	245:18 315:18
148:13,20	229:21 230:12	decks (5)	depending (7)	316:4,10 318:5
DAVID (1)	231:16 234:9	113:25 435:13,22,24	86:3 141:18 143:20	332:3 431:20
3:8	235:24 264:23	436:1	187:20 190:16	designing (3)
day (27)	276:25 310:6	declaratory (2)	192:18 340:6	42:11,19,20
126:17 137:1,2	312:24 319:1,7,11	127:7 413:18	depends (19)	designs (2)
197:14 208:2	319:21 320:2,4	Defendant (1)	115:13,14 117:21	317:8,14
209:15 272:3,9,14	321:16 322:25	4:11	131:9 136:3,14	detail (4)
272:23 273:13	323:8,15 326:9	defense (1)	137:19,20 166:22	92:8 395:22 396:1
274:6,7,19 275:6,24	334:23 335:12,23	425:1	177:16 182:9 195:9	402:19
275:25 276:13	336:18 339:14	defer (1)	205:5 209:19	determination (1)
301:19 303:7,11,13	341:3 342:5,5,24	55:14	325:11 328:9	331:20
303:13,13,14	345:7,23 398:13,25	define (5)	333:10 337:10	determine (15)
437:16 438:17	400:7 401:16,20	142:8 164:18 212:4	389:15	43:20 44:15 45:8 46:6
days (97)	dead (1)	274:6,19	depicted (2)	47:1,25 48:3 121:20
192:11 263:2,2,3	428:7	defined (8)	156:22 160:10	128:10 138:17
264:10,11,18,24,25	deal (3)	86:1 144:6 275:6	depicting (2)	170:18 173:22
265:6,7 266:8,9,25	28:15 241:16 435:24	302:12 303:12	156:17 161:4	272:23 334:18
269:15 271:16,23	dealing (6)	304:3,9 388:6	depiction (9)	335:15
272:1,18 273:12,20	39:7 54:14,15 76:2	defines (2)	153:7 155:23 156:16	determined (4)
273:23 275:15,19	247:22 410:1	64:5 266:4	158:9 160:3,15	64:16 124:25 211:13
296:22 297:4,21,22	dealings (1)	defining (2)	161:10,14 162:2	330:5

determines (1)	43:11,16 95:12	directed (1)	discussions (12)	347:19 383:19
420:17	173:17,20 202:9	167:9	27:4,11,16,20,22 28:4	393:6 405:6
determining (4)	225:13 239:17	directing (1)	28:13 29:16 74:2	documents (4)
46:23 121:9 194:23	253:20 257:4,5	433:11	121:5 289:8,12	17:22 434:5,5,15
201:23	296:3 299:11 344:4	directly (1)	disease (21)	doing (21)
developed (1)	345:4 397:8 418:23	317:18	5:21 42:8 87:9 89:7	46:1 49:8 60:22 78:19
105:19	419:1 420:1	disagree (6)	134:3,14 141:11	78:23 103:12
development (1)	differences (2)	60:24,25 68:1 293:18	143:7 145:4,10,17	110:24 135:5
77:14	359:9 385:18	318:19 352:9	145:21 165:14	136:25 162:17
developments (1)	different (82)	disclose (1)	187:4,11,19 188:5	167:9 186:8 254:1
107:1	14:3 30:5 33:13 43:6	79:16	198:5 201:24 215:9	264:19 288:3
devoted (2)	51:15,15,16,17	disclosed (2)	420:9	290:24 382:19
105:9 106:11	55:21 72:2 85:20	79:15 80:9	diseased (1)	383:15 409:14
diagnosable (2)	86:3,10 90:12 106:8	disclosure (3)	133:17	428:8 432:24
188:13 192:7	110:4 111:5 119:23	78:7,12 79:20	diseases (1)	dormant (2)
diagnose (1)	121:5 137:11	discontinued (1)	196:19	189:4 190:23
187:4	140:23 151:20,21	360:8	disorders (1)	dose (25)
diagnosed (3)	151:23 153:6,8,13	discount (1)	34:9	28:10 264:12,13
186:14 191:16 193:15	161:3 163:4 167:2	309:5	dissertation (1)	265:8,15,23 266:17
diagnosing (2)	171:5,9,12 175:21	discounting (1)	197:3	266:24 267:1,6,13
34:10 187:18	187:8,19 192:17	196:4	dissuades (1)	268:3,23 269:9
diagnosis (9)	218:7,7,8 219:7	discovered (1)	312:3	270:3 275:14
194:13 195:3 196:6	220:20 232:24	142:17	distance (1)	302:25 309:20
208:23 209:7,7,10	239:15 244:20	discuss (17)	160:23	311:14,18 335:23
209:14 211:7	246:9 254:10	37:6 56:16 80:20	distinguish (6)	345:7,10,13 387:19
dialogue (1)	292:21 298:11	100:16 168:18	265:17 272:16 276:10	dose-response (1)
95:23	301:21 303:12	178:12 228:7,17	332:4 334:15,20	350:5
dicamba (83)	309:15,16 325:1	289:10 320:22	distinguished (1)	doses (2)
231:24 232:4,11	328:21 331:18	390:9,11 394:3,5	125:5	267:21 329:18
233:7,17 234:7	333:7 343:9 362:22	401:24 402:2	distinguishes (2)	double (1)
235:2,10 247:24	363:4 365:14	408:19	304:17 306:2	90:19
251:7,23,23 252:3,9	368:11,14,16 369:3	discussed (12)	distinguishing (2)	Dr (138)
252:10,18 253:11	378:4,20,23 380:13	38:1 40:21 56:23	270:13 271:10	5:10 8:7 10:14 11:15
253:12,18,20,21	380:15 388:5,10	57:13 242:19 283:8	distribution (10)	13:24 14:4,5,7,11
254:14,19,22 255:1	389:7 396:10	299:21 307:15	94:6,22,23 95:20 99:2	14:15 15:3,15 16:2
255:4,8,21,23,24	415:11 418:16	393:17 400:2	99:5,9 109:2 234:15	16:22 17:6,6 19:4,7
256:7,9,11,13,14,15	420:13 425:24,25	409:20 425:1	364:2	20:8,12 21:8 24:7
256:16,17,18,25	433:5,9 436:5	discusses (2)	distributions (3)	24:10,16,22 25:8
257:1,16,19 258:6,9	differential (9)	72:4 99:4	94:12 104:7 115:20	32:9,14,25 33:5
259:4,5,6,11 260:8	28:20 133:12,22	discussing (13)	District (4)	34:21 35:17,21,25
260:10,10,25	134:19 139:5,15	39:19 57:11 60:18	1:1,2 8:10,10	39:4,13 73:2 81:4
261:10,12,16,24	141:9,19 328:2	234:2 250:12	divided (1)	81:22 83:23 86:24
262:1,13,14,15,16	differently (3)	313:20 316:16	109:23	87:6 89:15 91:25
262:18 279:12,18	181:18 296:15 303:12	321:1 322:14	dividing (1)	92:15 93:8,14 94:15
280:1,14,22 281:9	difficult (7)	339:19 391:22	111:14	96:22,25 97:3 98:8
281:21 282:18	145:16,21,25 146:2	419:25 420:1	Doctor (9)	99:3,23 103:1
283:19 284:1	168:20 313:12	discussion (23)	413:23 419:25 431:3	104:19 105:7
285:19,23 293:7,8	331:19	20:7,11 23:5 30:2,16	432:7,10,18 433:16	110:11 113:17,23
293:11 294:3 295:1	difficulty (2)	56:20 77:18 212:17	434:3,13	114:18 126:14
296:7 424:10,18	96:11 149:12	228:11,22 229:22	doctoral (5)	132:4 144:24
died (1)	diffuse (2)	231:16 234:9	11:20,23 13:19,21	146:15,17 147:4
397:7	280:21 281:10	251:13 263:22	15:23	148:10,16 178:10
diesel (4)	dinner (1)	316:20 318:19	document (12)	203:14,21,23 204:4
33:17,20 150:15,23	13	324:2,17 345:6	1:6 38:5 39:6 66:20	223:5,7,16 224:25
difference (24)	direct (3)	384:8 403:18	76:12 132:11	226:6,10 227:2,5,17
40:17,24 41:1 42:1,25	231:17 307:9 326:10	431:25	147:11 313:14	227:18 238:11

243:20 271:2	drops (1)	31:1 63:25 162:17	either (17)	31:21
276:16 277:25	282:17	368:20	41:16 51:25 99:18	enrolling (1)
278:11,15 306:25	DS (1)	eat (1)	106:21,24 111:5	338:23
307:9 308:2 312:6	256:4	177:24	126:25 132:6 170:4	enrollment (6)
313:10 326:9	due (15)	eaten (2)	254:3 269:18 299:9	325:17 337:14,15
347:20 348:1 349:1	28:20 47:3 77:11	412:6,13	300:19 324:7	346:21 355:16
350:2,15,22 351:7	84:18 108:10	eating (1)	353:25 354:12	377:10
351:17,20 353:8	142:19 152:20	409:15	397:18	entered (1)
375:21 376:6,14	159:17 173:7 190:9	edited (1)	elapse (1)	295:9
377:14 378:13	234:11 264:20	134:9	187:1	entire (2)
382:23,23 385:3	338:15 386:6	educated (1)	elapsed (2)	237:16 304:5
395:23 398:20	387:18	368:24	191:20 194:11	entitled (4)
399:10 402:17,19	duly (2)	effect (60)	elderly (1)	17:16 86:15 128:23
406:15 407:5	10:9 438:9	40:2 43:17 49:23	138:5	363:18
408:10,22 409:18	duplicate (1)	50:21 51:8 55:6	elect (1)	Environmental (2)
410:16 414:2	311:13	88:24,25 89:5 97:22	36:13	6:10 36:5
416:24 419:16,23	Durable (1)	112:10 125:6,8	elected (2)	environmentally (1)
421:3,6,10,14,23	86:16	161:12 162:7 164:2	36:3 158:8	34:4
422:6 435:11 437:3	duration (34)	169:3,4,6,16,17,21	element (1)	EPA (4)
draft (20)	296:22,23 297:3,22	170:6,9,18,24 171:6	122:1	200:14 208:12,16
6:21 383:18,24 386:9	298:11,16 299:3,6,8	171:13,16 173:24	elevated (2)	415:15
388:2,16 389:22	299:18 300:25	175:3 176:3,25	252:2 311:4	epi (2)
390:7 391:1,7,21	301:2,5,8,23 304:5	177:6,15 196:20	elicit (1)	14:2 132:7
392:18 393:2,5,8,15	304:8,9,11,14,18,20	235:12 236:9	37:14	epidemiologic (24)
393:20 395:7 431:4	304:22 305:4,8,13	240:14 242:9 253:3	Elyse (2)	42:20 43:1 45:7 46:7
431:9	309:18 312:1 426:1	263:10,14 264:22	4:15 10:1	50:17,18 52:14
drafting (1)	426:2,4,6,7,9	265:1 266:11 267:1	emerge (1)	56:17 62:4 64:17
429:12	Dynel (2)	267:21 268:18	309:22	65:4,8 71:10,11
dramatically (2)	256:2,4	269:16 270:4,16	emphasis (2)	97:2 122:7 144:9
360:16 373:15		280:10 301:1,3	116:4,14	151:18 178:11
drastic (1)	E	303:3 330:25,25	emphasizing (1)	188:17 191:14
371:23	E (10)	335:1 427:23	98:19	290:1 317:13 334:9
draw (3)	3:1,1 4:1,1 5:1,7 6:1	effects (15)	emphatic (1)	epidemiological (24)
55:25 88:7 94:9	7:1 438:1,1	74:14 76:3 77:12,13	279:5	39:15 42:11 48:14
drawing (1)	Earl (1)	77:15 80:16 82:9	employee (2)	59:10 60:4 61:17
58:13	5:24	197:10,11 198:25	421:10,19	66:11 67:3 68:9
drawn (1)	earlier (14)	229:17 230:5	encompasses (1)	69:5,21,22 119:24
297:4	150:14 189:2 193:15	240:11 335:14	258:15	148:17 153:2
dressing (1)	212:9 230:15	425:6	encompassing (2)	170:20 229:24
312:9	250:12 284:15	efficient (1)	257:18 277:11	230:15 291:25
drew (1)	285:6 289:22 308:3	114:13	end-all (1)	292:5 325:2 333:5
59:17	349:13 408:9,10	efficiently (1)	93:5	334:13 433:24
Drexel (1)	425:1	48:2	endeavor (1)	epidemiologist (16)
33:8	earliest (1)	effort (2)	40:1	47:25 49:18 61:1,1
drinkers (3)	208:12	226:5,7	endeavors (2)	63:5 71:5 78:23
142:20 143:14 144:5	early (12)	efforts (1)	34:25 35:2	79:9,10 88:20
drinking (2)	147:2 150:8 193:10	31:9	endpoint (1)	163:20 210:10
143:23,25	193:12 194:20	Eghal (1)	129:11	273:18 315:19
drive (2)	198:12,24 215:9,10	371:8	enjoy (1)	408:3 421:7
3:5 84:22	341:24 393:23	eight (2)	267:14	epidemiologists (18)
driver (1)	416:25	207:12 270:9	enormously (1)	42:3 43:19,25 44:12
298:3	easier (2)	eight-hour (2)	372:1	44:14 47:10 50:1
driveway (1)	11:5 171:21	272:4 274:7	enrolled (5)	83:25 84:15,20,21
271:20	easily (2)	eighth (5)	333:20 337:8 338:17	85:3,19 107:11
dropped (2)	41:3 366:21	104:16 227:10 260:15	355:18,25	163:4,8,12 316:21
388:14,19	easy (4)	270:7 362:7	enrollees (1)	epidemiology (58)

5:18 13:11,15 15:21	374:13 377:19	98:24 149:16 194:7,7	407:8	excludes (2)
16:4 27:24 30:18	381:1 439:5	224:6 243:25	exact (13)	107:21 131:4
36:5 39:14,25 41:19	errors (2)	244:13 245:15	120:23 202:2 270:8	excluding (2)
41:20 46:2 52:2,5,8	365:12 378:17	255:11,13 274:13	288:21 309:6,7	397:5,6
52:19 53:18 56:25	Esfandiary (3)	344:6,23 381:20,21	361:7,8 374:23	excuse (1)
57:15,23 58:6,15,21	3:16 9:7,7	417:16	377:24 378:1	96:10
59:13 60:6,11 61:14	especially (9)	evaluate (15)	436:13,15	executive (2)
61:22 62:14,21,24	33:11 69:16 119:13	22:20 24:4,12 30:23	exactly (23)	383:7,7
63:12,14 64:4,17	138:5 268:6 280:7	38:18 60:15 85:4,6	27:21 44:9 75:24	exercise (1)
69:2,15 70:3 71:21	321:5 330:19	110:21 167:20	78:19 82:18 93:12	130:4
73:13 79:12,13	360:15	176:24 195:14	120:14 139:18	exert (2)
82:16 84:23 86:13	ESQ (11)	280:5,9 320:15	165:21 168:25	115:19 278:8
92:24 93:2,4 131:21	3:7,8,14,15,16,22,23	evaluated (3)	199:14 208:10	exhibit (67)
187:9 189:22 196:2	4:7,8,14,15	57:21 123:22 140:14	239:10 242:11	5:9,10,15,16,19,23
296:19 414:7	essence (4)	evaluating (8)	272:5 274:23 276:2	6:3,4,5,8,9,12,13,14
415:22 417:4	45:3 257:23 426:3	46:18 60:10 88:1	319:24 325:8 344:2	6:15,16,18,20,21
426:17	430:17	98:21 158:19 405:2	348:17 389:4	7:3,4 11:11,12 39:9
equal (6)	essential (1)	405:3 425:7	394:17	39:12 86:20,21
105:4 160:22 264:10	39:23	evaluation (8)	exaggerate (2)	113:14 132:1,5
265:6 379:8 387:13	essentially (1)	62:7 68:22,24 79:11	134:2,13	147:17 148:1 155:8
equally (15)	312:18	90:22 122:15	exam (2)	156:9 157:4 166:10
49:22 94:17 95:1 97:5	establish (3)	420:12 423:2	333:19,21	178:15 199:24
98:10 99:16,25	139:19 407:8,13	evaluations (1)	EXAMINATION (4)	200:4 203:25 204:1
100:9 101:14 102:7	established (2)	263:13	5:2 10:12 413:25	213:23 214:1
102:19 103:2,18	308:4 353:17	event (2)	435:9	223:13 235:19
104:2,11	estimate (33)	168:9 254:6	examined (2)	243:17 277:3,7
equals (3)	44:4,4,23 45:13 46:15	events (3)	10:9 92:7	288:23 307:10
97:4 99:23,24	46:23 88:25 117:13	18:6 190:19 197:25	example (32)	313:7 318:22,25
equates (1)	117:16,20 119:15	eventually (1)	14:21 30:24 41:20	349:8 350:17,21
316:22	119:17 125:7	128:1	86:5 111:13,19	363:14,17,18
equation (2)	153:15 164:3,4	ever/never (23)	116:24 117:2	386:16,19 405:10
112:24 126:3	165:13,17 171:2	182:22 183:4,6,16	135:25 136:15	405:15 423:6
equipment (7)	181:19 191:9 194:2	184:13,18,21 185:6	142:10,15 143:21	428:14 432:8,18
274:13 279:8 286:4	215:1 216:17	185:12 249:2,11	150:9 154:14	exist (1)
295:8 342:19,20	235:12 236:9 253:3	266:5 278:23	160:14 164:8	242:20
344:21	263:17 264:22	279:15 309:17	168:17 170:8	existed (2)
equivalent (3)	265:1 311:20 322:2	311:15 350:8 352:1	174:13 175:9,11	147:7 310:20
11:25 204:8 205:17	322:9	352:10 353:6	181:1 182:11	existing (4)
Eric (5)	estimates (33)	366:18 396:21	188:24 191:12,13	114:25 117:6 290:19
4:14 9:24 10:16	43:9 46:17 97:22	401:13	334:25 362:12	290:19
103:23 199:25	114:21 115:17	everybody (7)	401:6 415:19 432:4	exists (2)
Eriksson (32)	116:2,11 118:16	61:24 62:2 135:6	examples (1)	91:19 347:14
6:3 154:15,16,20	129:15,17 130:14	197:15 208:1	165:16	expanded (1)
155:1,5,16 156:12	152:9,11 158:25	340:15 370:18	excellent (1)	369:10
161:22 178:18,21	159:3,9,14,21	evidence (34)	220:16	expanding (2)
196:10 306:20	162:15,19 234:11	45:9 61:10 72:8 88:16	exchange (1)	67:17 374:13
307:10 308:3	237:25,25 240:12	92:11,17,21 93:10	15:23	expect (7)
309:11 312:7	242:9 263:14	93:16 94:9 99:11	exchangeability (1)	29:1,2,14 188:4
335:18 340:10	280:10 286:23	105:13 106:15	234:15	282:13 310:20
341:2,14 344:6,10	312:18 320:17	131:6 264:12 265:8	exclude (12)	311:19
344:18 345:25	390:13 394:7 397:9	265:22 266:17	45:20 46:9 52:15	expected (1)
346:10,13,23 347:9	estimating (5)	267:6 268:3,22	57:20 107:11 108:2	310:25
399:19 400:6 410:2	45:4,6 48:9 188:18,19	269:9,14 270:3	110:5 111:6,6 113:5	expenses (1)
error (11)	estimation (1)	291:25,25 292:4,5	287:10,13	137:4
366:7,13,14,17	44:22	323:9,16 351:14	excluded (1)	expensive (1)
370:11 372:23,25	et (16)	402:21 403:13	83:4	225:15

225:15	430:20	189:3 190:9,17,18	133:18 135:1 136:8	177:3
experience (1)	explained (2)	190:22 191:15,17	136:18 146:18	extreme (2)
364:23	91:16 430:17	191:23 193:7,17	149:12 151:14	191:13 373:12
experiment (3)	explaining (2)	194:1,13,18,21,25	152:14 163:21,24	extremely (2)
90:24 94:4 99:7	49:20 50:20	195:4 196:18 198:4	164:9,10 174:9	50:2 69:2
experimentalists (1)	explains (3)	198:7,14 199:10,15	176:2,5 177:3,11	eyeball (1)
63:8	51:20 91:25 92:15	199:16 201:20,24	179:7,11,12 180:7	213:5
experiments (6)	explanation (6)	203:6 209:10,11,20	180:23 189:1 191:2	
74:12,24 75:14,23,25	51:5,12,20 110:5	210:4 211:13 215:8	191:8 192:4,10	F
76:1	361:23 426:11	215:8 225:23	193:2 195:2,18	F (1)
expert (100)	explanations (1)	238:25 240:1,25	196:3,5 200:23	438:1
5:10 6:5 20:13 37:5	50:25	241:24 247:16	201:18,19 210:12	face (1)
39:5 52:21 56:15	explode (1)	248:22 251:7,7	210:15,16 220:18	92:12
57:10,24 58:18 59:9	236:23	252:3,4,8 254:14,19	224:1,21 225:21,25	fact (45)
66:2,4,25 73:3,8,16	exploding (1)	255:16 256:6	236:2,13 237:1,20	78:4 82:15 83:19 87:1
76:13 79:8,10,19	238:8	257:16,19 258:6	238:23 244:20	94:14 100:1,17
80:6,22,24 81:4	exploratory (6)	259:4 260:21 261:9	246:12,18 248:4	103:3 110:4 122:22
83:15,19 84:13	244:1,14,23 245:15	264:17,18,21,24	250:23 252:10,17	123:14 129:24
86:25 87:17 107:7	247:8,13	265:6 266:3 272:10	253:17 254:2,20	140:18,19 142:19
117:23,24 119:21	explore (2)	272:23 273:13,18	257:9 263:1 271:6	191:3 218:25 220:6
131:17 142:2 152:1	311:18 409:18	274:7,20 275:6,7,25	273:4,5 274:15	221:2 254:18 258:8
152:2 155:24	exposed (30)	286:5,7 296:22,22	275:21 280:19	260:9,15 268:7
158:24 165:23	43:11,13 45:1 141:20	299:14 300:2,3,14	282:7 283:19,25	283:8 288:10
182:21 183:9 186:2	150:11 164:11,12	300:18 301:24	285:1 294:3 308:13	305:12 306:18
212:23 218:17	164:13 175:15,20	302:1,5,6,20 303:7	310:24 312:17	307:15 310:6
248:25 249:17,19	176:11 209:14	303:11,14,24 304:3	313:24 326:16	320:23 327:25
250:5,21 251:8,22	237:4,4 238:5	304:4 305:14 308:7	329:25 330:12,20	331:21 333:4,7
254:11,12 257:5	250:23 254:2 255:7	309:23 311:25	332:5,5 333:8 334:1	343:22 374:11
258:4 259:3 260:7	255:7 261:9,11	314:8,11,21 315:4	338:6,8 339:15	389:9 390:25
262:5,21 263:6	262:16 268:14	315:12,13 316:13	342:25 343:23	393:16 394:14
277:16,21 278:3,9	326:17 330:10,10	324:6,7,8,18,19,24	346:10 347:1,11	411:11 420:20
283:6,17,24 285:5	332:12,13 336:7	324:25 325:7,9	355:8,20,21 359:10	429:23 435:18
288:12,14 291:10	396:17	328:4,5,18 329:10	360:11 370:25	factor (15)
292:11 294:12	exposure (255)	329:10,19,24 330:9	398:4,15 400:24	143:4 146:3,6,8
295:18 305:11,20	5:21 22:15 24:4 26:7	330:14,15 333:16	426:18,21 430:3,6,8	164:14 169:5
310:5,17 319:13,19	27:1 29:18 30:6,13	335:25 336:2,3,4,6	express (2)	175:12,17 194:25
345:8 347:22 348:5	30:19,22 31:13,19	336:8,10 337:20	91:12 381:12	285:22,24 328:13
348:14,18 389:21	32:4,5 41:21 42:16	338:13 339:7,16	expressed (2)	328:20,23 334:19
395:7 401:24 402:6	48:18 49:2,5 64:7	340:3 341:5,6,7,16	414:4 434:7	factored (1)
402:8 408:15 409:2	70:9 87:9 124:7	341:16 342:4,8,16	extend (1)	301:7
429:10,13,19	125:4 126:7,10,12	343:21 345:11,12	162:7	factors (20)
432:15 433:18	134:2,13 135:12,16	345:20,22,24 346:5	extensive (4)	32:19 33:14 48:1
434:7	135:19,21,25 136:9	346:8 347:6 350:6,6	227:19,20 263:15	145:4,10 151:6
expertise (3)	136:11 137:12,14	351:15,23,25	274:11	163:22 164:11,13
38:14 55:2 82:7	142:3,4 143:6	352:18 353:24	extensively (1)	187:20 189:5
experts (2)	145:11,14 149:2,7	356:7 357:20 359:9	225:22	215:19 279:11
18:22 55:15	149:21 152:21	359:11 360:14,15	extent (10)	328:1 332:7,11
expires (2)	159:17 165:14	362:2 364:23	34:23 41:2 170:18	334:19 335:16
34:14 437:21	167:17,19,22 168:3	367:24 369:19	171:13 176:17	424:14 430:9
explain (16)	168:21 169:15	371:7,15,21 377:7	234:19 242:21	facts (3)
51:2,6 84:12 86:25	171:22 174:15	390:8,10 394:2,4	346:9 408:18 436:4	49:21 50:20 439:4
98:1 117:9 123:8	176:18 182:12,14	399:2 430:10	external (4)	faculty (4)
126:7 132:22	182:22 184:13,21	433:12,14,20	20:17 25:18 383:8	14:3 16:22 33:1,6
165:22 186:19	185:10,13,14,22	exposures (113)	385:4	fair (12)
367:11 414:2	186:17 187:1,4,10	24:13 30:21 31:18,24	extra (4)	31:7 46:5 47:4,20
416:23 425:20	187:12,13 188:5,12	33:13,19,21 38:15	170:13 171:22,24	48:5 51:8 125:17

260:17 292:15	federal (1)	finds (1)	173:6	56:10 57:1,16 58:7
301:5 323:1 420:6	79:21	351:13	fix (1)	58:22 59:5,14 60:8
fairly (5)	feed (1)	fine (12)	249:21	61:5,18 62:5,22
38:5 111:25 171:25	289:13	68:5 72:18 226:23	Flaherty (3)	63:17 64:14,20 65:6
172:4 344:25	feel (1)	240:23 264:7 281:3	4:79:12,12	65:15,20 66:16
fall (4)	204:5	334:11 348:19	fluctuated (1)	67:10 68:15 69:11
164:6 271:21 432:13	fellow (4)	360:4,6 436:14,18	281:15	70:14,24 71:16
435:12	33:23 35:17,21,25	finish (13)	focus (3)	72:11,16 73:9 74:7
fallen (1)	FERGIE (3)	61:5 65:20 119:10	32:23 77:12 175:3	74:22 75:9 76:4
216:7	259:8 266:20 267:9	126:15 127:13	fold (2)	78:11 79:6 80:10
falling (1)	field (7)	128:24 151:15	98:5 175:14	81:6 82:3 83:5,13
322:9	24:8,13 26:20,23 27:9	231:5 237:13 337:1	folks (1)	84:19 85:15,24
falls (2)	88:4 125:5	346:18 370:4,8	367:24	87:21 89:21 90:16
42:16 159:24	fields (1)	finished (2)	follicular (1)	91:8,20 92:2,25
falsify (1)	136:23	231:4 243:14	280:12	93:18 95:4 97:15
40:10	fieldwork (2)	FIRM (1)	follow (3)	98:16 99:13 100:4
familiar (3)	22:19 134:21	3:18	22:18 314:17 432:4	100:23 101:17
19:1 33:12 416:20	fifth (6)	first (65)	follow-up (13)	102:11 103:6,19
family (2)	103:22 123:19 221:9	13:21 15:2 21:5 22:10	28:21 29:3 141:8,9,10	104:14 105:15
179:5 180:5	225:9 267:10	22:11,14,15,20 34:8	141:20 193:22	106:2,17 107:14
far (15)	374:22	34:10 54:2 75:4,17	356:18 363:20	108:11 109:17
15:5,12 21:7 32:12	fight (1)	79:2 89:15 108:16	367:15 433:15	110:7 111:8 112:11
54:25 112:20,21	216:9	118:1 127:5 175:10	434:23 435:5	113:9,13,19 114:5
179:14 192:3	figure (7)	178:12,18 186:8,16	followed (4)	114:14 115:2,11
204:11 248:11	187:9 365:11 373:1	188:2 190:17	32:16,17 35:11	116:7,16 117:7
366:1 367:3 371:7	374:18 377:17	194:12 199:20	204:20	118:11 119:1,10
383:25	379:22,23	200:15 201:7,11	following (7)	120:22 121:13,23
farm (1)	figuring (1)	202:18 208:2	29:12 32:22 194:6	122:11 123:1,17
202:19	299:13	209:15 210:1,4,16	234:13 287:20	124:15 125:18
farmed (1)	file (1)	211:13 214:19	391:8 436:24	126:15 127:5,13,16
148:25	83:9	216:1 249:14	follows (2)	127:24 128:13,23
farmer (2)	filled (1)	267:15 277:22	10:10 194:4	129:9 130:10,19
136:19,20	12:24	283:16 295:7	fooled (1)	131:8 132:14,23
farmers (24)	final (2)	297:17 312:25	119:16	133:2,20 134:17
22:5 147:6 149:4	12:22 289:13	328:10 337:4	footnote (12)	135:13,23 136:13
150:11,16 176:11	find (27)	347:21,25 351:23	179:4 252:5,7,13	137:16 138:12
176:13 201:11,20	19:14 29:4,9,14 50:25	355:9,25 357:15	255:21 257:17	139:1,17 140:8,22
202:8,20 203:8	51:4 68:3 78:20	367:25 369:7,20	259:13 261:1 386:3	141:15 142:6,25
208:10,14 250:23	87:16 90:9 99:3,10	370:24 371:15	387:12,16,21	143:8,12 144:15
325:17 333:18	99:25 102:7 112:9,9	373:9 377:9 391:6	footnotes (1)	145:19 146:20
334:4 337:6,7 338:1	138:4 148:25	402:10,16 418:16	387:8	147:9,19,22 149:8
338:18,23 355:24	232:17 249:3 274:3	first-degree (1)	forest (9)	151:4,15 153:19,22
farming (13)	280:14 299:6	279:6	152:25 153:4 160:5,9	154:18 155:2,19
31:4 147:6 148:12,19	350:21 384:11	fish (1)	160:21 161:5,16	156:11,20,24
150:25 151:1	402:21 414:9	77:13	162:6,13	157:14,24 158:14
200:22,23 201:18	finding (5)	fit (3)	Forgie (527)	159:6 161:1,18
202:12 337:11	34:9 298:4 319:21	63:15 64:18 318:6	3:7 5:5 8:25,25 9:16	162:10 163:15
339:4,6	377:21 427:1	fitting (1)	9:23 14:17 16:15	164:15 165:7 166:4
fast (2)	findings (17)	163:9	19:12 23:22 25:9	166:6,21 168:7,10
25:3 394:25	32:18 51:6 114:24	five (11)	26:8 28:2,18 30:10	168:23 169:24
favor (3)	152:19 159:16	68:19 188:4,11	31:15 32:21 35:9,15	170:22 171:18
113:6 216:7 323:17	228:8,17 229:15	190:13 195:24	38:10 40:3,13 41:23	172:3,12,17,22
Favorite (1)	230:3 232:1,5	200:2 268:7 355:17	43:4,23 44:17 45:10	173:1,18 174:6,17
142:15	234:10 245:13	366:11 434:25	45:22 46:11 47:5	174:20 175:8 176:8
February (2)	247:6 248:2,3	437:4	48:20 49:24 51:9	176:22 177:9,23
26:2 349:19	377:17	fivefold (1)	53:11,20 55:4,18	179:18 180:1,24

181:13 182:8,23	313:5,25 314:6	51:9 53:11,20 55:5	220:11 221:7 222:2	388:3 389:2,14
183:19 184:15,22	315:6,20 317:11	55:18 56:10 57:1,16	224:10 225:8 227:9	391:14,24 392:20
185:2,11 187:6	320:13 321:2,20	58:7,22 59:14 60:8	230:7,19 232:7	393:7,19 394:19
188:15 189:25	322:17,22 323:4,21	62:5 63:17 64:14,20	233:10,21 234:24	395:11 396:6 397:2
191:5 192:8 193:4	324:12 325:6,25	65:15 66:16 67:10	236:4,15 237:22	397:20 399:12,22
193:19 195:8	326:24 327:4,16	68:16 69:11 70:14	239:3 240:4 241:8	400:9 401:1,14
196:21 198:21	328:7,16 329:20	71:16 73:9 74:7,22	242:2,23 244:2,17	402:25 403:8,16,24
199:12 200:6,19	330:17 331:24	75:9 78:11,15 79:6	245:9,16 246:14	407:10,23 413:16
201:2,14,25 203:1	333:9 334:21	84:19 85:15,24	247:10 248:6	416:11 420:10,19
204:15 205:4,19	336:12,21 337:1,23	87:21 89:21 90:16	250:14 253:23	421:16 422:4,10,24
206:7,15 207:8,21	338:11 339:20	91:8,20 92:25 95:4	254:23 255:18	425:2
208:7 209:16	340:20 341:10,17	97:15 98:16 99:13	256:3,21 257:12	formal (3)
210:17 211:4,16	342:10 343:3,11	100:4 101:17	258:12 259:9	266:23 267:12 282:1
212:1 213:7,22	344:13 346:2,18	102:11 103:6,19	260:14 261:6 262:8	format (2)
215:20 218:1 219:2	347:2 348:6 349:3	104:14 105:15	265:11 266:21	258:24 431:18
219:22 220:11	349:10,13,15,21	106:2 107:14	268:6 271:8 281:2	formed (1)
221:6 222:1 223:21	350:11,25 352:14	108:11 109:17	281:14 282:9,22	416:12
224:9 225:7 226:20	353:10 354:2,16	110:7 111:8 112:11	283:11 284:17	former (2)
226:25 227:8	355:12 356:14	115:2,11 116:7,16	285:16 286:21	16:3 421:10
228:25 229:12	357:9 358:1 359:2	117:7 118:11 119:1	287:12 288:1 289:2	formulate (4)
230:7,19 231:3	359:24 361:4,11,16	122:11 123:2,17	290:12 292:7,20	40:5 44:21 48:7 52:7
232:7 233:10,21	362:5 363:5 364:7	124:15 125:18	293:12 294:4 295:3	formulates (1)
234:24 235:16	364:18 365:4 366:4	128:13 129:9	295:19 296:10	31:11
236:4,15 237:13,21	367:6 368:3 370:4,7	130:10,19 131:8	297:10 298:6,18	formulation (1)
238:14 239:2 240:3	371:3,18 372:8	133:11,20 134:17	300:5 301:11	200:16
241:2,6,17 242:1,23	373:3 374:20 376:1	135:13,23 136:13	302:21 303:15	formulations (5)
243:14 244:2,16	376:9,19 377:23	137:16 139:1,17	304:7 305:15	52:1 403:14 417:18
245:9,16 246:14	378:5 379:1,14	140:8,22 141:15	308:23 309:12	426:15 434:18
247:9 248:6,15	380:3 381:6 382:8	142:6,25 145:19	310:14 311:8	forth (10)
249:25 250:14	382:17 383:3,13,23	146:20 147:9 149:8	312:12 313:11,25	55:16 116:3,13
251:18 253:23	384:10,14,19	151:4 153:19	314:6 315:6,20	273:10 288:13
254:23 255:17	385:10 386:25	154:18 155:19	317:11 320:13	324:5 351:21 384:3
256:3,21,23 257:11	388:3 389:2,14	156:20,24 157:14	321:2,20 322:22	384:7 438:9
258:11,23 259:24	390:19 391:14,24	157:24 158:14	323:4,21 324:12	found (20)
260:4,13 261:5,20	392:20 393:7	159:6 161:2,18	325:6 326:24	33:17 40:11 82:11
262:7 264:2,7	394:19,21 395:11	162:10 163:15	327:16 328:7	92:8 94:16 95:1
265:10,24 268:5,24	396:6 397:2,20	164:15 166:4,21	329:20 330:17	97:4 100:9 101:13
269:11 270:6 271:8	398:7,10,22 399:12	168:23 169:24	331:24 333:9	113:24 147:5
272:11,24 273:14	399:22 400:9 401:1	170:22 171:18	334:21 336:12,21	250:25 286:16
274:8,21 275:2,8	401:10,14 402:25	172:3,18 173:1,18	337:23 338:11	306:10 326:20
276:1,7,19 281:1,13	403:8,16,24 404:9	174:6 175:8 176:8	339:20 340:20	327:12 365:23
282:8,22 283:11	404:22 405:22	176:22 177:9	341:10,17 342:10	367:2 374:13 430:4
284:17 285:16	407:10,23 409:1,5	180:24 181:8,13	343:3,11 344:13	four (18)
286:21 287:12	411:2,9 412:21	182:8,23 183:19	346:2 347:2 348:6	48:24 110:23 123:11
288:1,15 289:2	413:4,12 414:1	184:15 185:11	349:3 350:11	172:14 195:21
290:12 291:15	419:24 420:14	187:6 188:15	352:14 353:10	254:9 331:12 332:5
292:7,20 293:12	421:1,21 422:5,18	189:25 191:5 192:8	354:2,16 355:12	332:10,18 355:16
294:4 295:3,19	423:5,8,12,18,21,23	193:4,19 195:8	356:14 357:9 358:1	360:1 366:11 400:4
296:9 297:10 298:6	425:8 434:22 435:1	196:21 198:21	359:2,24 361:5	400:8 406:19
298:18 300:5	435:6 436:6,19	199:12 201:2,25	363:5 364:18 365:4	432:14 433:17
301:10 302:21	form (360)	203:1 205:4,19	366:4 367:6 368:4	fourth (1)
303:9,15 304:7	26:8 28:18 31:15	206:7,15 207:8,21	371:5 372:9 373:4	121:24
305:15,17 307:12	32:21 38:10 40:3,13	208:7 209:16	374:21 376:1,9,20	frame (1)
307:17 308:23	41:23 43:4,23 45:10	210:17 211:4,16	378:7 379:2 380:7	198:10
309:12 310:14	45:22 46:11 47:6	212:1 213:7 215:20	382:8,17 383:3,13	France (2)
311:8 312:12 313:2	48:6,20,25 49:24	218:2 219:2,22	383:23 386:25	395:23 396:2

frankly (2)	375:15	407:7,19 408:2	165:25 166:2,17,20	342:6 343:1,9 350:4
241:5 412:9		genotoxicology (1)	173:25 174:10	350:8 351:15,23
French (2)	G	54:18	176:3,25 177:13	352:1,2,11 353:2,7
396:13 400:5	G (6)	Germany (2)	178:23 180:13	354:13,14 357:25
frequencies (1)	252:5,7 257:17	11:16 14:8	182:6 183:25	358:15 360:18
303:16	259:13 261:1	getting (9)	184:13 185:8,10	362:4,22 363:8
frequency (14)	262:16	35:3 65:18,21 85:8	186:17 194:12	365:23 367:2,23
269:15 297:3,21,25	game (1)	226:21 259:23	195:12 199:10,19	369:4,9,22 370:16
298:7 302:25 303:2	249:9	324:17 375:8	201:4,12 202:8,11	371:1,10,25 372:19
303:14 304:3,6,15	gather (1)	381:11	202:18 207:6 208:1	373:14,18 374:12
304:21 344:22	26:6	give (21)	208:14 209:24	374:16 375:19,24
423:25	gathered (3)	78:22 81:6 83:16	212:18 213:15	377:6,8,17,18,22
frequent (1)	346:11,14 417:11	112:8 127:9 136:6	223:9,19 224:7	378:19,19,23
267:19	gathering (3)	152:19 183:11	227:6 228:8,18,20	379:12 380:12
frequentist (2)	26:17 314:21 355:7	196:19 236:8 241:3	229:17 230:5,17	381:1 382:7,16,20
106:4,21	gauge (1)	241:10,14 264:13	231:2,7,14 232:5,14	383:2,12,20,22
friends (1)	417:8	272:14 299:20	232:21 233:1,9,20	384:9 385:9,14
14:16	gene (1)	351:2 361:23	234:22 236:9,11	386:4,11 388:25
front (4)	89:6	404:23 411:19	237:2,3,24 238:5,22	390:21 391:18,23
83:20 152:3 295:23	general (26)	415:19	240:14 245:6,13	392:2 394:10
428:16	5:12 27:25 92:19	given (11)	246:3 247:7 248:3	395:14,15 396:4,23
fuel (1)	93:15 135:19 136:9	108:9 158:4 165:16	248:10,20 249:3,15	399:3,20 402:21,22
150:15	137:11 149:20	202:8 233:22	250:8,24 251:6	403:12,14,23 404:8
full (9)	163:3 197:13	274:14 329:8,11,14	252:4,9,14 253:19	404:20 418:2
83:16,19 118:1	202:13 223:25	433:6 438:11	253:22 254:13,20	420:17 422:8,22
216:22 273:12,13	231:7 242:5 311:6,9	gives (6)	255:3,11,16,23	429:25 431:10
275:6 290:9 297:7	318:3 325:16	207:12 236:9 243:3	256:7,10 257:8	433:22 434:9
fully (7)	338:17 352:16	414:14 420:7	258:6,10,16 259:3,6	glyphosate's (1)
152:10,18 157:12	357:11 358:24	426:14	260:8,11 261:1,10	101:7
158:21 215:1,15	387:20 392:1 420:8	giving (1)	261:16,19 262:1,6	glyphosate-based (8)
262:21	420:12	162:15	263:3 264:12 265:9	52:3 183:17 200:15
fumigant (2)	generally (16)	glean (1)	265:18 266:4,18	225:4 403:14
386:23 387:3	27:18 30:18 40:4	123:10	267:6,7,16 268:4,18	417:17 426:14
fumigants (1)	49:25 93:9,11 99:10	glyphosate (351)	268:23 269:4,10,17	434:18
275:18	146:25 188:3 197:1	20:9 22:25 24:17	270:4 271:6,19	glyphosate-intensiv...
fun (1)	216:11 222:8 310:3	27:14 32:14 35:8	276:14 278:24	339:4,6
78:24	316:17 317:7	51:23,25 52:6,19	284:4 285:21 287:6	glyphosate-related ...
fundamental (2)	341:15	59:13 60:5 62:12	292:1,6 298:13	52:1
49:17 50:16	generate (3)	63:13 64:7,8,17	299:9 300:2,4,15,18	GMOs (1)
funding (2)	41:10 42:17,21	65:9 66:9 67:4 68:8	300:19 302:5	369:22
34:25 35:3	generating (1)	69:6 70:3,6 71:12	305:14 306:12	go (61)
fungicide (2)	40:9	73:6 77:22 80:17	313:19 314:19	15:24 17:20 35:4
386:23 387:2	genetically (1)	82:10 87:19,19 90:2	315:3 318:13 319:1	40:22 43:25 47:17
fungicides (1)	338:15	90:5,13,14 91:6	319:8 321:15,17	48:13 49:4 57:4
275:18	genomic (1)	97:10,13 98:11,14	323:2,10,19 324:11	75:18 76:19 79:13
funny (1)	89:3	100:1,2,7,12,20	325:16 326:15,17	81:13 90:18 96:6,12
168:24	genotox (1)	101:3 102:6,6,8,9	326:21 327:13,14	113:8 126:18,24
further (14)	402:18	102:25 103:3,4,13	327:18,21 328:3,4,5	127:18,21 137:3
161:13,15 162:8,8	genotoxic (2)	103:15 119:24	328:10,18,21,25	156:13 161:13,14
183:12 229:16	74:14 76:3	120:9,13,20 121:11	329:3,9,13,14,19	161:20 162:3
230:4 305:13	genotoxicity (22)	121:21 122:9,24	330:9,14,15,24	177:21 192:5
347:16 410:9	54:15,21 57:5 58:2	123:12,15 124:13	331:13 333:2 334:5	213:19 216:12
411:22 412:23	59:20 60:12,13 74:3	125:16 128:11	334:16 335:2,14,20	222:12 235:14
435:9 438:12	75:7,13 82:24 402:3	147:8 148:20 149:7	336:7,10,15,19	249:20 254:12
future (4)	403:18 404:3,13,16	152:5,20 153:3	337:4,10 338:15,18	283:21 295:13
21:18 115:1 117:6	404:17 405:3,4	155:16 159:5,17	338:25 339:17	297:15 303:17

307:18 319:5	Google (1)	411:12	166:1,19,23	52:3 150:8 183:17,24
325:23 335:8,21	414:13	guidelines (2)	Hashibe (2)	225:5 238:24
342:1 354:22	Gotcha (1)	37:2,23	16:5 17:6	275:17 338:19
389:23 392:7	18:19	guys (5)	hazard (7)	388:14,20
395:21,25 401:5,16	gotten (5)	9:16 155:3 174:21	418:24 420:11,16	hereinbefore (1)
410:5,19 414:7,13	224:24,25 346:16	177:23 435:6	421:23 422:1,14,20	438:9
414:19 415:2 416:3	361:12 391:5		hazardous (4)	hereunto (1)
429:23 430:21	Grandjean (1)	H	419:2 420:2,7,21	438:16
goes (14)	34:21	H (3)	head (9)	heterogeneity (1)
45:2 46:18 119:18	graph (1)	5:7 6:17:1	15:3,6 130:5 180:18	86:7
126:3 136:22	373:20	habit (1)	180:19 181:15	hierarchical (18)
162:24 168:14	graphs (1)	96:7	184:17 186:6	213:9,11 214:8
196:15 206:20	167:10	habits (1)	197:16	215:19,22 216:2,6
299:9 341:4 371:8	great (3)	96:9	heading (1)	217:6,12 232:3
402:18 427:11	11:9 78:24 144:15	hairy (1)	261:1	233:5,16,19,24
going (79)	greater (24)	156:3	heads (1)	234:5,13 335:4,8
14:24 22:4 26:20 38:4	183:15 184:12 264:11	half-hour (3)	197:17	hierarchy (1)
45:21 62:25 67:19	265:7 271:15,23	271:19,20,21	health (21)	217:24
80:10 82:20 83:5,8	273:11 296:5 299:8	halfway (2)	6:23 12:4,5 20:18	high (15)
84:13 85:7 87:16	300:3,17 301:14	36:21 188:2	23:19 24:3 27:12	119:16 126:11 269:3
96:25 98:3 112:5	302:17,19 327:13	Hamburg (2)	31:8 34:5 141:13,17	301:25 303:20
126:16,17,21,22,23	327:14 328:3 342:7	12:14,23	195:19 229:17	304:13,17 338:2
127:20,22,24 128:2	345:23 423:25	hand (6)	230:5 318:15 325:1	341:7 345:11
134:22 146:18	424:23 425:10,22	25:2 126:11 304:15	343:7 347:17	366:21 375:2
147:16 149:6	427:9	338:1 350:20	363:21 385:21	426:17,20,24
162:22 163:3	Greenland's (1)	438:17	427:2	high-risk (5)
175:16 183:10	99:3	handed (1)	heard (2)	179:6,7,10 180:6,7
184:7 186:10	Grindal (2)	132:4	10:16 383:9	higher (18)
190:25 200:1,10,11	4:3 9:13	handful (1)	heavily (3)	105:11 106:13 125:24
208:4 213:4 220:24	group (42)	74:2	115:10,18 415:22	189:13 257:6,8
222:23 226:14,16	16:4 18:3,7,24 23:19	handled (4)	Hedlund (2)	267:20 300:15
239:19 257:6	24:7 25:18 27:2,5	182:11,13 183:24	2:10 3:10	309:19 316:23
259:18,21 262:22	27:23 32:11 34:4	185:14	held (2)	328:4 329:18
269:20,21 270:10	60:11,13,14,22 61:2	happen (6)	2:10 8:13	330:14 336:2,9
282:2 286:11	61:22 62:24 63:12	25:20 126:22 134:22	Hello (1)	339:9 425:4 426:7
312:16 329:5 342:1	64:23 69:24 240:15	189:2 246:20	73:2	highest (6)
344:25 346:10	258:14,19,22	346:20	help (5)	300:16 317:1,5,17
350:20 361:17	267:17 270:16	happened (3)	16:8 37:1,20 332:2	330:10 336:8
378:11 384:14,19	274:4 284:23	107:4 199:15 368:18	417:7	highlighting (1)
395:21 406:20	302:18 336:8 341:5	happening (4)	helped (2)	148:9
408:20 409:1,10	341:6,7 345:12	187:11 188:21,23	17:10 24:4	highly (19)
410:17 411:22	370:17 375:11	377:9	helping (1)	89:1 152:9 153:9,13
412:24 414:21	418:17,18,19	happens (4)	16:6	153:15 154:16
419:13 430:25	427:19	216:22 232:1 427:18	helps (3)	157:21 158:25
434:24 435:1	group's (1)	427:24	218:9,9,11	159:2,13 253:12
gold (2)	152:5	happy (4)	Heltshe (9)	329:25 330:20
139:20,23	groups (10)	51:19 160:7,8 218:12	7:3 363:12,13,18	331:5 332:11 334:2
Goldman (2)	18:10,16 60:10	hard (1)	375:21 376:6,14	430:6,18,24
2:11 3:10	188:18 240:12	339:23	377:14 378:13	Hill (10)
good (16)	309:19 345:13,24	Hardell (16)	hematopoietic (4)	263:9,12 416:21,24
8:4 10:14,15 11:2	353:24 396:11	6:4 156:1,2,7,17	150:21 196:17 197:1	417:19,23 418:6,13
86:19 106:16 143:8	guess (11)	157:11,20 228:23	279:5	418:14,22
157:15 178:2 198:9	33:24 134:4 175:24	229:2,10,24 230:9	herbicide (6)	hinges (1)
199:4 264:2 302:2	177:15 181:16	344:6,10 400:3	52:7 257:20 386:10	140:6
$334: 24$ $432 \cdot 4$	183:5 207:12	409:23	386:22 388:20,24	hint (1)
432:4	228:10 264:1 352:5	harder (3)	herbicides (10)	78:22

histories (1)	33:19 150:25	424:17 429:6,8	impacted (1)	78:1 180:10 184:9
274:12	hypotheses (13)	IARC's (22)	369:22	222:13 254:20
history (2)	94:18 95:3 98:5,13	20:8 52:18 53:10,16	impetus (2)	257:24 261:14
179:6 180:6	101:22,23 102:17	53:17 54:1,11 56:23	229:15 230:4	284:3,7,14 357:25
Hodgkin's (1)	102:20 104:3,4,24	56:24 57:14 58:4,8	important (6)	362:4 395:9 397:24
151:6	105:2,3	58:9,19,20 59:8,12	145:15 205:22 255:13	398:1 422:16
Hohenadel (3)	hypothesis (77)	59:22 60:3 159:12	321:25 424:24	includes (21)
250:10,11,21	39:20,23 40:5,9,11,15	421:23 422:20	425:4	12:3 77:7 181:2,21
hold (3)	40:15,16,24 41:3,6	idea (7)	Importantly (2)	243:1,6 255:3,22
87:12 234:12 307:17	41:7,8,10,11,14,17	106:16 150:2 246:24	118:2,16	260:25 261:2,25
hold-out (1)	41:21,25 42:4,6,8	322:5 337:24 392:1	imprecision (1)	263:17 281:6
368:1	42:13,17,18,23 43:2	420:7	234:11	282:20 308:5 322:1
holding (3)	43:10,21 44:1,2,16	ideas (3)	improves (1)	350:5 357:7 383:20
114:25 117:4 377:1	45:9,20,25 46:9	18:5 22:15,16	219:13	386:4 401:19
holdout (3)	47:2 48:4 51:22	identical (5)	imputated (1)	including (31)
364:4,24 365:7	92:18,22 93:11,17	232:4,9 233:18	364:4	29:12,22 31:11 36:12
Hollingsworth (3)	97:6,10,12,18,18	234:20,21	imputation (49)	63:22 70:5 81:25
4:10 9:25 10:2	98:3,10 99:12,19	identification (21)	355:2,6 356:5 357:5	83:16 85:21 139:16
honor (1)	100:10,12,19 101:2	11:13 39:10 86:22	357:11,23 358:6,25	187:20 208:15
34:11	101:5,12,14,16	113:15 132:2 148:2	359:7,8,22 360:4	220:22 257:7
hope (1)	102:15,17,24	155:9 156:10	361:2 362:3,14,20	258:15 259:6
184:20	103:13,14,17,18	166:11 178:16	363:2,19,25 364:21	274:12 281:23,25
Hospital (1)	104:13,22,25	200:5 204:2 223:14	364:22 365:10,21	290:15 309:3
12:14	105:14 106:16	235:20 243:18	365:24 366:2,25	359:19 374:10
hospital-based (2)	107:22 245:7	277:8 313:8 318:23	367:4 372:24	376:5,14 377:4
400:14,16	246:13 281:23	349:9 363:15	373:16 374:10,15	378:18 390:25
hour (3)	323:10	386:17	375:19,23 376:7,16	396:10 419:5
72:15,16 98:2	hypothesize (1)	identified (3)	377:5 378:16	434:19
hours (8)	41:5	11:18 334:14 366:1	380:22,24 381:4,15	inclusion (1)
48:24 272:3 273:20	hypothetical (1)	identify (14)	381:17 382:5,14,25	138:18
273:24 398:11	333:1	8:23 9:19 17:23 39:20	383:10,21 384:2	incomplete (1)
411:4,8 412:19		84:5 91:18 120:8	385:7	433:13
household (1)	I	131:16 145:3 166:1	impute (4)	incorporated (3)
431:2	IARC (91)	166:19 167:1	356:6,17 357:1	8:19 358:22 432:21
hover (2)	14:22 15:4,8,15,18,24	168:20 212:12	373:19	incorrect (4)
308:25 354:20	16:4,7,13,20,25	identifying (1)	imputed (1)	196:22 271:9 337:22
hovering (3)	17:6,9,18,24 18:20	145:9	380:17	377:3
353:14 354:10 401:6	18:23 19:4,17,21	ignored (1)	inappropriate (3)	increase (6)
hovers (1)	52:24 53:1,13,22	306:22	382:6 383:22 385:8	33:18 89:7 190:14
425:18	54:5,8,12,14,19	ignoring (1)	incentive (1)	254:21 332:19
huge (4)	56:22 57:6,11 58:1	173:3	135:2	377:8
89:11 210:1 338:25	59:1,17,19 60:6,9	II (4)	incidence (1)	increased (18)
377:8	61:15 62:20 63:12	149:15,19,19 150:12	299:7	142:22 148:11 173:6
human (8)	63:21 64:3,5,16	imagine (10)	incidents (1)	230:22 252:15
56:3 95:25 120:13	65:9,23 66:5,9,18	114:3 154:22 180:10	230:22	254:15 271:13
150:10 404:14	66:18,21 67:2,12,14	181:2 189:12	include (19)	326:21,22 327:21
408:1,4 418:20	67:20,24 68:7,17,21	227:17 272:15	112:18 130:13 179:12	329:9,12,18,21
humans (1)	69:17,24 71:6 72:3	328:19 336:15	180:8 181:20	331:21 367:24
407:9	72:4,7 80:18 82:12	378:10	238:25 243:10	371:25 372:22
hundred (5)	150:9 152:4 284:10	immediately (1)	258:9 262:6 283:3	increases (4)
90:8,23 177:5,8 340:1	284:22 285:14	77:10	301:5 309:23,25	176:6 219:15 311:23
hundreds (1)	286:13,23 287:3	immune (1)	312:14 322:21	311:25
411:12	322:19 407:12	189:5	354:21 398:1 428:2	increasing (2)
husband (3)	415:14 416:7,10,13	impact (5)	436:25	329:13 332:8
136:23 137:2 138:3	418:5,12 420:21	170:10 171:25 390:12	included (20)	incredibly (1)
husbandry (2)	422:1,7 423:1	394:6 416:6	29:10 53:1 54:8 58:1	413:13

incremental (1)	115:20	174:12 176:6	intermediate (1)	424:8
222:22	inform (1)	instruction (1)	143:6	intervals (26)
independent (13)	242:6	127:1	intermediates (1)	43:9 86:16 107:7,12
52:25 54:2,7,23 66:23	information (42)	insult (1)	145:13	108:13,14 110:10
68:23 143:4 144:1	26:6,7,18 38:19	188:13	internal (1)	112:17 114:23
285:21,23 330:7	108:15,15 110:17	integrate (1)	91:17	118:10,19,23 130:7
403:11 430:9	113:3 135:12,17,21	16:6	internally (1)	130:12,23 161:6,13
independently (1)	139:4,6 195:17	intellectual (1)	286:17	162:16 214:25
60:16	247:6 272:22	330:21	International (1)	216:24 217:11
indicate (2)	295:12,14,16	intends (5)	36:4	283:1 309:24
230:21 272:21	297:20 315:5 355:7	81:6 82:15 83:16	internet (1)	312:14 321:24
indicated (1)	356:10,11,17	240:8 242:8	113:24	354:21
179:4	357:21 362:19	intense (6)	internships (1)	interview (2)
indicates (1)	371:22 372:6,12	267:19 268:16,17	15:24	139:21,22
162:23	373:23 379:22,24	302:5 338:7 339:15	interpret (8)	interview-based (1)
indication (5)	380:1 390:9 394:3	intensity (34)	93:23 98:18 103:10	133:13
112:8 266:10 298:16	415:7,12 416:14	269:14 271:6 299:18	108:13 265:21	interviewed (3)
302:17 390:16	426:13,13 429:9	301:3,4,24 303:2,6	266:16 273:7	339:5 355:15 397:8
indicative (1)	informational (1)	303:20 304:10,12	274:16	interviewing (1)
235:5	131:25	304:13,16 305:7	interpretation (13)	22:4
indicator (2)	informative (21)	309:18,20 312:1	64:9 65:12 66:13 67:7	introduce (3)
266:3 328:24	45:14 185:6,20	324:7 339:16	68:12 69:8 70:11	170:19 328:1 372:24
indicators (3)	186:13 214:17	342:13,17,25 343:6	99:15 130:7,16	introduced (3)
286:5 329:3 430:9	217:20,25 218:20	343:24 398:3 425:5	273:9,11 287:18	138:24 149:18 372:23
individual (11)	218:22 219:1	426:1,3,4,6,8,10,21	interpreted (3)	introducing (1)
137:21,25 139:3	220:10 221:5,13,20	426:25	87:18 131:5 269:8	432:25
191:15 251:23	221:23 222:10,11	intensity-weighted (...	interpreting (2)	introduction (2)
253:25 257:19	222:24,25 223:1	336:3 342:15	66:24 130:23	6:18 337:3
286:15 299:14	312:2	intensive (1)	interprets (3)	investigate (4)
332:6 366:25	informed (5)	338:2	274:23 275:11 276:3	210:5 225:25 243:4
individuals (16)	25:25 69:22 113:5	intensively (1)	interrupted (1)	245:22
164:6 313:22 326:16	135:16 291:1	415:25	328:15	investigated (3)
338:16 339:18	ingredient (1)	intent (3)	Interruption (1)	244:19 246:4 379:5
351:22,25 355:9	78:1	239:13 265:14,16	206:25	investigation (5)
356:7,11 365:3,6	ingredients (1)	intention (2)	interval (66)	134:4,15 229:16
369:6 372:20 397:7	77:25	35:7 81:3	46:16,17 107:13,16	230:4 430:11
428:9	initial (5)	intentionally (1)	107:20,23 108:2,7	investigators (27)
inducing (1)	23:4 83:3 278:3	409:15	108:20,24 109:10	22:14 38:7 39:2 51:16
185:21	347:22 348:5	interact (1)	109:14 110:16	142:16 158:12
inducted (1)	initiation (2)	22:5	112:1,15 117:14	224:6 245:14
34:15	197:21,22	interaction (3)	119:4,6,8,14,17	248:21 272:9,13,21
industrial (2)	input (2)	235:3 250:17,19	130:17 131:4	273:2 275:4 345:9
96:4 146:23	23:8 290:24	interacts (1)	155:18 157:1	355:4 356:5 357:4
industry-sponsored...	inrollment (1)	31:10	158:17 160:19,20	362:25 374:8
345:17	358:16	interdisciplinary (1)	162:20 179:1	375:21 376:5,13
infer (1)	insecticide (2)	55:7	212:24 213:2	377:15 382:13
129:2	275:17 387:2	interest (9)	214:20,20 216:18	396:3 400:22
Inference (1)	insecticides (1)	32:24 44:5 48:18,19	216:19 217:6,7	invited (5)
5:17	312:8	142:4,5 167:17	232:18,21 233:15	14:20 15:7,15 34:12
inflate (1)	inserts (1)	171:9,15	249:7 251:2 279:20	34:19
330:13	395:2	interested (8)	280:11 281:6,17,22	inviting (1)
influence (1)	insofar (3)	21:10 29:23 33:2 34:5	282:12 306:16	15:13
171:14	27:8 95:22 170:23	146:25 246:2	319:20,23 320:1,4	involve (1)
influenced (2)	instance (7)	426:17 438:15	320:16,22,24,25	38:6
118:8,17	64:8 87:19 94:16	interesting (3)	321:5,9,14 322:1,7	involves (1)
influences (1)	138:11 168:4	416:13,15 427:1	322:10 396:16	252:9

Page 21

Iowa (4)	jump (1)	117:20 121:4	Lakewood (1)	114:7,16,19 115:5
205:10 243:10 297:7	112:22	125:22 127:5,17	3:6	115:15 116:10,21
333:21	June (2)	132:9 136:6 144:4	landing (1)	117:22 118:13
irregular (3)	206:21 209:8	145:23 146:8,11,22	303:21	119:2,20 121:6,18
270:14 271:11 272:16	junior (3)	148:8,23,25 149:24	language (3)	122:2,19 123:5
irrelevant (1)	15:20 16:9 18:9	180:18 184:22	63:22,24 392:17	124:9 125:10
196:4	jurat (1)	195:6,15 199:14,19	large (13)	126:13,16 127:11
ISEE (5)	436:25	204:11 208:6,8,17	90:9 91:1 124:19	127:14,19 128:1,5
36:8 37:8 38:22		210:1,5,22 221:12	140:6 280:21	128:20 129:5,10
277:15 289:24	K	232:8 238:7 239:17	281:10 298:3 390:5	130:15 131:1,15
ISEE's (1)	Kansas (7)	241:4 244:23 245:5	391:8 392:13 393:1	132:3,16,18,25
36:17	204:14,21,23 206:4	245:10 247:3	412:5,12	133:4,7,24 134:23
issue (32)	220:2,4 297:9	248:11 249:23	larger (13)	135:18 136:5 137:8
27:6 30:8 81:25 84:1	Kathryn (3)	266:8 272:8 278:19	90:9 91:1 176:13	138:9,13 139:12,24
84:16 132:20	3:7 8:25 81:8	296:13 299:22	181:19 213:15	140:17 141:6,22
133:16 134:24	keep (4)	304:9 318:2 333:24	214:10 224:20	142:9 143:10,13
135:10 141:13	113:11 127:6 339:7	334:11 335:11	257:25 258:14,22	144:13,22 146:13
142:1 148:11	415:12	338:14 339:2,3,5	263:16 305:1	147:3,12,16,21,23
160:13 168:1	keeping (1)	340:15,16 344:19	414:14	148:3 150:13 151:8
173:23 186:24	94:2	345:1 349:4,22	largest (5)	151:16,17 154:1,24
191:1 196:16	keeps (1)	362:12 366:20	123:25 124:20 258:19	155:4,10,21 156:7
212:10 215:6,6	128:2	367:13 371:7,10	400:4,8	156:13,15,21 157:3
225:20 242:18,25	kept (2)	375:8 381:18	Lasker (588)	157:16 158:6,22
293:16,17 333:12	189:4 409:10	382:10 383:25	4:14 5:4 9:24,24	159:10 161:9,24
346:12 355:5 369:4	Killex (2)	388:13 395:23	10:13,17 11:14	163:1,18 165:3,10
389:18 433:12	256:2,4	398:11 400:18	14:23 16:18 19:13	166:7,12 167:24
issues (17)	kin (1)	402:17 407:25	19:15 24:14 25:12	168:8,13 169:19,25
28:15 39:14 47:21,21	135:11	408:11 414:11,19	26:11 28:6,23 30:11	171:19 172:7,13,21
47:22,23 48:15	kind (25)	417:12 436:8,11	32:1 33:4 34:16	172:23 173:4,21
55:17 80:5 84:14	21:10 36:9 41:3 44:1	knowing (1)	35:12,16 38:21	174:11,18,23 175:2
174:2 192:1 193:13	49:5 64:24 68:25	304:2	39:11 40:7,18 42:2	175:23 176:15
407:6 408:8 409:11	99:6 131:10 135:17	knowledge (1)	43:18 44:8 45:5,16	177:1,14,25 178:9
410:1	137:4 140:23 141:1	38:13	46:4,20 47:19 48:6	178:20 179:19,23
Italy (1)	167:21 187:15	known (8)	48:11 49:13 50:14	180:2 181:6,23
34:7	211:18 225:22	13:24 14:7 145:22	51:21 53:14,23	182:17 183:1 184:2
	233:12 254:1 255:2	152:10 188:9	55:11 56:5,14 57:9	184:25 185:3 186:1
J	265:1 289:12 291:3	195:12 348:8	58:3,16 59:2,6,23	187:22 189:16
Jeff (2)	316:12 415:11	416:21	61:3,12 62:1,10	190:3 191:11
9:16,22	kinds (3)	knows (3)	63:9 64:1,15 65:1,7	192:20 193:11
JEFFREY (1)	83:17 245:24 413:19	137:6 208:14 303:17	66:1,22 67:21 69:3	194:8 196:8 198:15
3:23	kitchen (1)	Krause (1)	69:19 70:20 71:8	199:6,7,18,23 200:1
job (2)	159:24	14:4	72:9,14,18 73:1,15	200:8,20 201:6,16
1:25 199:3	knee-jerk (1)	Kurt (1)	74:10 75:3,16 76:6	202:14 203:10,22
John (1)	88:3	13:22	79:1,17 80:21 81:11	204:3,17,22 205:8
421:3	knew (3)		81:16 82:21 83:9,18	206:1,10,17 207:2,3
judge (9)	14:1 21:20 282:2	L	83:22 85:1,18 86:11	207:13,23 208:18
68:4 80:23 83:19	know (112)	lab (4)	86:23 88:13 90:1	210:7,24 211:9,21
126:18 127:18,25	10:21 11:9 14:18 20:6	75:14,23,25 76:1	91:3,14,24 92:3,4	212:8 213:8,24
128:3 182:13	25:2 27:20,21 34:19	label (2)	93:7 94:13 96:13,24	214:2 217:3 218:15
241:16	34:24 35:2 36:2	64:24 255:9	98:6 99:8,20 100:14	219:18 220:1,23
judged (1)	39:6 48:22 49:16	labeled (1)	101:1 102:1,22	221:1,14 223:2,15
359:13	55:10 56:2 57:20	8:5	103:11 104:10	224:2,22 226:14,23
judgment (1)	60:5,22 66:18 68:18	laboratory (1)	105:6,21 106:9	227:1,21 229:3,13
316:7	71:6 72:13 80:20	74:24	107:5,18 109:3,20	230:11 231:1,9
July (3)	81:19 87:5 94:1,8	$\mathbf{l a g}(2)$	111:1 112:2 113:7	232:10 233:14
17:20 206:21 209:8	105:25 107:2 114:5	193:8 196:11	113:11,16,21,22	234:1 235:13,18,21

Page 22

236:6,24 237:14	362:24 363:9,16	lead (2)	12:25 156:3	199:24 203:25
238:10,16,18	364:8,20 365:8	187:4 391:10	level (9)	351:12 436:3 439:6
239:19,24 240:21	366:9 367:19 368:8	learn (1)	109:22 117:1 139:9	439:7,9,10,12,13,15
241:5,12,20 242:15	370:6,22 371:12	132:17	149:1 169:12	439:16,18,19,21,22
242:17 243:5,16,19	372:3,16 374:6	leave (1)	301:23,25 339:9	439:24
244:5 245:1,11	375:17 376:4,12,22	82:1	426:18	lines (2)
246:6 247:2,14	378:1,9,12 379:10	leaves (1)	levels (3)	162:3,7
248:9,18 249:22	379:20 380:18	34:14	151:21,23 275:15	Lisa (5)
250:2,4,18 251:20	382:1,11,21 383:5	lecture (2)	Liability (2)	1:23 2:13 8:21 438:4
254:7 255:12 256:1	383:17 384:5,12,18	48:22 115:16	1:4 8:8	438:22
256:5 257:3 258:2	385:2,15 386:14,18	lectures (1)	license (1)	list (6)
258:17 259:1,18,20	387:4 388:11 389:8	114:1	333:23	19:25 153:9 230:25
260:2,5,23 261:17	389:19 390:22	led (1)	licenses (1)	231:2,12 246:10
262:3,19 264:5,8	391:20 392:5,23	18:7	12:8	listed (19)
265:19 266:12	393:13 394:11	ledger (1)	life (1)	19:22 74:25 75:1,4
267:2,22 268:19	395:5,17 396:12	137:5	276:14	76:1,2,10,11 120:7
269:6,20,24 270:17	397:12 398:12	Lee (10)	lifelong (2)	122:3,21 123:23
271:1,14 272:19	399:5,17 400:1,17	6:14 235:14,15,22	30:22 31:18	128:10 133:9 156:2
273:8 274:1,17,24	401:7,12,18 402:12	236:1,8 239:25	lifetime (32)	156:18 202:11
275:3,22 276:15,21	402:15 403:6,10,20	240:24 241:22	31:4 297:4,22 299:12	279:11 327:12
276:22 277:13	404:6,18 405:9,12	242:22	300:1,2,4,7,14,17	listing (2)
281:3,7,19 282:15	405:16,18,23 406:2	Leemon (2)	300:21,22 301:6	119:23 317:5
283:5,13 284:20	406:18 407:4,17	4:19 9:9	302:1,7,11,12,16,19	literature (57)
286:10 287:1,15	408:5 409:4,7	left (12)	302:23 303:13	50:18 55:10 57:5
288:8,19 289:18	411:25 412:18,23	14:4 17:6,20 92:5	304:6,23 305:5,6,14	59:11,20 60:5,15,19
291:5,20 292:10	413:6 420:10,19	162:9 184:4,4 316:3	314:3 315:12	61:17 62:4 63:4
293:2,22 294:9	421:16 422:4,10,24	366:7 398:8 406:20	343:21 347:5	64:18 67:4 68:9
295:11 296:4,16	423:7,17,20,22	411:3	425:10 426:2	69:5,15,17,21 70:6
297:14 298:10,22	425:2 434:23	legal (1)	light (1)	71:10,11 73:21,23
300:10 302:3 303:4	435:10,21 436:8,10	8:19	96:1	75:19 76:17,19,20
303:10 304:1 305:9	436:21	lengthening (1)	light-bulb (1)	77:4,6,19 78:5,7,14
305:18 307:8,13,14	latency (64)	220:21	96:2	78:20 79:14 80:15
307:18 308:1 309:8	186:22,23,24 187:7,8	lesser (1)	liked (1)	80:20 148:18 197:2
310:1,15 312:5,20	188:4,17 189:6,23	316:9	199:2	197:10 216:3
313:4,6,9 314:4,10	190:8,20 192:24	let's (44)	likelihood (4)	289:14 290:1
315:14,23 317:15	194:2,15 198:19	11:10 39:4,5 64:2	89:19,23,24 91:5	314:23 315:2 317:8
318:24 320:19	200:24 201:23	65:2 72:10 73:24	likewise (2)	334:10,14 382:3
321:10 322:4,18,24	202:24 203:9 204:6	76:19 81:13 109:13	387:11 422:19	387:7 389:13
323:7 324:3,23	204:8 205:15,17,23	130:6 131:24	limit (14)	391:12 414:10,18
325:20 326:8 327:2	206:2,3,5 207:6,15	143:10 154:25	34:17 108:17 109:6,8	414:22 415:2 417:3
327:9,19 329:4	207:17,18,25 208:3	156:7 165:5 178:10	109:15,23 110:2	litigation (9)
330:3 331:9 332:20	208:20,21,24 209:2	182:19,19 188:9	111:14,15,21 115:9	1:4 8:8 20:13 32:17
334:6 335:3 336:17	209:4 211:1,23	192:11 199:23	180:12 238:2 320:8	53:6 206:24 431:16
336:24 337:12	214:15 215:3,5,6	203:23 235:14	limitation (1)	432:16 433:18
338:4 340:8,23	217:17,22 218:18	243:12 249:23	393:15	little (15)
341:12,19 342:14	218:24 219:6,8,15	254:11 264:3,5	limitations (2)	26:25 90:11 146:5
343:5 344:8 345:5	219:20 220:7,22	270:19 276:16	390:6 431:21	167:10 177:21
346:7,22 347:8	221:3,21,24 222:12	306:20,21 307:18	limited (12)	178:1 195:15
348:11 349:5,12,14	222:16,17,19	312:21,24 318:17	34:13 63:15,23 64:3,5	198:24 204:12
349:19,23 350:1,14	242:18 243:2,7	331:12 336:23	67:17,23 105:12	264:20 289:19
350:19 351:6	latest (1)	350:15 384:18	106:14 123:10	313:12 323:12,17
352:20 353:19	337:15	386:14 401:19	124:7 226:1	373:20
354:8,23 356:3,19	LAW (1)	406:18	lindane (2)	lives (1)
357:17 358:19	3:3	letter (3)	358:9 362:13	96:1
359:16 360:19	lay (1)	6:9 117:2 200:14	line (20)	LLP (2)
361:9,15,17,20	381:13	leukemia (2)	7:10 56:16 160:22	9:25 10:2

Lockridge (2)	22:25 54:12,14 80:13	312:18 334:1	182:7 183:18	424:17
4:3 9:13	142:16 154:22	414:15,19 415:25	184:14 185:9	males (1)
logarithmic (6)	250:22,22 251:6	434:3,4,14,15 435:6	186:14 187:2	226:2
160:11,13 161:8,11	300:14,15 327:11	lots (6)	188:14 191:17	manmade (1)
161:16 162:6	340:17 342:23	308:24 309:2 376:25	192:7,23 193:3,16	149:17
logistic (9)	363:7 374:8 378:21	379:5 381:17	223:10,20 224:8	manner (3)
154:10 214:7 216:13	382:10 388:8,12,14	400:15	225:5 227:7 228:4	108:21 114:13 216:12
217:8 232:2,19	404:15 436:11	love (1)	252:16 266:19	manuscript (8)
234:3 235:6 335:6	looking (48)	86:18	267:8 268:4 269:10	23:10 383:24 384:1
logistical (4)	19:19 45:18 47:23	loves (1)	270:5 278:24	385:21 386:8 388:7
212:21 215:17 232:12	51:173:3 77:20	406:15	279:24 280:12,21	394:14,15
232:14	100:19 107:2 108:1	low (19)	281:11 282:4 284:5	manuscripts (2)
long (13)	110:9 112:15	86:15 105:11 106:13	287:6 292:1 300:20	431:5,9
16:19,21 17:17 48:21	139:14 156:3	111:15 118:8,10,17	302:18 306:13	March (4)
72:14 87:4 127:7	163:17 167:25	124:7 126:10	318:14 319:8	349:12,20 389:22
161:20 190:16	172:10,15 173:25	301:23 303:20	321:15,18 323:3,11	391:7
198:6 318:1 355:15	176:4 179:15	304:12,17 312:17	323:20 324:11	marginally (2)
426:6	185:15 189:8 192:3	339:7 341:5 345:11	329:17 330:8 342:7	232:20 253:13
longer (20)	192:18 198:12	400:13 426:6	351:16 352:3 353:7	mark (24)
31:21 177:22 190:8	206:11 210:10	lower (14)	396:24 399:21	68:4 126:17 127:21
190:19 193:25	214:6 225:1 227:3	92:10 109:9 111:15	417:18 420:18	128:2 147:17,19,21
197:23 204:12,14	227:22 231:6	160:18 257:22,23	422:23 424:15	155:5 156:7 178:14
204:25 205:3,23	253:17 255:6	281:5 299:6 303:21	426:15 434:10,20	199:23 203:24
206:5,20 215:5	267:15 268:15	309:22,22 328:5	lymphomas (1)	220:23 226:15
222:16,18 243:2	306:19 311:22	330:15 425:21	194:24	238:16 239:20
263:15 281:11	326:9 346:23	lowest (4)	lymphopoietic (2)	242:15 259:18
410:12	350:23 361:1	184:18 317:1,6 330:9	179:6 180:6	269:20 270:17
longest (2)	370:25 372:19	lucky (1)		313:1 349:6 361:15
195:17 204:20	387:9 388:7 400:12	164:16	M	386:14
look (76)	407:6	lunch (6)	made-up (2)	marked (30)
49:11 50:17 78:15	looks (9)	177:21 178:1 184:23	304:22 406:16	5:8 6:2 7:2,9 11:12
79:14 82:16 83:20	132:10 184:23 223:23	199:5 203:11,16	magnitude (2)	39:9 86:21 113:14
88:6,22 94:5,11	312:7 327:23 336:5	lung (8)	390:11 394:5	132:1 148:1 155:8
95:18,19 109:5,7	342:18 357:19	145:22 168:2,4	main (2)	156:9 166:10
113:4 125:12 128:8	425:15	170:11,13 171:22	151:25 354:25	178:16 200:5 204:2
129:6 156:1 157:4,5	Los (5)	171:24 172:2	major (6)	223:14 235:20
160:16 174:2,8,9	1:17 2:12 3:13 8:1,14	lymphocytic (1)	255:21 261:13,15,24	243:18 277:8 313:8
181:7,24 185:9	lose (1)	282:4	262:13 346:5	318:23 349:9
195:20,20,24 197:5	427:22	lymphoma (110)	majority (1)	350:16 363:15
205:9 210:21	losing (1)	6:21 27:14 28:11	309:10	386:17 405:9 409:7
213:20 222:18	250:2	32:20 33:15 51:24	making (16)	409:12 410:24
231:11 240:9	loss (7)	63:15 65:10 66:10	116:23 134:12 159:20	market (3)
251:17,18 293:10	28:20 29:3 141:8,9,10	67:5 68:10 69:6	162:7 168:20	147:8 148:21 358:11
296:24 299:5,12	141:19 432:4	70:4,10 71:13 77:22	171:10 175:4	marking (2)
302:9 308:11	lot (39)	97:11,14,20 98:12	187:24 214:16	11:10 127:20
309:14,14 310:16	16:9 30:1,24 45:24	98:15 100:21 101:4	217:10,18 294:23	marks (9)
312:6 313:23	46:1,17 49:8 89:12	101:8 119:25 120:9	377:5 379:6 395:6	96:15,21 200:14
318:17 319:11	106:5 108:25 124:2	120:20 121:12,22	420:22	203:12,19 306:23
321:5 328:9 341:21	136:7 143:22,24	122:9,25 123:16	malathion (22)	307:5 419:15,21
350:15 351:22,24	167:10 214:22	124:14 125:17	249:16 250:9,25	marriage (1)
352:15 353:1 363:2	215:13 216:8 217:1	128:12 129:12	279:12,19 280:1,14	438:14
365:11 384:17,20	225:16 226:8	147:7 148:12,19	280:23 281:9,22	mass (1)
387:5,8,16,19 392:6	233:12 237:16	149:5 150:16 151:2	282:19 283:19	332:2
412:1 413:20 423:6	238:21 292:23	151:6,10 174:1,4	284:1 285:20 293:7	master's (1)
425:4 436:12,17	301:20 303:23	176:21 177:4,8	293:9,11 294:3	13:10
looked (23)	308:18 311:11	178:24 180:13	295:2 296:7 424:10	match (1)

Page 24

38:12	233:11 234:17	272:1 343:17	85:9 134:1 142:1	364:22,22 365:11
material (1)	242:25 244:24	mechanism (3)	249:12 261:3	373:16,17,24
277:20	246:24 297:11	75:13 191:21 408:1	319:19 390:15	374:15 375:23
materials (2)	298:20 305:25	mechanisms (2)	400:11 408:16	376:11,24 377:10
49:17 429:16	348:15 370:6	62:17 76:11	435:14	379:9,11 381:15
math (2)	405:22	mechanistic (8)	mentioned (23)	382:14,25 383:10
109:15 213:4	meaning (17)	60:13 71:25 77:4,6	25:13 49:14,15,16	384:2,9 385:8
mathematical (1)	53:21 86:3,10 91:12	78:6 80:15 407:15	73:11,17 74:4 75:1	methodological (1)
430:4	97:23 108:22	418:20	76:15 84:11 100:17	39:14
mathematically (1)	137:25 143:25	Mecoprop (15)	150:14 160:5	methodologies (1)
169:9	167:14 190:6	247:25 252:10,19	178:18 206:19	23:18
matter (15)	245:21 274:23	253:2,7,19 254:21	211:11 245:3 319:4	methodology (28)
8:7 49:10 92:19 93:15	312:15 320:17	255:25 256:11	408:9 409:20	39:24 88:15 107:10
96:5 135:19 136:9	340:3 424:7 426:3	257:10 258:10,18	414:25 415:17	284:9 285:12,13
137:11 145:8	meaningful (2)	259:7 260:12 261:4	416:7	287:2,20 290:21
177:24 178:19	89:7 282:6	median (24)	mentioning (2)	361:3 363:2,25
347:23 348:5	meanings (2)	204:6,8 205:1,15,17	194:9 393:3	365:21,24 366:2,25
352:19 438:15	121:2 328:22	206:2 207:6,17,17	mentions (4)	367:4 372:24
Matthew (1)	means (17)	207:25 208:20	20:15 33:22 79:19	374:10 375:20
32:9	29:12 64:3 66:4 78:12	209:2,11 211:1,7,23	87:6	376:7,16 378:16
maximum (8)	90:7,23 99:15	217:17,22 218:18	mentor (3)	380:23,25 381:4
207:15,16 208:21,24	102:14,21 112:4	218:23 220:7 221:3	13:25 15:20 16:9	382:5 383:21
209:4 337:16,19,20	167:12 188:8	221:21,24	mentored (2)	methods (15)
McDuffie (48)	269:15 273:12	medical (15)	13:22 14:3	24:5 26:22 27:5,9
6:15 228:24 229:6,9	303:7 428:5 430:15	11:16,19,20,24 12:3,6	mentoring (2)	32:4 47:11 51:17
229:25 230:10	meant (4)	12:16,18,23 63:5	13:18 16:20	84:22 105:19
243:12,21,24	121:16 417:6 422:15	88:4 95:15 197:9	mentorship (1)	106:11 163:5
244:13 245:14	423:4	247:23 317:14	16:14	220:21 344:19
247:15 248:21	measure (43)	medically (1)	mercurial (1)	414:7 419:11
249:3,14 250:7,22	43:6,15 91:22,23	56:1	312:8	methyl (1)
251:5,15,16 252:14	107:10 167:19,21	meet (1)	message (2)	365:15
254:13,18 259:5	169:16,18,21 170:6	269:8	395:3,4	Mia (1)
260:9 262:20,25	170:9,24 183:8	meeting (8)	met (6)	16:5
263:20,23 265:5	187:2 191:7 196:20	21:9 25:4,15 26:1	20:25 21:2 35:20 72:8	Michael (4)
266:17 268:2,22	201:18 253:11	30:17 34:6 60:17	383:15 421:18	3:14,22 9:3,21
269:7 270:3 271:3,4	298:12 301:22	69:24	meta (1)	mid (2)
274:4,18 275:4	302:2,24 304:11	meetings (4)	322:6	341:6 345:11
277:2 298:5,15,23	320:3 325:7,9 328:4	24:2 29:7 61:25	meta-analyses (5)	middle (13)
299:2 300:12	339:17 342:12,13	421:20	284:12 414:23 415:1	26:22 174:25 188:1
345:25 401:21	342:22,25 343:6,7	meets (1)	415:9,11	346:21 358:16
McHENRY (3)	344:5,7,9,11 365:12	179:11	meta-analysis (19)	365:25 366:6 367:3
4:19 9:9,9	371:14 375:5 426:8	member (15)	115:10,19 159:4,13	374:16 377:9,19
McNair (2)	measured (2)	16:3,22 17:24 18:3,10	283:10 284:3,16,22	378:20 381:2
4:18 8:18	191:14 342:5	20:16,16 25:17	284:24 285:11	Mike (1)
MD (8)	measurement (3)	32:10 34:12,14	286:14 287:3,9,19	9:16
1:16 2:9 5:3,11 6:7	118:23 119:3,5	36:10,17 55:7,23	322:11,13,15,19,20	mild (1)
10:7 437:12 439:3	measurements (1)	members (5)	meta-analytic (1)	194:2
MDL (2)	24:8	23:9 34:13 36:11,24	322:2	Miller (4)
1:58:11	measures (15)	336:7	method (46)	3:18,22 9:21,21
mean (27)	43:7 98:13 184:20	membership (3)	40:8 41:9 52:12	million (1)
25:1 66:24 67:1 75:24	185:9 309:18 324:6	34:20 37:16,17	165:12 217:9 245:4	85:14
89:18 90:4,13 91:4	324:19,24,25 342:8	memorial (1)	342:19 355:2,6	mind (11)
108:7 114:22	343:24 344:1,20	18:13	356:5 357:5,11,24	48:16 72:1 113:5
150:18 158:20	345:1 425:25	mention (18)	358:6,17,25 359:7,8	201:17 217:20
166:23 195:25	measuring (5)	73:4,7 74:9,15,18	359:12,14,22 360:4	220:9 285:18 294:8
221:13 232:9	182:6 191:2 208:22	75:21 77:3 82:25	360:7 362:14,20,21	332:6,22 391:10

mine (2)	misleading (4)	mixtures (7)	months (2)	nail (1)
12:4 159:9	234:11,23 235:10,11	255:11 256:8 257:7	30:25 192:12	138:11
miners (2)	mismeasurement (2)	258:9 259:6,12	morning (3)	name (6)
170:14 171:23	286:6,7	260:11	8:4 10:14,15	8:18 10:16 245:21
minimal (6)	misread (1)	model (30)	mortality (1)	246:22 413:9 439:1
131:14 171:25 172:4	105:16	157:10 158:18,21	29:11	NAPP (38)
264:17,21 270:14	misreading (2)	159:24 163:9	Moskowitz (5)	39:1 69:25 70:7 158:7
minimally (2)	67:12 68:17	236:22,25 238:9	1:23 2:13 8:21 438:4	158:11 183:12
299:19 319:14	misreport (1)	239:9 249:4,5	438:22	184:11 278:21
minimize (1)	139:8	250:17,19 253:1,1	motion (3)	283:8,15,17 284:2
31:12	misreports (1)	279:25 282:14	81:25 82:1 83:9	285:10,15 286:12
minimum (10)	138:8	283:3 285:18 286:1	motions (4)	287:3 288:13
187:10 188:4,11	missed (4)	286:7 293:18,19	81:2 82:4,5,19	289:23 290:5 291:8
189:7,23 190:17	19:23 74:1 263:6	294:1 295:9 331:4,6	move (12)	291:11 292:12,18
192:24 193:21	414:25	398:1 430:13,19	80:7 81:20 130:6	293:5 294:1,25
197:4 275:24	missing (16)	modeling (1)	198:3,5 203:23	296:23 297:4
Minneapolis (1)	134:5 175:25 215:7	381:19	241:15 242:16	305:12 322:21
4:6	377:4 386:6 387:14	models (11)	243:12 262:23	340:17,25 396:18
Minnesota (7)	387:18,23 388:6,9	50:7 74:16 152:10,18	342:2 408:24	397:13 400:6
4:6 204:12,20 205:10	388:19,20,24 389:5	165:1 239:12,14,14	Moving (1)	401:19 428:12
219:20 243:11	389:10,16	242:12 286:9	177:20	429:16
297:8	Mississippi (1)	397:23	multi-regressional (...	narrow (7)
minus (3)	32:9	modern (2)	399:19	86:15 111:21 116:2
89:3,4,11	misspoke (1)	43:24 84:21	multi-variate (5)	116:12 118:9,18,23
minute (2)	333:3	modification (11)	155:12,15 157:10	narrower (4)
132:23 351:3	misspoken (1)	169:4,18 170:19,24	165:1 308:8	116:22 217:7 320:9
minutes (4)	380:9	171:16 174:16	multi-variated (1)	320:24
72:17 200:2 398:9	misstated (1)	175:4 176:3,18	399:24	narrowing (1)
406:19	30:6	177:6,16	multi-varied (1)	217:10
mischaracterizatio...	Misstates (1)	modified (2)	154:21	nature (1)
222:3	393:8	338:16,24	multiple (15)	101:6
mischaracterizes (24)	mistake (1)	modifier (7)	151:24 206:12 227:24	Nauen (2)
66:17 100:5 219:3	319:18	169:6,16,21 170:6,9	262:17 310:10	4:3 9:13
220:12 221:7	misunderstand (1)	171:6,13	333:25 335:19	NCI (1)
254:24 255:18	63:25	modifiers (2)	363:19 381:16	146:24
273:15 288:16	misunderstanding (2)	169:3 173:24	396:10 408:16	NCRA (4)
289:3 291:16	166:14 168:16	molecular (1)	411:12 414:9	1:24 2:14 438:5,23
302:22 344:14	misunderstood (1)	55:8	430:22,22	near (1)
350:12 358:2 371:4	95:7	moment (2)	multiply (1)	34:6
371:19 383:24	misuse (1)	44:13 287:20	303:19	nearly (1)
393:20 398:23	95:9	Monday (2)	multitude (1)	234:21
401:2 403:1 422:11	mixed (15)	1:18 8:1	40:25	Nebraska (24)
422:25	251:7 252:3,8,9	monitoring (2)	mutagenic (5)	181:21 204:13,19,25
mischaracterizing (2)	253:17,18 254:2,14	390:10 394:4	402:23 403:15,23	205:24 206:6,9,18
68:16 293:13	254:20 255:16	monograph (14)	404:8,21	207:5,18 210:13
misclassification (21)	256:6 258:6 259:4	15:4,6 18:7 52:20	mutagenicity (6)	211:2,7,24 219:16
5:20 29:18,19 30:7,13	260:8 262:17	57:6 59:19 62:8,14	403:13,19 404:5,12	220:22 223:3 224:4
30:20 31:13,18 32:5	mixes (1)	80:19 82:12 152:5	405:2,5	225:2 227:4,25
32:6 133:12 138:24	305:7	416:8,10,13	myeloma (1)	243:1 297:5 300:13
139:11 185:23	mixing (5)	monologue (1)	396:11	necessarily (10)
303:24 304:4 346:5	275:16,20 276:12	126:21		23:6 29:1 95:17
346:9 347:13	301:20 342:18	Monsanto (8)	N	115:12 141:16
390:12 394:6	mixture (13)	4:11 9:25 10:2,17	N (3)	158:20 164:1,20
misclassified (4)	253:21 255:23,24	24:10 421:11,15,19	3:1 4:1 5:1	211:6 328:8
182:15 305:7 324:22	256:9,11 260:21,25	month (3)	N.W (1)	necessary (3)
399:4	261:2,8,10,12,16,25	31:2 36:11 197:15	4:12	83:10 190:18 410:15

Page 26

need (32)	423:2,3	194:23 223:9,20	92:11,17,21 93:10	numerous (4)
48:12,13 68:4 80:24	NHLs (1)	224:8 225:5 227:7	93:17 94:17 95:2	162:2 325:1 409:13
81:19 89:9,12 96:12	194:17	228:4 252:16	97:5,10 98:3,10	410:1
139:20 154:19	nice (2)	266:18 267:7 268:4	99:11,18 100:10,11	
167:8 169:12	111:25 321:8	269:10 270:5	100:19 101:2,12,14	0
176:18,23 180:25	nicely (2)	278:24 279:24	101:22 102:15,24	o'clock (1)
181:17 186:25	309:20 322:9	284:4 287:6 292:1	103:13,17 104:3,12	199:25
196:17 231:11	nicer (1)	300:20 302:18	105:14 106:16	object (361)
240:23 263:19	435:7	306:13 318:13	107:21 112:18,19	26:8 28:18 31:15
309:5 325:23	night (1)	319:8 321:15,18	112:20,21 162:22	32:21 38:10 40:3,13
360:22 362:14	136:24	323:3,11,19 324:11	162:24 281:23,25	41:23 43:4,23 45:10
381:13 390:8 394:1	nine (1)	329:17 330:7 342:6	282:20 283:3,3	45:22 46:11 47:6
395:12 404:23	30:25	351:16 352:2 353:7	number (97)	48:6 49:24 51:9
412:18 415:7	ninth (1)	396:24 399:21	5:8 6:2 7:2 8:6,11,12	53:11,20 55:4,18
needed (3)	227:10	417:18 420:18	11:12 34:13 39:9	56:10 57:1,16 58:7
21:14 106:24 209:24	NIOSH (1)	422:23 424:14	62:9 74:1 83:24	58:22 59:14 60:8
needs (2)	24:7	426:15 434:9,19	86:21 96:16,22	62:5 63:17 64:14,20
351:1 394:13	no-brainer (1)	non-informative (1)	113:14 114:14	65:15 66:16 67:10
negative (4)	222:14	312:19	117:2 124:3,16,25	68:15 69:11 70:14
85:13,23 90:20 406:8	nominate (1)	non-nested (1)	125:1,2 126:5,6	71:16 73:9 74:7,22
neither (2)	37:17	318:5	128:15 132:1 133:1	75:9 78:11 79:6
127:16 249:5	non (2)	non-responders (2)	148:1 155:8 156:9	84:19 85:15,24
nested (2)	173:8 353:21	27:6 363:20	166:10 172:5	87:21 89:21 90:16
317:21 318:9	non-asthmatics (5)	non-toxic (1)	178:15 181:9,11	91:8,20 92:25 95:4
Neugut's (3)	236:11 238:1 239:15	210:3	190:14 192:11	97:15 98:16 99:13
278:11,15 349:1	240:10 242:10	non-use (1)	200:4,6 203:13,20	100:4 101:17
never (16)	non-carcinogenic (1)	354:14	204:1 214:21	102:11 103:6,19
35:20 85:5 87:22	406:7	normal (3)	223:13 229:4,6	104:14 105:15
136:22 150:19	non-differential (3)	162:4 216:13 224:18	230:22 235:19	106:2 107:14
188:19 243:9	139:10,15 185:22	normally (2)	237:12 243:17	108:11 109:17
253:24 275:5	non-differentially (1)	20:24 415:3	244:19 246:18	110:7 111:8 112:11
293:15 350:5	182:16	North (5)	255:7 257:6,8,21,22	115:2,11 116:7,16
353:21 375:6	non-epidemiologist...	6:16 276:17 277:9	257:24 277:7 300:8	117:7 118:11 119:1
403:17 408:2	67:18	306:14 333:21	300:23,25 301:2,13	122:11 123:1,17
412:11	non-Hodgkin's (106)	Northern (2)	301:19,19 303:18	124:15 125:18
never/ever (4)	27:14 28:11 32:20	1:2 8:10	303:21 304:24,24	128:13 129:9
306:11 398:14,19	33:15 51:24 63:14	Notary (1)	306:24 307:6 313:7	130:10,19 131:8
424:25	65:10 66:10 67:4	437:19	318:22 322:13,15	133:20 134:17
new (2)	68:9 69:6 70:4,10	note (6)	336:6,14 340:6	135:13,23 136:13
34:14 399:1	71:12 77:21 97:11	248:25 250:5,20	341:15 349:8	137:16 139:1,17
NHL (46)	97:13,20 98:12,14	306:22 393:14	363:14 366:20	140:8,22 141:15
64:8 87:20 100:13	100:21 101:3,7	394:13	369:11 386:16	142:6,25 145:19
120:13 150:22	119:25 120:9,20	noted (2)	387:12,21,22	146:20 147:9 149:8
165:25 166:2,17,20	121:11,22 122:9,25	389:10 437:6	405:24 409:8	151:4 153:19
176:6,10,14 188:10	123:16 124:14	notes (2)	414:14 419:16,22	154:18 155:19
189:22 191:19	125:16 128:11	105:7 115:16	425:11,11 437:3	156:20,24 157:14
194:13 204:7	129:12 147:6	noting (1)	numbers (12)	157:24 158:14
218:19 230:18,22	148:12,19 149:5	234:12	114:10 148:5 171:5	159:6 161:1,18
259:15 269:5	150:16 151:2,9,10	null (72)	181:15 251:21	162:10 163:15
278:25 285:22,24	174:1,4 176:21	39:20,23 40:5,14 41:5	352:23,25 353:1	164:15 166:4,21
292:6 299:7 313:22	177:4,7 178:23	41:7,8,10,14,16,20	386:5 400:20	168:23 169:24
313:22 322:10	180:13 182:7	41:25 42:4,8,12,17	417:12 426:5	170:22 171:18
328:1,13,20 331:3	183:17 184:14	42:18,22 43:2,10,20	numerical (1)	172:3,17 173:1,18
331:22 332:8,19	185:8 186:14 187:2	44:1,1,15 45:9,20	34:17	174:6 175:8 176:8
350:8 387:13,20,22	188:14 191:16	45:25 46:9 47:2	numerically (1)	176:22 177:9
396:8,13 418:1	192:7,23 193:3,15	48:3 51:22 89:19	299:8	180:24 181:13

182:8,23 183:19	342:10 343:3,11	361:4 362:5,8 368:3	occurs (1)	2:10
184:15 185:11	344:13 346:2 347:2	371:3,18 372:8	430:14	official (4)
187:6 188:15	348:6 349:3,21	373:3 374:20	odd (4)	15:13 18:2 195:19
189:25 191:5 192:8	350:11 352:14	377:23 379:1,14	43:2 258:8 278:22	202:22
193:4,19 195:8	353:10 354:2,16	380:3,6 381:6	356:22	officially (2)
196:21 198:21	355:12 356:14	383:23 384:10	odds (155)	15:16 17:14
199:12 201:2,25	357:9 358:1 359:2	385:10 390:19	43:7 44:7,24 84:17	oftentimes (1)
203:1 205:4,19	359:24 361:4,13	398:22 404:9,22	89:5 109:13 118:6	425:5
206:7,15 207:8,21	363:5 364:18 365:4	420:19 421:16	151:20 153:1,10,16	oh (16)
208:7 209:16	366:4 367:6 368:3	422:4,10 425:2	154:3,6,7,9,16,21	27:19 76:25 132:13
210:17 211:4,16	371:5 372:9 373:3	objectionable (1)	155:15,17,22	170:3 181:17 184:6
212:1 213:7 215:20	374:20 376:1,9,19	413:15	156:17 157:6,7,12	206:13 229:8 250:3
218:1 219:2,22	378:6,6 379:1 380:6	objections (2)	157:21 158:3,10,16	297:2 349:15
220:11 221:6 222:1	382:8,17 383:3,13	258:25 413:8	160:16,18 163:20	356:24 364:11
222:2 224:9 225:7	386:25 388:3 389:2	observational (6)	163:23 171:14	386:1 405:25
226:20,24 227:8	389:14 391:14,24	130:8,12,17,24 140:1	172:1 175:21	428:11
230:7,19 232:7	392:20 393:7,19	417:7	178:22 179:3,21	okay (128)
233:10,21 234:24	394:19 395:11	observed (12)	180:4,21,21,22	11:5,9 12:6,10 14:15
236:4,15 237:21	396:6 397:2,20	64:6 65:11 66:12 67:6	182:20 183:16,23	14:24 20:1,4 21:5
238:14 239:2 240:3	399:12,22 400:9	68:11 69:7 70:8	213:10,15 217:19	37:5 52:11 53:4,24
241:7,8 242:1,23	401:1,14 402:25	90:5,15 91:6 364:4	218:21 232:13,13	59:24 62:2,11,21
244:2,16 245:9,16	403:8,16,24 407:10	381:20	232:16 233:7,8,13	64:2 65:2 69:20
246:14 247:10	407:23 413:15,20	observer (2)	233:18 234:2,21	70:1 71:20 73:24
248:6 250:14	420:10 422:24	18:3,6	237:18 238:21,24	79:17 84:12 85:2
253:23 254:23	435:17	observers (1)	239:25 241:22,23	90:11 96:13 99:22
255:17 256:3,21	objected (1)	18:8	248:20 249:2,4,5	102:23 112:23
257:11 258:11	383:16	obtain (1)	251:1 252:2,7,22	113:13 115:16
259:8 260:2,14,14	objecting (2)	77:20	253:8,13 256:12	116:22 117:23
261:6 262:7 265:10	174:24 259:24	obtaining (1)	258:4,5 259:2,4	118:22 120:16
266:20 268:5,6	Objection (97)	87:7	260:6,7,10 269:5	122:3 127:19
271:8 281:1,13	14:17 23:22 25:9 35:9	obvious (1)	279:3,10,19 280:2	132:13 141:23
282:8,22 283:11	35:15 44:17 47:5	288:5	280:13,15,18,23	143:10 148:7 149:4
284:17 285:16	48:20 55:4 61:18	obviously (11)	281:4,10,20 282:5	154:25 160:3 165:8
286:21 287:12	62:22 68:15 70:24	38:4 60:2 137:10	282:17,19,23	172:8 173:13
288:1 289:2 290:12	81:8 83:7 93:18	170:2 200:10	284:24 285:14	176:16 177:2,20
292:7,20 293:12,13	106:17 120:22	214:22 348:21	287:23 288:10	183:7 184:6 196:15
294:4 295:3,19	121:13,23 123:1	352:24 369:8	296:6,8 298:8	202:15 206:18
296:9 297:10 298:6	174:20 218:1 221:6	389:16 435:23	300:18 306:11	210:8,25 212:9
298:18 300:5	222:1 224:9 225:7	occasional (3)	308:4,5,12,14,18,21	219:19 221:15
301:10 302:21	227:8 228:25	268:15 301:16 304:18	308:25 309:1,1,4,10	228:6 231:10
303:15 304:7	229:12 237:21	occasionally (1)	309:14,22,23 310:7	238:11 245:12
305:15 308:23	239:2 240:3 241:2,7	269:18	310:9 311:4,11,13	247:15 250:3
309:12 310:14	241:17 242:1	occupation (2)	312:10 319:6,12,13	251:12 253:7
311:8 312:12	244:16 247:9	180:7 185:19	320:10 321:17	256:23 264:5
313:25 314:6 315:6	255:17 257:11	occupational (11)	330:8,13 353:25	267:23 268:12
315:20 317:11	258:11 259:8	12:4,5 34:4,8,9	354:6 396:3,9,14,23	270:17 272:8 273:9
320:13 321:2,20	260:13 261:5,20	225:23 273:3,5	396:25 397:17	274:24 278:5
322:22 323:4,21	262:7 265:10,24	276:11 343:23	398:19 399:6,20	280:12 281:8 285:7
324:12 325:6	266:20 267:9 268:5	426:16	400:21,22 424:4,9	290:4 292:15
326:24 327:16	268:24 269:11	occupations (2)	424:20 425:15,18	296:17,21 297:15
328:7 329:20	270:6 272:11,24	179:7 202:6	425:20,22 427:10	302:14 305:22
330:17 331:24	273:14 274:8,21	occur (5)	offer (4)	306:20 314:25
333:9 334:21	275:8 276:1 281:1	133:23 134:19 189:11	81:4 116:5,15 408:22	318:3,12 323:13
336:12,21 337:23	281:13 282:8	190:19 192:10	offering (3)	324:4 326:19 329:5
338:11 339:20	288:15 291:15	occurred (2)	79:25 81:23 385:7	330:4 337:17
340:20 341:10,17	296:9 301:10 303:9	187:17 373:13	offices (1)	340:14 342:15

346:8 348:2 350:15	opinions (13)	137:12 158:20	270:22,23,25 307:1	pages (13)
353:20 369:2,12	79:4,25 80:8 81:4,23	218:13 219:15	307:2,3,5,21,22,23	76:21,22 77:2 85:9
370:23 371:13	83:16 267:3 286:12	220:22 255:4	307:25 326:3,4,5,7	114:8 123:9 124:6
375:9 389:9,20	408:13 409:18	256:14,25 257:17	384:22,23,24 385:1	132:14 133:3
390:23 395:18	410:16 414:3	278:23 311:20	406:24,25 407:1,3	148:10 166:13,15
396:18 398:10	416:11	322:2 416:5	419:17,18,19,21	351:2
400:18 405:6	opportunity (2)	overlap (1)	437:5,6	Pahwa (2)
406:18 411:9	24:22 243:3	54:11	pack (10)	276:18 283:8
412:20 413:22	opposed (2)	overlapping (1)	300:7,24 302:15	paid (2)
418:10 423:24	162:5 173:15	281:18	365:25 366:6 367:3	17:8 138:1
424:20 428:11,18	opposite (3)	overlaps (1)	374:17 377:20	pair-wise (1)
435:17	196:23 256:22 303:23	388:17	378:20 381:2	86:5
old (2)	option (1)	oversight (1)	page (141)	pancreatic (5)
148:23 432:12	410:7	19:21	5:2 7:10 39:13,18,19	142:13,22 143:15,18
older (1)	Orange (1)	overwhelming (1)	52:22,23 56:16,20	143:19
31:20	3:21	375:11	58:18 59:9 66:19,25	panel (4)
Olson (1)	order (15)	oxidative (6)	74:9 77:1,1,5 84:7	21:17 23:8,9 24:2
406:15	88:1 92:10 193:8	75:7,12 402:4 404:4	87:2 92:2,3 114:15	paper (66)
once (7)	196:3 198:6 239:9	407:7,19	114:20 117:24	97:1 153:16 154:14
10:21 21:3 34:6 36:11	242:6,10 272:16		118:3,4 119:21,22	154:20 158:5
49:6 125:7 185:17	352:13 393:24	P	120:2 124:6 125:12	223:17 224:4
oncologist (1)	417:7 419:10 431:1	P (17)	128:7 132:19,24,25	225:17,19 226:6,12
13:7	436:24	3:1,1 4:1,1 85:12,21	133:1,4 148:4,5,8	227:2,3 228:2,7,23
oncology (1)	organic (2)	85:22,22 90:3 93:25	152:1,3,24 154:17	228:24 229:2,2,7,9
77:7	150:1,4	95:16 97:4 99:22,24	155:12,23 156:23	229:10,23 230:13
one-paragraph (1)	organizers (4)	100:8 116:25	157:5 160:4 165:9	250:10 251:15,16
290:6	37:1,3,21 38:3	117:10	168:1,16,17 174:19	263:20,23 268:2
ones (9)	organizing (1)	P-value (73)	174:22 177:16	270:3 271:3,4 274:5
33:12 36:23 83:2	36:18	84:7,10,24 85:4,6,11	178:24 179:16	274:19 275:5
84:22 150:8 193:10	original (6)	86:2 87:2,6,17,23	182:21,24 183:9	290:15 298:5,23
215:11 230:24	283:6 295:18 305:11	87:24 88:15,19 89:1	186:3,4,5,9,10	299:2 306:20 308:5
309:6	370:24 415:2 416:4	89:10,10,17,22	187:25 189:21	308:6,21 359:12,18
ongoing (5)	originally (1)	90:12,21,22 91:4,13	192:22 228:13,16	360:25 366:23
22:20 25:22,25 30:16	20:16	91:16,21,22 93:9	231:17 234:8 236:7	374:4 376:14,18,21
31:5	Orsi (5)	94:6,15,22 95:12,13	244:6 249:17,19	379:17 383:14
onset (3)	160:15 395:23 400:10	95:13,20,20 98:9,20	263:12,19 275:14	385:20 386:12
188:5 192:12 347:7	400:11 409:23	99:2,4,5,10 100:6	277:10 278:20	387:2 388:2,18
open (1)	outcome (18)	100:11 101:12,21	283:14 285:6	389:10,11 390:2
246:21	28:22 48:19 49:3	102:5,8,18 103:1,16	296:24,25 297:16	392:7,8 414:6 415:4
opine (1)	141:11,25 142:4	103:24 104:1,2,6,11	305:22 308:9 310:5	papers (9)
186:3	143:4 167:16	105:4 107:17,24,25	310:16 315:16	54:20 55:20 56:12
opining (1)	168:22 175:18	108:16,19,21 109:1	316:3,14 317:4	147:2 216:4 359:20
289:21	191:4,10 194:1	109:2,2 110:16	319:5,12 326:11	371:9 414:14 415:4
opinion (39)	195:4 201:24	111:17,22 117:10	345:8,16 350:22	paragraph (16)
45:21 49:19 51:7 53:4	310:22 359:15	119:13,13 249:9	351:7 353:2 365:12	92:6 118:1,15 152:4
78:9,16 79:22 81:7	438:15	P-values (25)	365:13 373:2	188:1,2 228:14,15
185:5 221:2 264:9	outcomes (3)	84:15 85:12,21 86:1,9	385:16,17,24,25	390:8,24 392:12,19
265:4,7 267:4 268:1	38:15 220:19 396:9	86:14,15 88:6 89:4	387:16,19 389:21	393:24 394:2,17
268:22 288:14	outrageous (1)	92:9,16,20 93:4,15	389:22 390:1,3	395:1
291:10 302:4,9	411:24	94:25 96:1 98:25	392:8 393:3 402:6	paragraphs (3)
323:8,18 385:6	outside (2)	102:3 104:5,8,21	402:11,14 405:22	74:5 75:21 76:8
403:11,22 404:7,19	32:16 325:4	105:11 106:13	405:23 423:14,17	parallel (1)
407:5,21 408:22	overall (24)	118:9,18	428:16 433:5	150:5
410:21 415:16	53:13,22 59:1 61:24	p.m (38)	436:24 439:6,7,9,10	parameter (12)
416:12 429:19,21	62:11 65:3 66:21	178:4,5,6,8 203:15,17	439:12,13,15,16,18	44:5 45:13,15,18
429:22 434:7,16,21	72:6 88:7,22 98:23	203:17,19 270:21	439:19,21,22,24	46:19 84:24,25

Page 29

87:24 93:5 97:22	pediatrics (1)	329:3 434:2	273:17 274:12	362:1 364:16
129:14,17	12:24	perfectly (2)	308:7,13 325:8,10	369:15,16,20
parameters (13)	Pedram (2)	360:3,6	325:14 326:19	370:24 371:14,16
44:4,24 45:4,7 46:15	3:16 9:7	perform (1)	327:7,10 328:24	371:16 382:15
46:16,24 48:9 87:25	peer (11)	417:19	331:1 333:7,19,22	383:11 433:7,9,10
110:14 112:25	37:7,11,15,17,20,22	performed (5)	334:1 335:15 355:7	phases (1)
124:25 126:5	38:6,9,17 389:17	284:4 290:22 335:24	357:6 358:7,7,11,14	433:5
paraphrasing (1)	390:17	363:3 418:5	359:15 360:7,12	PhD (12)
87:12	peer-reviewed (18)	performing (4)	362:17,18 363:7,19	1:16 2:10 5:3,11,25
Parkinson's (3)	288:7 357:22 358:23	417:8,9,23 420:21	368:17 375:7 377:2	6:7 10:7 11:25
29:22,25 32:24	359:20 360:25	period (70)	379:7 430:1	13:10 14:12 437:12
parse (1)	361:25 380:21	17:13,24 21:21,22	pesticides (106)	439:3
332:23	385:19,20 387:6,10	22:1,23 23:20 25:14	24:18 27:18 28:10	Phillip (1)
part (21)	388:1 389:12	26:5,12 30:25	30:15 137:4 138:2	34:21
24:1 29:6 38:8 46:24	391:12 392:25	186:25 189:7,23	153:14 158:11	phone (3)
52:17 60:13 111:20	393:17 395:10,13	192:24 193:25	165:25 166:18	9:11,15 36:10
112:24 122:16	pending (1)	194:16 195:2,18	173:24 174:4	phosphates (1)
126:2 127:6 128:19	201:15	196:11,18 200:24	176:10,20 177:13	150:4
129:4 142:7 143:1	people (55)	201:24 202:24	179:13 180:8,10	phrase (1)
175:11 218:4 219:8	25:1 27:10 38:12 41:2	203:9 205:16,17	185:16,18 206:12	392:24
289:25 291:9	164:17 185:23	207:6,15,17,18,25	227:25 230:23	physician (3)
409:12	189:13 190:11	208:3,21,24 209:4	236:3,14 237:20	12:9,11 34:8
participants (1)	194:20 205:6 216:1	209:11 211:1,23	238:23 240:2,25	picture (2)
29:13	233:2,4 240:13	214:16 217:18,22	241:25 245:24	98:23 99:1
particular (4)	246:23 261:9	218:18,24 219:7,8	247:17 248:4,22	piece (3)
87:8 133:13 410:2	264:15,17,23,25	219:21 220:3,8	252:18 276:12	110:17,19 373:22
420:8	265:17 267:16,17	221:21,24 222:12	280:19 282:7 285:1	pieces (2)
particularly (2)	268:14 269:17	222:19 243:7	289:21 294:21	60:10 418:16
30:14 298:1	270:13 273:3,19	275:24 341:15	310:21 314:3	place (7)
parties (1)	276:13 288:3 309:7	343:18 346:21	325:11 326:16,22	34:6 93:12 187:3
438:13	311:16 317:13	355:16 358:16	327:12,15,17,22,25	191:21 195:2
parts (5)	339:2 355:15	367:22 369:8,14,20	328:12 329:2,13,16	210:12,15
47:1 72:2 129:1	364:15 366:19	369:21 371:17	330:4 331:13,14	placement (1)
208:19 433:9	367:14,17,18,21,22	372:21 374:12	333:14 334:16	119:8
passing (1)	368:20,25 369:24	377:7,10	335:1 338:2 343:1	plaintiff's (8)
409:21	370:9,10,11 371:11	periods (3)	343:10,13,14,23	20:13 55:16 81:3
pathology (2)	372:12,14,25	30:22 222:17 343:19	357:12,13,19	408:18 410:8,8,13
56:2,4	380:22 397:10	person (9)	358:18 361:1 363:4	413:10
pathway (2)	433:8	15:13 188:20,20,22	364:3 365:15,19	plaintiffs (15)
143:7 145:14	percent (55)	191:23 254:2	366:1 367:1 372:19	3:4,11,19 4:4 5:14 9:1
patients (3)	89:6,19 90:4,8,14,25	332:12 337:4	373:11,11 374:17	9:4,6,8,10,13,23
12:17,18 13:5	91:5 107:12,15	355:18	375:25 376:18	18:22 81:21 408:21
pattern (1)	108:2,6,8,18 109:21	personal (5)	377:18 378:18,21	plausibility (9)
51:2	110:15,16 131:4	14:14 279:7 286:3	379:5,19,23 380:1	73:19,25 74:20 75:6
patterns (1)	206:4,5,8 207:4	295:8 342:20	380:14,17 381:3	75:18,20 76:23
309:21	211:24 214:19	personally (2)	388:9,13,15,18	401:25 417:16
Paulo (1)	249:7 355:8 356:2	275:16,19	389:1 395:16	plausible (2)
428:16	356:12,22 364:17	pest (1)	396:22 397:16,24	192:14 193:1
pay (3)	364:24 366:18	149:17	398:2 400:24	play (3)
17:10,11,12	368:2,7,10,12,13,14	pesticide (52)	424:13	170:25 211:20 249:8
paying (1)	368:18,25 369:1,13	6:22 27:24 30:18	petition (1)	played (1)
35:4	369:19 370:15	136:8 152:14 176:2	80:2	114:3
payment (1)	372:4 374:1,2,7,11	176:5 177:2 180:23	phase (25)	playing (1)
17:16	374:14 375:3,6,7,9	223:25 224:16,20	22:3 26:5,17 27:7	125:5
PC (1)	375:10,11	231:18 239:1,5	355:6,22,25 356:8	please (16)
2:11	perfect (2)	242:12 272:2	357:7,20 358:22	8:23 9:18 10:4 16:17

61:6 147:15 231:4	99:23 114:18	329:14 330:19	23:16	288:23 289:23
264:4 351:3 361:16	pooled (25)	possible (12)	preamble (2)	290:6,10 291:13,23
398:8,11 423:6,15	6:16 184:9 218:5	60:19,23 62:9 98:13	18:25 19:17	292:3,17,22 294:1,2
432:8,23	219:10 224:5,13,20	150:10 152:12	predates (1)	294:11 295:17
plot (8)	225:2,11 227:15,15	192:14 198:8	193:17	308:8 317:7 318:20
152:25 153:4 160:5	227:23 230:1	208:25 210:16,21	predict (7)	337:18 342:16
160:22 161:5,16	235:22 276:17,24	330:16	364:13,22 366:18	375:22,24 377:16
162:6,14	276:25 277:10	possibly (2)	367:11 368:17,20	378:14 380:19,25
plots (1)	279:16 284:13	145:13 150:22	372:14	presenting (15)
160:9	306:14 396:19	posters (3)	predicted (1)	22:14,15 53:5,7 158:2
plus (9)	414:23 415:1,9	429:2,6,18	375:15	161:16 246:7,11
54:12 56:1 179:22	pooling (4)	potential (29)	prefer (3)	266:17 290:14,23
181:19 219:15	183:12 184:10 220:17	28:16 31:13 32:5,18	189:21,23 192:24	292:25 293:5
340:2 356:12	397:14	110:6 111:6 122:23	pregnancy (2)	347:20 376:15
373:25 395:1	pools (2)	151:22 152:21	30:24 77:14	presents (2)
point (56)	222:9 401:20	159:18 163:5,22	pregnant (1)	326:14 338:6
37:24 43:8 46:16,17	poorly (1)	164:9 186:17	31:3	preserve (1)
46:23 57:13 65:21	11:8	187:16 194:12	preliminary (4)	413:17
72:12 73:16 75:17	popping (1)	199:10,16 201:23	288:5 290:11,15	president (2)
88:15 89:12 98:4	331:17	203:6 229:16 230:5	291:9	36:12,12
114:20 117:13	population (20)	303:23 336:19	premise (1)	presume (5)
119:15,16 127:21	31:4 90:24 143:21	341:16 371:6	135:5	167:8 176:12 194:18
134:10,11 143:9	144:3 171:2,5,11	393:15 420:13	preparation (1)	224:15 418:7
154:23 162:15,19	175:16 176:4,11	429:25	245:22	presumed (1)
168:15 175:4,24	189:8,10 192:18	potentially (5)	prepared (12)	197:8
187:17,23 192:21	197:12,13 206:23	137:13 230:24 231:12	80:4 247:5 278:2,7	presumes (1)
201:1,23 202:23	209:3 271:7 334:17	334:17 371:1	288:12 290:5	185:13
209:13 245:2 251:4	396:2	power (31)	305:10,19 347:22	presuming (4)
255:14 263:24,25	population-based (1)	110:3 111:5 112:9	348:4 410:11,14	201:3 208:11 209:20
264:3 287:4 322:2,8	318:1	120:7 121:20 122:1	preparing (1)	209:21
337:21 340:19	populations (6)	122:14,16,18	23:20	pretty (11)
378:11 382:2,24	143:22,24 171:1	124:24,24 125:4,9	present (31)	37:3 51:18 94:3
390:2 403:18 404:2	202:13 334:3 400:5	125:21 126:3 128:9	4:17 17:4 22:7 24:2	119:19 173:19
406:21 410:18	Portier (5)	128:19 129:1,3,20	77:11,14 84:15	355:18 361:18
412:14 432:23	18:22 19:4,7 35:25	129:21 183:15	128:6 152:25	409:25 427:20
433:8	402:19	184:12 189:13	155:23 157:12,20	428:9 436:2
pointed (2)	Portier's (1)	198:20,23 212:12	158:16 162:4 171:6	prevalence (14)
391:2 431:22	402:17	218:10 225:24	177:16 182:20	49:5 124:8 125:3
pointing (2)	portion (3)	400:13 427:22	246:8 268:22 279:3	126:7,10,12 364:2
148:18 391:7	403:3 412:5,12	powerful (20)	289:5,6,17 319:6	366:16,21 367:3
points (6)	portions (1)	120:18 121:1,3,3,9	378:25 379:25	373:18,21 374:9
116:23 144:25 324:21	410:21	122:7,23 123:14	380:20 383:9 384:4	375:2
340:9 402:3 409:8	position (7)	124:11 125:14	403:13 406:4	prevent (1)
pollutants (1)	13:18 15:10 33:6 56:8	126:2 171:16 174:2	presentation (14)	389:11
430:24	291:7,8 408:20	181:3 182:3,5 190:7	38:25 278:21,21	previous (1)
pollution (1)	positive (21)	218:13 222:20,22	288:21,24 290:7	415:10
430:23	48:17 50:5,10,11 64:6	PowerPoint (7)	315:25 428:19,20	previously (4)
pool (2)	65:10 66:11 67:5	5:18,22 6:17 113:8,23	428:24 429:3,7,8	18:14,16 165:16
218:6 242:20	68:10 69:7 70:8,18	423:9 428:19	432:11	307:15
Poole (16)	131:3 142:12,18	practice (2)	presentations (5)	prior (28)
5:15 86:14,24 87:6	223:18 323:2,6	12:13 81:2	24:6,9 37:8 39:1	26:20 129:22 133:18
91:25 92:15 93:8,14	331:16 406:8 423:3	practiced (1)	432:19	147:7 183:24 184:1
94:15 96:25 97:3	possibility (10)	12:11	presented (33)	192:12 202:13
98:8 103:1 104:19	29:17 138:23 144:11	practices (1)	23:5 158:4 160:21	209:13 221:7 222:3
105:7 110:11	168:18 176:1	136:18	212:18 267:5 268:2	234:14 278:2
Poole's (2)	193:14,23 311:6	pre-review (1)	270:2 286:19 287:4	289:20 313:24

Page 31

344:14 346:25	production (1)	106:15 119:22	431:14	110:20
347:7 348:18,21,22	333:2	120:5 127:2 135:12	publish (1)	pyretrine (1)
348:25 356:9 358:3	Products (2)	153:9 154:15 226:4	225:18	312:9
369:25 415:5,5	1:4 8:8	226:8 229:15,22	published (39)	
431:15	professional (6)	230:3 264:11 265:8	77:20 223:4,7 224:4	Q
probability (3)	14:11,13 16:24 19:6	267:6 268:3 270:3	225:1 227:2 228:2	quality (1)
87:7,18 115:20	21:8 270:1	271:5 278:22	275:5 288:7 289:14	316:23
probable (12)	professionals (1)	297:20 298:15,19	319:1 325:3 357:6	quantified (1)
94:17 95:2 97:5,19,21	34:5	323:9 407:8 410:14	357:21,22 358:24	275:25
98:10 99:16 100:1,9	professor (1)	provided (14)	359:21 360:24,25	quantitative (1)
101:14 102:20	13:15	12:16 13:4 116:19	366:23 376:14	131:13
104:2	professors (1)	118:24 135:20,21	377:15 382:3,20	question (159)
probably (25)	18:9	136:9,11 137:12,14	386:9 387:7,7,11	11:3,8,8 16:16 24:22
40:21 51:19 87:5	proffer (1)	227:18 277:18,19	388:1 389:12	25:3 28:2,8 30:10
146:11,19 171:4	81:3	435:11	391:11,19 392:25	49:18 50:16 52:11
172:9,10 178:2	proffered (1)	provides (7)	393:17 394:15	52:12 59:4,11 61:13
182:14 184:25	79:22	99:11 262:20,25	395:10 414:22	62:25 63:11 65:6
194:5 204:5 205:21	proffering (1)	265:5 266:10	415:5 416:18	66:7,23 67:1,22,24
210:21 213:24	79:3	269:13 323:16	publishing (2)	68:3,6 71:9 76:5
214:24 234:10,23	program (11)	providing (3)	146:22 394:9	77:11 80:4,25 81:12
235:10 268:16	15:4,7,12,21 16:7,14	88:16 265:22 269:9	PubMed (3)	81:15 85:17 90:11
388:4 392:1 412:18	16:20 17:2 55:8,24	province (2)	414:8,10,12	100:24 103:23
430:5	105:9	248:17 279:5	pull (1)	116:9 120:23
problem (17)	progress (2)	provocative (1)	154:25	122:20 123:6
30:19,20 31:20,23	22:7 433:4	289:7	pulled (2)	124:12 126:19,20
44:22 127:6 140:20	project (3)	proxies (11)	227:4 393:22	127:22,23 138:12
170:20,24 334:4	6:17 276:17 277:10	135:20 136:10 137:12	pulling (1)	153:23,25 154:2
346:19 347:13	projects (1)	139:2,7 145:14	159:9	157:17 163:3 168:7
373:13,13 395:15	107:23	397:5 428:1,2,4	pure (1)	168:14 172:12,22
397:4 430:2	promotion (3)	430:10	52:6	174:17,24 175:1
problematic (1)	197:21,23,24	proxy (33)	purpose (2)	184:7 200:12,19
67:19	proper (4)	135:11 136:16,19	46:22 202:16	201:15 202:2,17
problems (7)	88:14 140:7 201:22	137:20,21,24 138:8	purposes (9)	204:16 214:6 217:5
288:6 391:3 392:4	202:23	138:18,23 139:16	106:8,23 202:21	217:14,15 218:16
400:15 433:2,20,20	properly (2)	139:20,22 167:19	210:14 263:3	218:17,25 220:5,24
procedure (2)	80:8 115:21	167:21 169:7,14	287:17 309:16,17	221:10,22 223:16
224:18 343:15	proprietary (1)	279:7 286:3 295:7	330:6	224:3,23 226:16
procedures (1)	412:7	297:17 305:23,24	pursue (1)	227:11 238:12,13
26:16	prospective (6)	306:3 329:24 330:2	13:9	238:19 239:22
proceedings (2)	317:18 390:5 391:9	423:14,19 424:5,6	put (25)	241:21 242:5 243:4
207:1 437:2	392:14 393:1 433:1	427:4,11,19 428:10	55:15 62:7 71:5,23	249:24,25 258:3,21
process (9)	protect (1)	psychiatric (1)	93:3,11,12 110:20	258:24 259:21,22
10:23 33:9 37:12 38:6	426:22	12:15	110:20 114:9 116:3	262:22 265:3
41:9 45:6 46:6	protective (6)	public (2)	116:13 125:23	267:24 268:20,21
187:3 192:6	274:13 279:8 286:4	195:19 437:19	183:11 239:15	269:22 270:8
produce (1)	295:8 342:20	publication (15)	282:13 288:13	272:20 274:3,25,25
22:11	344:21	22:24 23:21,25 33:2	331:4,6 414:8	283:23 291:18
produced (4)	prove (1)	227:14 357:18	417:13,14 418:15	296:12 310:2
132:12 313:13 435:22	117:18	358:21 361:25	418:21 430:18	322:17 323:14
436:16	proves (1)	376:8 377:21	putting (11)	327:5 329:5 330:6
producing (1)	112:23	378:22 380:21	18:4 113:9 127:7	333:4 334:8 339:10
380:16	provide (38)	386:20 391:5 394:8	168:12 235:16	339:11 341:13
product (8)	12:18 41:15 45:8	publications (5)	276:19 290:14	347:10 351:12
52:7 300:8,23 302:13	52:14 83:24 84:6	23:12 33:3 119:23	313:2 365:7 418:19	361:7,8,19,21,24
304:23,25 420:9	92:10,12,16,20	138:16 140:19	430:12	362:22 366:22
426:2	93:10,16 105:13	publicly (1)	puzzle (1)	369:3 373:5 374:23

Page 32

376:3 377:14,24	173:3,7 175:6	213:10 217:19,24	reaction (1)	170:8 214:24
378:2,4,9 381:8	177:17	218:21 232:13,14	88:3	218:19 260:19
391:1 392:22 398:7	Railroad (1)	232:16 233:7,8,18	read (32)	289:17 290:17
401:11 405:13,13	3:20	251:1 252:3,8 253:8	52:20 55:10,20 57:3,5	352:9 428:2,3 439:6
406:11 409:10,12	raise (4)	253:13 256:12	57:20 59:18 73:25	439:7,9,10,12,13,15
410:23 411:14,17	193:23 197:19 390:1	258:5,5,8 259:2,5	80:24 87:7 146:14	439:16,18,19,21,22
411:20 413:8	410:7	260:6,8,10 269:5	188:7 230:8 278:11	439:24
414:17 427:3 430:7	raised (8)	279:4,10,19 280:13	278:15 290:20	reasonable (16)
434:13,24	25:5,6 217:17 242:19	280:15,18,23 281:4	313:12 349:1 351:1	64:11 65:14 66:15
questioning (5)	375:20 391:1 393:4	281:10,20 282:5,17	394:24,25 402:17	67:9 68:14 69:10
397:25 408:7 409:16	393:5	282:19,23 285:14	413:1 415:8,10,13	70:13,23 71:14
410:10,18	raising (5)	287:23 298:8	415:14,14,17	72:12 264:18 266:7
questionnaire (10)	176:1 189:17 192:2	300:19 306:11	416:13 421:2,17	352:5 418:1 434:8
26:6 245:19 246:5,21	196:16 375:18	308:4,14,25 309:1,5	reader (3)	434:17
314:15 315:10	Ramazzini (8)	312:10 319:7,12,14	152:19 159:15 162:18	reasoning (2)
346:25 356:9	33:23 34:1,7,24 35:7	320:8 330:9,14	reading (10)	89:13 93:6
363:21 372:5	35:18,22 36:1	350:8 352:12 353:6	69:14 101:10 166:25	reasons (7)
questionnaires (3)	random (1)	353:8 396:3,14,23	223:22 247:1 258:7	82:10 151:24 157:15
31:11 356:13,23	377:4	396:25 398:14,19	380:23 421:5,22	218:14 335:9
questions (41)	randomized (1)	399:7,20 424:4,9,21	422:13	390:24 399:8
10:18 24:25 25:24	317:16	425:15,18,20,22	real (5)	reassessing (1)
26:10 50:4 56:6,8	randomly (1)	427:11	52:8,9 95:11 331:11	31:23
81:9 85:8 86:19	364:16	ratios (61)	335:20	reassigned (1)
92:8 126:24 127:2,3	randomness (1)	43:7,8,8 118:6,7	realistically (2)	14:5
246:21 269:23	91:23	151:20 153:1,1,10	105:12 106:14	reboot (1)
274:11 307:11	range (3)	153:10 154:3,7	reality (2)	325:24
344:3 351:8 380:11	210:21 211:12 212:5	158:16 160:16	208:4,9	rebooted (1)
406:21 409:25	ranges (1)	163:23 183:23	realize (1)	325:19
410:4,6,11,15 412:2	212:24	213:15 233:13	183:22	rebuttal (11)
412:22 413:3,14,16	ranging (1)	234:3,21 237:19	realized (2)	6:5 165:23 277:21
413:22 422:2	92:9	238:21,25 239:25	28:7 355:20	278:7,8 347:18
428:12 431:4,6	ranking (7)	241:23,23 248:20	realizing (1)	348:23 354:24
434:4,6,15 435:2	316:25 317:5,8,16	249:2,4,6 252:22	183:21	385:16 389:25
quickly (2)	318:4,6,20	278:22 280:2	really (42)	395:7
87:16 96:12	rarely (1)	284:24 288:11	21:17 23:15 35:19	recall (39)
quite (9)	104:23	296:6,8 308:6,12,18	42:14 88:2 94:5	18:1 21:8 24:15 25:4
28:4 58:15 70:19 71:3	rate (9)	308:21 309:2,10,15	111:12 136:3 138:7	25:15 31:1,22 32:8
71:21 80:21 150:5	27:1 43:7,13,14 44:23	309:23 310:7,9	143:17 146:7,10	33:16,20 35:24
323:13 412:9	153:1 175:21	311:4,11,13 320:10	149:17 168:24	131:17,21 132:20
quizzes (1)	176:13 354:20	321:17 324:6 336:1	171:9 189:7 193:6	133:9,11,16,22
137:2	ratio (128)	353:25 354:7,20	194:16 197:17	134:19 135:1,6,8,8
quote (2)	43:3,3,7,15 44:6,7,23	396:9 397:17	198:12 199:13	135:10,15 166:3
92:1 99:24	44:24 84:17 89:5,24	400:21,23	209:21 220:16	180:19 310:12,20
quotes (2)	109:6,8,9,13,15,18	re-review (2)	221:11 240:11	310:23 311:7
316:10 423:2	109:23 110:2	18:14,18	267:14 270:9	348:20,25 350:10
	111:15,21 115:9	reach (9)	301:22 302:1 303:2	350:13 363:8 420:3
R	153:17 154:7,9,16	45:21 48:16 51:7 88:1	306:4 316:9,20	421:22 431:6
R (4)	154:21 155:15,17	128:9 286:14	328:9,12 349:4	recalling (1)
3:1,15 4:1 438:1	155:22 156:17	331:19 410:25	362:6 371:7 426:8	185:23
race (1)	157:6,7,12,22 158:3	417:22	426:21 427:1 430:3	receive (2)
152:13	158:10 160:18	reached (6)	Realtime (4)	17:12 34:24
radiation (2)	163:20 171:14	55:13 56:22 61:15	1:24 2:15 438:5,23	received (6)
197:2,10	172:1 175:22	62:20 356:1 418:12	reason (30)	11:15,18 14:12 23:3
radon (12)	178:23 179:3,22	reaching (6)	21:19 34:3,18 71:22	313:11 347:19
168:3,20 169:22	180:4,12,21,21,22	38:6,17 49:19 60:23	150:20 151:25	recess (12)
170:4,5,9,12 171:22	182:20 183:16	70:1 407:21	162:16 164:19	72:21 96:17 144:18

178:5 203:16	246:17 262:14	232:12,15,19 233:5	relied (2)	133:18 136:1,17
270:22 307:2,22	263:19 273:6	233:16,19,24 234:3	294:12 295:17	142:2 145:1 151:20
326:4 384:23	278:20 295:22	234:6,14 235:7	relies (1)	152:1,3,24 153:16
406:25 419:18	310:4 316:6 384:1	335:5,6	135:10	155:24 158:10,24
recognize (1)	435:22 436:2	regular (13)	rely (9)	165:23 166:16
112:4	reference (8)	15:23 185:19 268:16	84:24 117:10 119:12	178:12 180:21
recommend (2)	76:7 78:4 80:16	268:17 270:15,15	150:20 175:5	182:21 183:10
18:24 288:4	277:25 353:22,23	271:11,12,15	398:24,25 399:9	186:2,4,5,8 187:25
recommendations (2)	379:6 390:7	276:10,11 303:25	416:10	212:23,23 218:18
22:19 32:3	references (1)	402:8	relying (1)	223:8,17 224:6
recommended (1)	415:3	regulatory (1)	252:4	225:3,14,17 227:5
15:14	referencing (2)	419:9	remaining (1)	244:8 247:7 248:2
recontact (1)	83:2 393:22	rejected (3)	345:20	249:1,13,17,19
355:24	referred (2)	43:21 44:16 48:4	remember (14)	250:5,20,21 251:4,8
record (68)	290:18 422:14	rejecting (2)	15:12 23:10 24:6,9	251:22 252:1
7:9 8:24 9:15,20 15:3	referring (18)	99:17,17	25:11 32:12 113:18	254:11,12 257:5
59:25 72:20,24	57:25 66:20 74:17,25	related (10)	166:25 179:14	258:4 259:3 260:7,7
76:21 79:17 81:10	75:6,11 95:9 104:22	149:7 150:23 151:13	213:22 347:5	260:22,24 261:3
81:11,14,17,22	105:18 235:9	176:10 193:16	378:11 383:4 397:3	262:5,21 263:7
96:15,20 139:21	260:20 263:8,18	285:20 426:9 429:6	reminder (1)	273:3,19 277:16,21
144:17,21,23 178:4	290:3 389:5 391:22	429:16 438:12	162:17	278:3,8,9 279:19
178:8 180:3 186:20	393:25 394:1	relates (5)	remove (3)	280:1,23 283:6,17
203:15,19 207:2	refers (9)	1:6 304:19,21 355:1	196:3 296:1 427:25	283:24 285:5
214:5 240:23	94:7,21 103:25	433:22	removed (2)	288:12,16 292:11
243:20 248:19	116:18 128:18	relating (1)	284:15 285:25	294:12 295:18
249:1,21 258:21	159:7 261:15 388:5	220:18	removing (2)	299:3 305:11,20
270:21,25 307:1,5	415:4	relation (2)	428:9,10	310:5,17 314:3
307:19,21,25 317:3	reflect (2)	390:10 394:4	rendered (1)	319:5,13,13,16,16
318:18 326:7	105:12 106:14	relationship (7)	79:10	319:20 320:21
353:20 360:23	reflected (4)	14:11,13 19:7,10	rendering (1)	323:1 338:17
361:15 384:22	43:2 305:5 373:1	24:11 77:21 121:10	78:9	344:12 345:8
385:1 405:8 406:22	374:18	relative (26)	rent (1)	347:19,22 348:5,15
406:24 407:3 408:6	reflects (2)	31:17 44:6,23 84:17	17:11	348:18,23 354:24
408:10 410:24	111:22 257:9	110:15 120:6,7	repair (1)	364:1 370:16
411:2,6 412:4 413:7	refusal (1)	128:9 135:24 171:2	342:19	379:24 385:16
419:17,21 435:17	410:4	171:3 172:5 279:6	repeat (5)	389:21,25 395:7
436:22 437:5	refutes (2)	352:3 354:5,12,19	90:7,23 270:12 376:3	401:24 402:7
438:10 439:4	41:16 42:18	365:12 366:6,13,14	399:16	404:17 406:6 409:3
recorded (1)	regard (14)	366:17 377:19	repeating (1)	414:4,6 415:14,15
360:13	53:18 56:24 74:13	378:17 381:1	415:12	415:18,20,21
records (1)	81:5 417:17 418:12	390:13	replace (1)	417:21 429:10,13
314:17	425:9 427:25	relatively (4)	288:6	429:20 434:7
reduce (1)	428:23 429:2,10,15	24:11 111:20 194:21	report (177)	reported (60)
427:21	431:10,13	226:1	5:10 6:6 25:21 37:5	1:22 84:17 142:11,18
reduces (2)	regarding (8)	relevant (6)	39:5,15 49:16 52:21	154:6 157:22
345:12,19	27:13,17 28:14 59:12	77:11 152:18 194:15	53:17,25 56:15	158:25 172:1
reducing (1)	73:6 292:5 408:13	198:4 210:3 414:16	57:11,14,22 58:18	178:22 193:3
427:20	408:23	reliability (3)	59:9 66:3,5 67:1	225:12 233:8
reduction (1)	registries (3)	25:7 88:8 293:16	73:3,4,8,16 76:13	234:21 238:21
280:17	29:4,10,11	reliable (13)	79:19 80:6,18,23,24	241:23 244:11
reevaluated (1)	regression (32)	135:21 136:3,10	82:13,18,22 83:15	248:20 250:25
151:7	154:10 163:10 188:12	137:14 138:6	83:19,23 84:8,13	252:15,22 254:13
refer (18)	212:21 213:9,11	291:25 292:4	85:9 86:25 87:1,14	257:21 260:9
57:22 76:10 89:23	214:8,9 215:17,19	293:10 315:18	87:17 107:7 117:24	265:21 287:23,24
94:15 113:12	215:22 216:2,6,13	316:4,10 377:22	117:25 119:22	298:5 300:16
116:18 188:24	217:6,8,12 232:2,3	426:19	120:2 128:7 131:17	308:16,21 309:10

309:15 310:21	reserve (1)	responsibilities (1)	reviewed (20)	114:11 179:17,20
311:12 312:10	410:16	13:17	18:15,16 33:10 52:17	rigorous (1)
321:18 322:7	reserving (1)	responsible (1)	54:19 57:8 69:25	47:17
323:25 336:1,9	408:21	254:5	73:14 78:8 132:9	rise (1)
340:5,18 350:4	respect (59)	responsive (1)	278:6 314:24 315:2	196:19
352:12 354:15	30:14 32:18 45:18	413:3	315:3 333:6 334:9	risk (73)
363:24 366:19	55:12,13 57:14 58:5	responsiveness (1)	383:19 395:3	6:21 32:19 33:13,18
369:25 370:18	58:21 60:3,4 61:16	412:8	408:15 416:7	42:1 43:3,7,11,12
371:11,24 378:17	62:3,21 63:14 64:3	rest (1)	reviewer (2)	44:6,6,23,25 45:1
396:3,14,22 397:18	65:8 71:10,11 79:4	394:16	293:1 296:1	84:17 110:15 118:7
397:23 398:14	79:25 82:22 84:5	restart (1)	reviewers (6)	142:22 143:4 145:3
399:7 400:22	101:6 111:3 125:14	96:12	37:15,18,20,25 38:17	145:9 146:3,6,8
reporter (15)	130:6 136:8 141:10	restate (1)	216:8	151:5 153:10
8:20 9:14,18 10:4,25	141:20 143:14	90:20	reviewing (4)	163:22 164:11,13
11:5 96:10 113:20	149:4 154:13 159:2	restrictions (1)	36:23 37:22 63:3	164:14 171:2,3,12
147:24 170:2	163:2 183:7,15	150:7	229:23	171:12 173:7
226:15 325:18,22	187:24 189:18	result (13)	revisions (1)	175:12,14,17,19,21
328:15 438:6	194:10,15,16	50:5 87:8 89:16 90:9	386:21	254:14 271:13
reporter's (1)	198:17,19 206:18	91:1 103:2 139:4,5	reword (1)	285:22,24 302:17
11:1	210:9 215:3 221:16	170:13 188:13	171:20	324:5 328:1,13,20
reporting (11)	228:8,18 247:7	192:6 235:2 409:16	ridiculous (2)	328:22 331:3,21
8:19,22 226:13 236:1	248:1,2 286:15	resulted (2)	81:13 94:3	332:7,8,10,19
241:22 254:19	293:4 294:16,25	191:3 288:21	right (84)	334:18,19 335:16
283:18 306:17	297:21 321:12	resulting (3)	17:25 19:14 33:8	336:1 350:8 352:3
320:11 322:14	363:3	77:13 177:3,7	40:19 42:19 45:17	352:12 353:6,8
396:7	respond (9)	results (32)	63:10 76:25 81:18	390:13 398:14
reports (7)	27:10 355:10 356:8	22:11,14,21 23:4	81:19 85:8,14 96:3	418:24 419:8 422:3
109:12 131:3,3 249:3	372:13,15 409:2,9	51:18 89:17 116:3,5	99:15 109:25 111:2	424:14 429:24
259:5 408:15	412:24 413:12	116:13,15 123:11	112:3 115:24	430:9
415:10	responded (12)	130:2 138:19 153:6	118:20 129:16	risks (4)
represent (7)	355:9 356:13,22	153:8 158:10 161:4	133:2 142:23	252:16 354:6,12,20
10:17 79:24 132:11	364:16 367:24	179:17 230:21	146:19 149:16	Ritz (49)
200:11,13 340:14	369:6,16 370:1	234:12 235:6 236:1	155:1 157:23	1:16 2:9 5:3,11 6:6
348:12	372:5,20 374:8	239:6 244:9,11	161:13,15,25 162:9	8:7 10:7,14 11:15
representation (2)	409:4	246:11 269:13	166:25 168:12	39:4,13 73:2 81:4
153:5 200:12	respondent (1)	289:5,6 296:14	172:21 173:5,11	81:22 83:23 96:23
representative (2)	279:7	378:25 382:15	175:7 181:16 184:3	96:25 113:17,23
369:1 374:1	respondents (7)	retained (3)	186:6 187:14,23	132:4 144:24
reproduce (1)	135:11 286:3 295:7	431:15 432:15 433:18	191:24 195:7,20	178:10 203:14,21
343:24	305:23,24 383:11	retro (1)	201:9 205:3 206:2	203:23 204:4 227:2
reproducible (1)	428:10	433:1	213:5 214:3 231:2	238:11 243:20
117:19	responding (2)	retrospective (12)	233:3 234:9 249:12	271:2 276:16
reproductive (1)	136:21 428:4	313:21 314:5,8,9,12	251:10 306:6	306:25 307:7,9
419:6	responds (2)	314:17,21 315:5,13	308:18 314:13	308:2 312:6 313:10
requests (1)	372:1 394:17	315:17 316:3,8	315:17 316:15	326:9 385:3 407:5
395:2	response (29)	return (2)	318:7 319:6 333:19	408:10,22 414:2
required (4)	27:1 28:10 132:12	97:2 212:17	337:11 338:19	419:17,23 435:11
79:21 127:9 241:3,10	264:12,14 265:8,15	review (29)	340:1 345:16 347:1	437:3,12 439:3
requires (2)	265:23 266:18,24	5:16 20:8 23:11,25	360:10 364:14	Ritz's (2)
130:8,17	267:7,13 268:3,23	24:15,19 37:7,11,25	368:9 369:17 372:2	409:18 410:16
research (9)	269:2,9 270:4	38:6,9 53:1 54:3,5,6	374:3 384:6 386:2	road (2)
16:2 17:7 27:17 33:14	275:15 302:25	54:9,18,20 68:8	387:3 406:3 408:22	201:9 202:7
35:8 48:8 105:9	309:21 311:14,18	69:5 73:22 245:5	410:17 411:19	roadways (1)
115:1 117:6	313:14 335:24	384:11 389:17	412:21 422:2,7	201:9
researcher (1)	345:7,10 372:7	390:18,21 402:20	436:20	rodent (1)
143:20	387:20 409:5	414:6 417:2	right-hand (3)	56:7

Page 35

rodents (3)	64:11 65:13 66:14	180:9 183:23 190:2	second (41)	352:7,22 353:3
80:17 82:9,14	67:8 68:13 69:10	190:6 193:6,7	22:3 26:5,17 80:2,11	364:6 365:20 374:9
role (7)	70:12,22 71:14	234:17 252:12	83:12 87:13 92:6	391:3 392:9,15
15:19 16:7 21:25 23:2	rules (3)	255:20 261:13	118:14 145:12	406:20 408:16
36:7 383:6 385:3	79:21 169:14 215:4	284:8 383:20	152:8 158:8 226:10	423:24 424:2 425:6
room (6)	ruminate (1)	387:12 428:15,16	228:14,16,19 244:6	425:13,17 427:3,7,8
25:1 29:7 60:21 61:24	133:17	scale (9)	253:1 278:8 297:19	427:9,16,17 428:15
62:2 72:4	run (2)	160:11,14 161:8,11	306:19 307:17	430:25 432:10
Roos (80)	150:5 289:10	161:17 162:5,6	355:6,10 356:8	seed (1)
6:12,20 22:24 32:25	runoff (1)	390:10 394:4	357:16 358:22	312:8
33:5 125:14,25	77:13	scenario (1)	361:1 364:16	seeing (8)
126:11 153:12,16	runs (1)	172:16	367:25 368:19	23:10 35:24 50:6
154:4,13 181:1,3,8	202:9	Scholar (1)	369:7,15,16 371:14	74:21 90:10 137:5
181:24 182:2	Rustler (3)	414:13	371:16 372:7	289:20 305:4
184:10 203:24	255:23 256:7,10	school (1)	373:16 402:11	seek (2)
205:16 212:16		12:23	409:7 433:14	82:1 83:11
213:14 214:9,18,22	S	science (6)	seconds (1)	seeking (1)
215:17 217:23	S (5)	40:6,22 41:4 60:11	434:25	40:1
218:23 219:1 220:7	3:1 4:1 5:7 6:1 7:1	83:17 417:4	secretariat (1)	seen (16)
220:10,15 221:3,23	sabbatical (4)	sciences (1)	17:24	17:22 91:2 138:15
222:7 224:5 225:3	17:14,15 19:24,25	82:17	section (17)	202:10,16 278:1
226:6 227:5,18,19	safely (1)	scientific (24)	53:24 74:19 75:5	283:7,25 288:11
227:22 228:6,16	322:1	34:25 35:2 39:24 40:1	76:24 228:10,11	305:21 347:23
229:21 230:12	salt (1)	40:8,20 41:9 52:12	245:4 390:4 392:8	348:3 428:23 429:1
231:16 234:9	88:20	88:15 95:14,23	395:3,4 407:16	429:5 430:22
235:24 264:23	sample (24)	167:4,7 289:16	415:23,24 423:14	select (1)
276:25 310:7	31:2,3 49:4 120:12,14	290:25 316:18,22	423:24 425:16	78:15
312:24 319:2,7,11	121:17,25 122:13	317:7 318:4 407:6	see (98)	selected (3)
319:21 320:3,4	122:16 123:24	417:3 418:1 434:8	19:20 36:16 40:10	21:11 275:17 364:17
321:16 322:25	124:1,19,20 128:18	434:17	41:10 45:14 51:11	selecting (1)
323:8,15 326:10	128:18 176:24	scientifically (1)	51:14 73:4 74:4,14	268:14
334:24 335:12,23	218:9 364:5,24	38:20	76:25 77:16 90:25	selection (18)
336:18 339:14	365:7 368:1 369:1	scientist (20)	97:7 104:7 108:9	28:15,16,19 29:1,2,24
341:3 342:5,5,24	427:20,21	15:8,11,18 16:8,11	111:19 117:11	30:4,8 140:1,5,10
345:7,23 398:13,25	Sao (1)	17:9,18 57:2,3	132:24 133:2,8	140:12,15,20,24
400:7 401:17,20	428:16	58:11 60:21 63:3	139:14 145:5,12	141:2,4,18
ROSA (1)	saw (10)	68:23 71:4 72:1	148:9,14 152:6	self (2)
4:8	167:10 277:24 278:5	78:17,18 79:9,12	154:19 156:5 157:2	306:3 397:4
Ross (2)	290:2 294:13	82:16	159:24 161:22	self-evident (2)
32:9,14	348:16,17,20,22,25	scientists (12)	175:21 179:18	36:21,22
roughly (4)	saying (27)	15:22 16:9 18:9 27:13	190:14 194:24	self-respondent (3)
204:8 205:1,16 206:4	93:23 102:2 106:3,20	28:9,14 29:17 30:13	195:22 196:1	423:15 428:5,6
Roundup (12)	125:6 148:22	32:3,6 284:11 289:5	215:25 226:9,17	self-respondents (13)
1:4 8:7 68:8 70:9 78:1	159:22 169:8 170:7	Scott (2)	229:1 231:14,20	297:18,19 306:3,12
78:2 129:11 152:20	184:24 196:24	4:18 8:18	232:23 239:17	396:25 423:19
159:17 210:15	198:2 230:21 255:1	Screening (1)	244:8 251:21,23	424:5,6 427:5,6,12
434:19 439:1	255:1 275:14	5:19	254:16 255:6	427:13,15
row (2)	322:12 327:6,10	search (13)	259:14 264:19	senior (3)
117:11 351:24	332:1,1 343:19	29:8 73:23 75:2,19	266:2 268:18	15:11,22 16:11
RPR (4)	377:6,13 394:12,13	76:17,19,20 77:19	270:16 271:12	sense (10)
1:23 2:14 438:4,22	412:15	78:5 83:3 414:8,9	277:11,22 278:14	95:17 120:6 121:4
RR (1)	says (27)	414:11	294:7 296:20	122:14 146:2
394:7	53:3 74:16 77:9 84:9	searched (2)	309:20 311:11,23	198:25 216:15
rubric (1)	92:19 93:13 100:6,7	29:5 73:20	324:1 336:14,23	267:20 315:12
262:16	105:5 106:25	searching (1)	337:25 339:11	330:23
ruled (9)	120:11 133:21	78:20	348:2 351:10,18	sensitivity (12)

Page 36

49:8 50:8 138:17	sex (4)	sick (1)	358:7 359:8 379:7	156:18 180:14 206:5
139:13 211:19	152:13 179:5 180:5	428:6	381:19	213:12 320:7
292:24 293:20	279:4	sickest (3)	singular (3)	396:10
294:17 305:23	shake (2)	397:6,11 428:9	109:1 415:13,13	SLL (2)
306:5,7,10	197:15,17	side (2)	sink (1)	282:2,3
sent (1)	share (1)	106:7 197:10	159:24	slowly (1)
315:10	385:6	sides (1)	sit (2)	10:25
sentence (18)	Sheila (2)	160:23	38:25 430:7	small (8)
52:23 66:25 75:11	223:6 224:15	signal (1)	sits (1)	25:21 33:18 34:6
76:23 93:21 94:7,14	Shimada (3)	49:12	72:4	282:4 312:16
95:7 97:3 117:25	4:15 10:1,1	significance (6)	sitting (2)	369:11 400:3,4
118:14 120:12	SHIMADO (6)	84:10 108:5 112:6	247:3 403:21	smaller (4)
152:8 190:5 235:8	155:7 166:9 200:7	280:6 320:16	situation (4)	114:21 172:6 173:16
244:8 284:8 393:23	214:1 350:18	352:25	145:17 331:10,15	409:22
separate (10)	405:11	significant (25)	339:1	smallest (1)
30:8 62:13,15,16	short (10)	31:9 89:2 107:21	situations (1)	180:20
249:13 250:6 251:5	38:5 48:25 178:1	108:6 111:24	86:8	smoke (1)
252:22 264:15	181:8 243:8,10	116:25 117:3	six (9)	144:5
292:4	264:3 326:1 343:18	156:19 232:20	68:19 124:16 186:16	smokers (3)
separated (2)	343:19	234:5,6 249:6	194:11 222:4	142:21 173:8,8
249:15 250:7	shorter (12)	252:15,23 253:5,10	236:20 237:3 238:4	smoking (18)
separately (3)	181:5 204:14,23	253:14 280:4,24	268:8	142:21 143:15,17,23
60:6 163:23 252:16	205:3 206:3 219:20	281:12 396:5	sixth (2)	143:25 145:24
September (6)	219:23 220:3	410:20 424:21	123:19 361:6	146:1 168:2,11,12
1:18 2:5 8:1,16	341:22,23 371:17	427:14,23	size (28)	170:4,11 172:2
438:17 439:2	426:7	significantly (4)	31:5 41:2 49:5 88:24	173:7 175:6 177:18
series (1)	Shorthand (1)	336:9 338:7 339:15	88:25 89:5 97:23	179:5 180:5
318:10	438:6	342:7	115:13 120:12,15	so-and-so (1)
serving (3)	shortly (1)	similar (10)	121:17,25 122:13	175:14
17:23 20:22 325:4	358:10	105:4 107:24 108:14	122:16 123:24	society (3)
session (1)	show (25)	108:18 232:20	124:1,19,21 125:6,8	34:11 36:4,14
178:2	51:18 56:12 120:12	298:4,9 300:7	128:18,18 131:10	sociology (3)
set (8)	121:17 129:1	344:18 364:3	170:16 176:24	11:20,24 12:3
39:7 49:20 273:10	147:13 153:20	similarly (1)	218:9 427:21,21	solely (2)
343:20 351:21	161:5 175:10 183:4	205:22	skip (2)	119:12 198:20
381:19 438:9,16	223:11 263:11	simple (16)	312:21,24	solid (1)
sets (1)	285:3,19 302:24	67:2 68:3,6 96:5	slide (42)	38:20
324:5	310:21 331:8 399:1	126:20 238:19	113:25 114:17 131:24	solidified (1)
setting (1)	403:2,4 405:6 423:9	258:3 259:22 266:6	132:5,19 133:8	429:22
419:10	427:22 429:5 433:6	343:25 344:5,25	165:6 277:19,22	soliloquies (1)
settings (4)	showed (2)	361:18 370:12	278:1,14 313:10,13	409:11
96:4 199:21 200:17	380:25 404:16	409:10 410:23	313:15 315:17,25	solvent (1)
201:8	showing (7)	simplicity (1)	316:3,14 405:8,17	33:19
seven (20)	304:20 329:1,8	381:18	405:21,21,23,24	somebody (10)
270:9 299:19,20,20	373:20 378:19	simplified (1)	423:8,9 428:23	21:14 125:12 148:24
299:24 300:1,3,17	402:22 433:3	308:17	429:5,17 431:23,24	185:15,18 188:25
302:6,11,12,19	shown (7)	simplistic (1)	432:11,19 433:6	189:3 271:18
336:16 340:18,24	41:11 150:17 230:16	133:5	435:11,13,19,21,24	371:24 399:1
398:11 411:3,8	428:14,25 434:4,15	Simply (1)	436:1,13,15	somewhat (7)
425:9,10	shows (8)	411:18	slides (7)	114:13 142:13 206:20
seventh (2)	110:11 120:11,14	Simultaneous (1)	113:24 114:10 167:11	209:12 298:4 320:5
240:5 241:9	122:12 123:23	328:14	288:18 289:9	409:20
severe (1)	428:23 429:17	single (12)	405:14 432:12	son (1)
30:1	431:24	31:24 190:21 193:9	slightest (1)	136:19
severely (1)	shrinkage (1)	224:14 308:20	238:13	soon (2)
399:3	234:13	312:9 337:20 358:5	slightly (6)	194:21 198:1

sorry (22)	311:23,25	365:15	277:12 295:23	stimulated (1)
148:8 172:16 186:4	specified (3)	starts (8)	386:5 394:1	416:3
188:1 213:3 237:9	245:7 246:12,19	77:1 118:1 152:4	stating (11)	stipend (1)
278:7 288:9 306:21	specify (3)	199:16 390:4	98:8 103:1 159:11	17:10
319:18 322:5	40:23 245:20 246:22	392:13,24 393:23	166:15 196:23	Straif (10)
325:18 333:3	specifying (1)	state (67)	244:18 252:2	13:22,24 14:5,7,11,15
349:16 354:9	41:1	32:10 41:13,25 52:23	254:10 374:4	15:3 20:8,12 35:17
376:23 379:25	speech (1)	53:25 54:7 58:18	379:18 422:1	strata (11)
381:12 383:7	127:4	59:7,9 66:2,4 75:25	statistic (2)	164:3,5,10,12,13,17
389:25 435:3	spend (2)	79:18 81:22 87:14	89:17 90:3	164:18,22 165:15
436:21	14:21 78:19	87:16 102:15,16	statistical (28)	165:18,20
sort (6)	spent (1)	104:4 108:4 115:17	44:2 45:14 46:24	stratification (3)
201:9 211:12 213:5	16:25	116:1,9,11 117:23	84:10 105:8,13	164:7 165:2 237:17
215:12 228:14	spill (1)	118:6 152:8,17	106:11,15,21 108:5	stratified (9)
318:3	274:12	158:24 165:24	112:5 122:14,15,17	163:14,19 165:12
sorts (4)	split (4)	186:12,15 187:25	124:24 125:21	236:10,12 240:9
208:15 222:17 296:19	72:1 238:2 331:7	188:3 189:20,21	128:19 129:1,3,20	250:11,15 306:4
338:21	430:16	229:14 230:14	129:20 218:10	stratifying (1)
source (1)	splitting (4)	237:6 238:8 240:18	225:24 280:6 282:1	239:8
318:2	267:16 268:13 280:8	241:15 242:7,14	320:15 427:22	Street (1)
sources (1)	309:19	245:12 246:7	430:13	4:12
138:7	spoken (1)	254:12 257:5 258:4	statistically (23)	strength (2)
South (1)	385:5	274:5,19 275:5,23	89:2 107:20 116:4,14	70:2 176:19
4:5	spraying (2)	279:5 280:16	116:25 117:3 121:3	strengthens (1)
span (2)	185:16 336:15	316:16 345:8	121:9 156:19 234:4	72:8
305:1 336:19	spring (1)	354:25 377:21	249:6 252:15,23	strengths (1)
spanned (1)	271:19	378:22 379:11	253:5,10,14 280:4	218:8
374:11	squarely (1)	381:16 382:24	280:24 281:12	stress (6)
spans (1)	436:3	386:3 389:20	396:4 424:21	75:8,12 402:4 404:4
369:20	stable (2)	433:16 438:2	427:14,23	407:7,19
speak (1)	116:4,14	stated (20)	statisticians (3)	strike (12)
10:25	stand (3)	77:19 80:13 83:15	92:7 96:3 106:5	52:15 70:4 80:7 82:1
speaks (2)	114:24 282:3 434:11	101:10 182:1	statistics (3)	83:10 182:19,19
100:11 409:3	standard (6)	208:10 221:19	45:3 107:1 111:23	245:4 314:25 315:1
special (2)	107:9,10 139:21,23	240:5 259:13	status (9)	329:10 408:24
18:12 363:6	414:6 419:10	260:22 282:25	179:5 180:5 237:5	strive (1)
specialist (1)	standardizing (3)	283:12 285:4	238:8 239:8 240:18	158:15
8:20	105:10 106:12 164:4	292:12 310:8,19	242:14 342:18,19	strong (10)
specialty (1)	standing (1)	335:7 382:4 390:23	stay (1)	58:15 69:2,16 71:21
12:1	407:7	429:19	410:11	117:13 145:9 146:3
specific (21)	start (17)	statement (19)	stayed (2)	146:4,8,10
38:13 40:15 61:14	8:5 11:10 41:6 48:25	78:3 231:8 308:17	370:19 389:1	stronger (1)
62:19 63:11 82:24	49:1,3 73:24 127:20	315:22,24 373:9	stays (1)	115:19
99:23 159:3 183:24	199:9 201:22	382:12 387:21,25	282:11	strongly (1)
200:23 237:1	208:22 297:16	391:17 393:2,10,22	step (12)	182:15
273:22 310:25	316:24 317:4	395:1 405:4,7 408:6	46:5 47:2 145:12	structure (1)
364:3 379:18,22,24	392:19 408:2,4	409:6 411:5	189:19 197:24	94:21
379:25 380:1 384:8	started (10)	statements (8)	215:12 217:4,13	student (3)
391:18	17:2,19 149:13 150:1	82:22 93:3 127:8	222:22 372:15,17	13:21 14:1,2
specifically (8)	208:11 209:22	159:20 226:21	372:18	students (35)
223:18,24 227:16	337:11 338:24	348:1 413:18 432:1	stepped (1)	13:19 15:24 16:1,1,3
273:19 357:15	358:13 383:15	states (15)	21:13	16:6 47:12 86:13
366:1 391:12 433:5	starting (9)	1:1 6:10 8:9 29:11	steps (2)	88:11 92:24 93:2
specification (1)	41:14 201:1 202:23	92:14 94:15,19	48:13 100:16	96:8 97:2 108:24
246:1	203:6 207:10 244:8	219:12 234:10	stimulate (3)	109:4 110:13 113:2
specificity (2)	309:21 355:22	252:7 261:23	316:11,19 318:19	117:9 131:20,22

132:8 134:1,25	404:15 407:6,19,25	218:20,21,23 219:1	401:5,5 407:15,15	262:17
165:11 169:1	408:1 409:19,22,22	219:14,14,16,20	408:3 409:24 410:2	subtract (2)
315:16 316:2,11,15	410:3 415:13,14	220:2,7,10,16 221:3	428:13 429:16	212:6 407:24
431:20,25 432:25	416:2,4 417:7,9	221:4,17,20,23	431:11,14 432:3,6	subtype (1)
433:23 435:12,14	430:23 432:2 434:1	222:7,8,9,21,23	432:21 433:21,24	387:17
studied (3)	435:25,25	223:4,8,24 224:14	435:15,23	subtypes (5)
41:22 209:3 415:24	study (403)	224:20 225:1,13,14	study's (1)	150:22 278:25 279:23
studies (171)	6:3,4,8,12,13,14,15	226:1 227:15,19,22	91:17	312:15 387:17
6:19 24:2 27:3 29:21	6:20,24 7:3,4 20:18	230:14 234:8,22	study-specific (1)	suffer (1)
30:24 33:10 38:16	22:22 23:19 24:3	235:14,22 236:1,8	333:12	97:20
39:15 42:4 43:1	27:12,13 28:17	237:16,19 240:1,8	studying (3)	sufficient (4)
48:10 51:14 52:5,14	29:19,20,21,22,25	240:24 241:22	52:10 145:4 146:17	191:20 192:5 407:20
53:1 54:2,3,5,8,9,14	31:8 42:11,12,20,21	242:7,8,22,25	stuff (1)	409:17
54:19,21,24 55:14	44:15 45:7 46:8	243:11,13,21,22	168:11	sufficiently (3)
56:17,18 59:21 65:4	48:4,14,17 49:1	244:1,14 245:6,8,18	sub (3)	192:3 195:3 353:16
65:9 66:11 74:3,9	50:6,13,18,24 51:13	245:19,23 247:16	29:21 206:23 396:11	suggest (2)
74:11 75:7 77:20	56:7 73:13 85:6	248:21 250:11	subanalyses (2)	293:19 295:6
78:21 82:9 85:11,20	88:23,24 90:13	260:9 272:9 273:10	294:16,18	suggested (5)
86:2 89:3 110:4	99:25 102:6,6 108:9	277:1 284:14	subgroup (7)	229:15 230:3 284:2
111:5 115:8 120:7	109:12 112:9,23	287:21,22 298:3,17	61:15 164:1 207:19	408:11 418:22
120:18 122:7	115:13 116:5,15	299:15 307:10	230:23 255:5 280:7	suggesting (1)
128:10 129:8,18,25	120:13,18 121:8,20	308:3 310:4,7,10	398:3	233:3
130:8,13,17,24	122:1,3,4,6,21,22	311:4,10 312:7,25	subgroups (1)	suggests (1)
133:14 138:5 140:1	122:23 123:7,8,9,9	315:19 316:23	312:17	266:25
140:4,11,12,13	123:13,21,24,25	317:8,22,23 318:1,6	subject (1)	Sugimoto (1)
144:9,10 148:23	124:4,11,12,18,20	318:7,8,9,12,15	187:21	56:7
151:19 153:2,6,8,10	125:13,14,22,25	319:1,4,7,21 320:3	subjects (8)	Suite (1)
154:14 159:1,5,14	126:1,8 129:22	320:4 321:3,16	134:3,14 163:21,24	2:12
160:4 166:1,17	131:2,5,7 135:1,10	322:10,25 323:9,16	237:8 309:4 356:12	sum (2)
176:3 178:11 182:4	136:4 138:19,25	323:24 325:1 332:3	396:17	386:5 387:22
182:18 184:8,19	140:21,24,25 141:1	332:14,21,25 333:2	submit (1)	summarized (1)
197:12 199:2	141:2,4,13,17	333:5,11,15,17	83:18	38:1
200:22 205:7 215:5	142:10 144:7 145:2	334:10,11,13,24	submitted (2)	summarizes (1)
215:10 218:6,7	145:25 150:18,20	335:13,18,21,21	80:6 348:15	416:14
222:13,24,25	151:18 154:4,15,17	336:18 339:14	subpoena (1)	summary (2)
224:13 225:15	155:1,16 156:1	341:2,14,20 342:5,5	313:14	164:2 165:17
229:24 230:2,15	157:7,13,22 158:9	343:7 345:23,25,25	subpopulation (1)	summer (2)
235:23 263:16	158:12 160:15,17	346:13,20,23 347:4	388:8	150:19 271:21
272:2 276:24	160:17 171:15	347:9,14,17 350:23	Subscribed (1)	Sundays (1)
279:17 284:15	178:13,13,18,22,25	351:13 353:2	437:15	78:19
286:16,17 287:5,14	180:4,20 181:19,22	355:14 357:6	subsequent (5)	super (3)
288:6 290:19	182:2,3,6 183:14	358:13,24 359:1,23	69:23 184:8 284:12	235:5,11 259:12
306:14 313:20	184:11 186:7,10,12	360:17,24 361:3	284:14 386:20	Support (1)
314:2,12,16,18,20	189:13,18,22 190:7	362:4 363:1,10,12	subsequently (2)	5:12
315:3 316:7,16,17	191:14 192:2,23	363:12,22,24	227:4 386:9	supports (2)
316:23 317:18	193:21,24 194:3,5	370:24 371:9,19	substance (1)	230:15 323:10
320:10 321:1,13,19	195:5,10,11,14	375:23 376:13	67:24	supposed (3)
325:2 333:13	196:10,11,12	381:15 382:6 383:1	substances (2)	79:16 264:13 384:16
336:11 338:9	198:17,24 200:23	385:21 386:21	180:9 335:11	supposedly (4)
339:19,25 340:6	201:19 202:25	387:7,9 388:12	substantiates (1)	358:8 360:5,10
342:9 343:22	203:24 204:7,9	390:5 391:9,11	88:17	369:13
344:12 345:17	205:16,18 208:5,9	392:14,25 393:1,16	substituted (1)	sure (41)
357:21,22 380:24	210:11 211:24	393:18 395:10,13	386:23	10:22 30:1 35:1 47:13
396:20 397:15	212:11,12 213:16	395:19,22 396:14	substudies (1)	55:19 72:14 89:15
401:3 402:3,19,21	214:10,11,16,17,18	398:13 399:18	401:23	113:17 132:21
402:22 403:13	217:16,19,24 218:5	400:3,3,4,5,6,6,14	subsumed (1)	134:11 143:19

Page 39

146:21 191:6	systematic (1)	264:3 270:19 278:5	418:8 423:25 433:1	171:23 177:7
192:25 197:18	216:2	313:15,21 317:6	talks (3)	186:16 188:11
202:15 207:24	Systems (4)	324:5 325:25 364:7	83:3 87:1 186:23	189:24 190:15
211:11 215:14	1:24 2:15 438:5,23	384:12,15,18	tape (1)	192:25 194:11
217:13 223:12		406:18 427:19	8:5	196:11,18 198:9
224:24 242:24	T	434:24	tapes (2)	207:7,19,22 209:11
248:12 255:14	T (5)	taken (21)	419:14 420:4	211:2,8,25 212:5,7
257:14 262:21	5:7 6:1 7:1 438:1,1	10:19 72:21 93:22	Target (9)	217:18,23 218:19
265:2 266:14 277:4	table (92)	95:5,8 96:17 112:25	255:2,16,22 257:1,20	218:24 220:8 221:4
278:18 294:23	110:11 119:22 120:4	144:18 178:5	261:14,18,25 262:6	221:21,25 327:12
299:25 329:7	120:11,16 121:7,16	203:16 208:1	task (2)	340:10,10,11,13,13
340:12 352:22	122:4,12,21 123:4	270:22 307:2,22	23:14,14	340:16 411:17
359:18 391:3	123:23,23 125:12	326:4 348:14	tasked (1)	ten-year (1)
395:18 414:24	128:6,6,8,17 129:3	378:24 384:23	37:22	188:4
415:6	136:24,25 155:13	406:25 410:22	taught (3)	tendencies (1)
surprise (1)	156:4 157:5,18	419:18	85:3,5 88:10	310:23
239:7	178:25 179:4	takes (1)	teach (20)	tenfold (1)
surprised (4)	183:22 184:4,4	48:23	47:10,12 55:9 92:23	97:19
236:19 300:25 336:14	205:9 212:18	talk (26)	93:1 96:8 98:22	tenth (1)
337:25	231:13,19 232:17	20:5 39:4 44:13 46:25	108:23 109:4	71:17
surprising (2)	236:7 237:7,12,18	72:10 82:23 84:4	110:12 113:1	term (7)
233:22 298:2	238:20,20 247:18	107:6 118:22 125:9	131:12,20 134:1,24	29:20 31:17 44:2
survey (8)	247:20 248:7,11	126:8 132:20	165:11 169:1	235:4 316:8 317:21
355:10 357:16 361:2	251:14,17,22 252:5	136:23 154:12	315:15 416:22	430:16
367:25,25 369:7,7	252:20,21 257:16	178:13 183:11	431:19	terminology (4)
372:7	258:7 263:1 264:10	196:9 208:20	teaching (14)	11:23 132:22 160:8
surveys (1)	265:5,22 266:16	228:22 276:16	26:3 55:23 86:13 87:4	221:16
357:7	267:5 268:2,21	287:19 297:18	88:11 97:1 134:20	terms (42)
survived (1)	269:7 270:2 271:3	306:20 389:21	313:16 431:19	17:7 28:25 29:13
335:20	273:11 279:3 290:3	390:7 395:20	432:20 433:19,22	38:14 41:1 45:14
susceptible (1)	291:1,4 294:6 295:5	talked (14)	435:12,14	76:12 78:22 83:24
189:1	295:23 297:21	80:17 82:8,11,12,13	team (1)	84:3,5,7 98:23,24
suspect (1)	305:25 306:2 308:5	82:15 140:19 212:9	24:23	99:1 124:1,3,19,21
29:3	308:7 312:6,10,15	293:15 338:9 371:1	tease (2)	131:12 140:14
suspend (1)	317:4 318:20	385:13 395:19	333:6 335:13	188:17 201:21
408:7	319:12 324:4	417:20	technical (2)	220:17,18 303:24
suspending (1)	326:11,13 327:12	talking (56)	96:11 430:15	311:14 328:10
410:18	337:19 373:1	26:25 28:21,22 30:5,6	techniques (1)	371:23 379:9
swallow (1)	379:24 397:4	38:7 44:9,10 46:22	163:9	380:11 381:13
150:19	406:12	53:16,17 54:9 56:21	tell (20)	388:17 414:8,9,12
swear (1)	tables (13)	56:22 59:10 65:4	44:25 56:12 91:16	416:1 417:9 422:17
10:5	235:1 237:18 238:20	93:25 98:25 121:2	111:16 112:5 119:7	426:16 427:2 432:1
Swedish (1)	247:19 248:1,11,16	125:21 131:11	120:5,16,17 121:7	tertiles (1)
399:18	290:23 298:20	141:25 143:21	121:19 126:9	336:2
switch (2)	308:12 324:15	144:24 148:10	184:17 247:12	test (24)
199:5 338:22	387:6,10	155:11 158:19	253:16 278:16	42:4,12,22,24 43:25
sworn (3)	take (37)	168:1,5 174:13	296:2 349:10 380:4	44:10,11 86:4,5
10:9 437:15 438:9	19:16,25 33:9 39:18	186:9,21 197:20	393:24	89:16,17,24 90:2
symmetric (1)	52:13 55:3 93:2	204:13 207:16	telling (1)	102:23 103:12
161:21	100:15 144:13	212:10 248:8 271:2	285:23	105:2 108:5 282:1
symmetrical (1)	169:10 177:20	283:15 294:18	tells (6)	363:1 376:6 377:11
161:7	187:3 188:10	308:2 310:6 320:12	108:25 111:25 136:2	406:1,5,9
system (2)	189:19 191:12,21	322:8 333:11 351:4	199:14 370:20	tested (1)
37:24 189:5	197:23 203:10	363:11 366:17	426:13	374:15
system-related (1)	223:21 234:19	370:13 372:22	ten (39)	testified (6)
188:6	248:13 251:12	385:17,18 417:11	48:23 72:16 170:13	10:10 211:17 274:22

350:3 402:20	101:10 102:3 106:7	294:20 331:2,6,14	348:22 349:1 351:1	299:13,17 300:14
429:11	127:18 134:10	332:4,13 343:14	355:17 357:15	312:8 324:20
testifying (1)	144:25 145:1	345:13 350:6	359:5 360:9 361:6	387:13,13,22 437:3
83:8	147:19 150:21	351:24 366:10	362:7 364:7 369:5	totality (2)
testimony (34)	151:19 153:22	373:6 396:22	369:14 371:17	57:8 82:17
83:11 215:16 219:3	155:11 163:4	397:16,24 404:25	374:22 375:9 377:7	totally (1)
220:12 221:8 222:4	166:13 167:25	411:16 424:12	395:21,25 398:8	362:21
250:13 255:15,19	168:4,15,19 170:3,5	threshold (14)	409:16,17,24 410:5	totals (1)
273:16 291:16,22	170:7 172:8,21	44:11 93:24 94:2,10	410:10,14,19,20,21	386:6
293:14 302:22	178:12 179:16	94:24 95:25 99:6	411:3,15,21,22	toxic (3)
314:19 337:17	182:1 186:3 187:24	101:21 104:1,2	412:5,15,16 413:11	150:6 419:4 420:13
344:14 350:12	189:20 190:25	108:22 109:1	433:13,15 435:2	toxicity (2)
358:3 371:4 388:22	192:13 195:11	111:18 119:13	437:6	419:6,7
398:23 401:2 403:2	197:13 201:20	thresholds (5)	time-changing (1)	toxicologist (2)
408:23,25 412:10	204:13 216:15	94:8,8,12 95:9 104:20	187:12	55:20 60:25
421:25 422:6,11,13	220:15 245:3	throw (3)	times (30)	toxicologists (3)
422:25 436:23	249:17 250:20	159:23 169:10 236:21	68:19 74:1 90:8,23	55:9,22 63:7
438:11	259:22 263:8	throwing (3)	210:22 222:5 268:8	toxicology (9)
testing (10)	266:13 267:25	397:10 416:2,3	269:19 270:9	54:16,24 55:8,10,14
40:9 42:6,15 44:3	276:5 285:3 291:24	thrown (1)	271:22 276:3	57:4 58:2 62:16
86:8 96:2 102:24	301:24 308:3 310:4	185:17	299:18 300:9,23	82:7
104:25 250:17,19	316:11 317:13	tie (1)	301:19 304:24	track (1)
tests (2)	323:17 324:19	426:12	345:1 360:1 361:9	250:2
86:6,7	325:10,15 327:11	tighter (2)	373:6 381:8 404:25	trained (3)
text (2)	334:23 335:7 337:9	114:23 115:8	408:16 409:13	56:2 84:21,23
234:8,18	342:2 348:17	time (132)	411:12,13,16,17	training (3)
Thank (7)	349:23 350:16	8:16 16:4,10,23,25	425:11 430:23	11:16 63:6 313:16
10:3 13:13 113:13	352:6 353:15 355:8	21:1,16 22:1,2,8,13	timing (2)	traits (1)
144:15 180:1 277:5	360:21 366:12	22:24 24:12 25:19	333:16 359:10	192:22
313:5	367:9 371:1 381:10	25:20,21 26:4 30:21	title (2)	transcript (6)
Thanks (2)	385:23 388:23	34:10 40:22 71:18	18:2 84:9	5:23 147:18 409:8,13
143:12 423:20	395:19,20,25	87:4 90:8,25 92:1	today (12)	412:1,25
theirs (1)	399:16 400:11	96:20 103:22	8:21 10:18 56:9 247:4	transcription (1)
68:25	409:14 412:14	104:16 121:14,24	250:13 325:10	439:5
thing (8)	418:9 426:24 428:3	123:19 127:3 147:7	385:7 403:21	Travers (2)
56:23 109:4 114:9	431:22	149:13 178:2 187:1	417:11 434:4,16	3:23 9:22
117:9 133:25 174:8	third (2)	187:1,10,14,17	437:4	treasurer (1)
338:21 413:6	121:14 359:5	188:17 189:10	today's (2)	36:13
things (21)	thoroughly (1)	191:20 192:3,5	8:15 437:2	treat (1)
36:15 68:2 89:14	414:18	193:8,25 195:2	told (7)	330:22
101:6 106:5 138:14	thought (11)	198:3,9 199:4,22	10:22 68:1 79:15	treated (1)
138:21 190:25	21:14 30:4 166:14	203:7 204:7,9	210:2 275:10 276:2	167:22
196:9 208:15,16	182:2 183:25	209:13 210:1 221:9	295:6	treating (1)
224:13 250:3	199:22 202:10	223:21 225:9	tool (3)	379:8
296:19 301:21	224:15 256:24	226:16 227:10	164:19 196:6 433:22	TREMBOUR (1)
310:8 311:5 316:24	289:23 389:18	239:21,23 240:6	top (14)	4:8
386:2 393:9 413:19	thousand (2)	241:9 245:2 248:13	92:6 122:3,21 124:22	trends (1)
think (112)	177:5,8	260:15 267:10	133:9 179:16,19	86:6
17:19 21:3 34:18	three (36)	270:7,11 275:24	310:19 315:17	trial (4)
35:19,23 36:21 49:6	33:7 37:25 59:18 72:2	278:2 295:13 301:8	316:2,15 365:16	90:7 150:4 202:9,21
49:14 50:24 52:22	110:23 154:3	305:10,16,19	366:11 436:1	trials (2)
58:14 69:1 71:2,13	158:11 182:18	313:23 318:10	topic (2)	317:14,17
71:20,21 73:21	194:6 195:21,23	325:3 332:12	27:21 404:3	tried (10)
83:14 87:4,15 89:14	222:25 235:23	339:24 341:14	topics (1)	98:1 165:22 202:12
91:15 92:1 94:9	252:18 263:16	343:18,19 346:24	77:12	343:22 344:20,23
95:8 96:5 100:17	271:22 276:3 280:2	347:1,21,25 348:4	total (9)	355:24 363:1

367:10 380:10	163:22 188:21	U	436:10	105:8
trouble (2)	190:10,12 192:16	U.S (7)	understanding (23)	urinary (1)
26:24 344:2	194:6 195:21,23	149:20 230:2 279:16	79:3 101:11 112:7	24:16
true (11)	196:1 197:7 205:12	306:15 340:25	175:25 198:18	urine (2)
35:23 40:11 41:11	208:19 222:24	396:20 397:15	214:14 256:17	31:2,3
87:8 143:19 167:15	234:25 235:23	UCLA (16)	262:4 266:15 293:4	use (145)
315:15 328:19	237:6,6,7 238:20	13:9,15 14:4 16:2,12	293:24 303:6	6:22 19:10 26:17
379:21 380:5	240:12 249:2 254:3	16:19,22 17:13,20	320:21 321:14	67:22,23 83:25 85:5
438:10	254:9 261:15 263:2	33:1,6 47:12 55:8	324:9 331:19	85:12,20 86:9,12
truly (5)	263:2,16 264:10,11	88:10 131:12	339:13 356:20	87:22 89:13 93:4
215:7 330:23 332:7	264:18,24,25 265:6	432:20	418:11 421:6,9,13	94:24 95:23 97:1
406:6,7	265:7 266:7,24	uh-huh (10)	428:18	99:9,23 106:24
try (13)	269:15,19 271:16	65:5 76:14 84:2 115:7	understands (1)	108:20 110:1,3,13
10:25 42:21 83:25	271:23 272:14,18	160:12 169:23	59:25	110:19 113:2,25
117:9 131:12	273:7,12 274:16	173:14 200:18	understood (8)	118:25 122:17
140:15 144:10	276:2 279:2 286:4	244:12 392:11	98:7 99:21 119:9	130:3 138:23 139:2
151:23 185:9	296:1 298:8 299:21	uncertainties (1)	129:23 151:16	161:8,11 163:4
296:19 317:1 329:6	301:13,15,17,17,18	11:7	198:16 290:20	164:19,25 196:7
342:24	304:25 319:16	underestimating (1)	421:25	199:20 200:16
trying (52)	324:6 328:21 331:1	366:8	unexposed (10)	201:5,11 203:8
11:22 19:14 22:5	339:25 340:9		43:12,14 45:2 141:21	210:22 216:1
24:12 27:8 37:1	343:14 366:10	$50: 1$	175:15,20 264:16	231:18 263:15
38:11 41:15 44:3,22	373:9 393:9 397:9	understand (86)	268:13 270:13	265:18,18 266:4
46:14 47:24 50:4,16	397:17 398:4	11:22 15:5 16:12	345:12	267:16,17 268:16
66:3 68:3 84:16	407:11,14 412:19	57:10 59:3 61:4	unfair (2)	268:18 269:3 270:1
88:25 95:10,22 96:7	424:1,23 425:24	:12 63:10,16,	226:25 262:10	270:15 271:18
98:18 102:3 104:19	426:25 427:4,10	66:3 79:8 81:1	unfortunate (3)	279:6,7,18,25
112:3 113:1 119:11	two-day (2)	100:15 101:9 102:3	63:22 67:15,16	280:13 281:9
138:11 161:5	26:1 273:12	104:19 111:2 112:4	unfortunately (3)	285:14,21 286:3,23
164:25 166:24	two-thirds (1)	124:10 132:21	39:3 88:4 313:11	287:22 288:4
167:1,20 168:15	244:7	134:7 138:10	uninformative (1)	298:16 299:8
169:1 174:15	two-year (2)	$1: 12$ 158:23	119:19	304:17,18 305:24
175:10 187:9 192:9	193:21 197:4	160:9 169:20 185:4	unique (1)	312:1 314:3 325:13
193:14 195:14	twofold (1)	190:24 191:7	358:14	325:14 326:21,22
201:18 217:21	97:21	207:24 209:9 210:8	uniquely (1)	327:8,13,14,14,21
220:20 257:15	type (17)	211:10,11 215:14	382:6	327:21 328:24
264:15 267:23	38:16 40:24 50:24	217:14,14,21	United (3)	329:3,12,14 334:5
274:3 276:9 320:20	61:10 85:25 86:3	229:20 255:14	1:1 6:9 8:9	336:20,23 338:15
371:13,21	104:22 131:16	257:15 265:20	University (2)	338:17,24 344:24
TSG (2)	136:18 139:25	266:13 274:2	12:14,23	353:21 354:13
8:18,22	141:3 185:13	275:23 286:11	unknown (1)	356:21 357:13,14
Tuesday (3)	227:16 302:16	287:17 291:7	145:18	358:15,24 360:8
191:15,18,23	329:23 345:19	294:22,24 299:25	unpublished (5)	362:18,19 363:19
tumors (1)	363:7	320:20 321:11	385:19,20 390:2	364:3 366:19
12:25	types (15)	327:4,24 329:6,7	431:5,9	367:11 368:17
turn (5)	77:15 78:21 79:14	331:11 334:7	unspecified (3)	369:4,10,22,25
124:23 165:5 423:13	87:25 102:20	352:21,22 356:1	244:22,24 246:25	370:16,21 371:11
428:11 432:7	107:24 110:23	358:20 359:17	update (3)	371:25,25 372:13
twice (5)	149:2 150:24 151:	360:20,22 367:20	355:19 371:21,22	372:14,22 373:14
59:15 238:15 359:4	224:16 265:17	369:2 372:17 376:2	updated (5)	374:12,14 375:2,7
368:7 377:24	275:21 388:5 419:7	377:12 380:22	132:16 362:18 372:11	380:24 398:14
two (92)	typically (6)	381:11 382:18	381:24 435:20	401:13 414:6
9:14 24:25 25:23 33:7	94:16 95:1 97:4 100:8	388:23 397:13	upper (4)	415:25 416:15,16
74:5 75:13,21 76:8	101:13 188:3	398:6 399:6,8	109:9 111:14 160:20	418:2 419:9 424:10
110:23 123:11	typo (1)	416:16 422:12	184:5	424:24,25 427:10
144:1,3 154:3	134:12	428:21 435:23	upshot (1)	430:1 432:19

useful (3)	113:4 249:9 356:6,7	videotape (8)	394:21 401:10,10	50:23 58:13 67:18
89:9 106:8,23	variable (6)	96:16,21 203:13,20	walk (2)	68:22 73:12 91:11
user (1)	167:13,16,17,18	306:24 307:6	178:10 204:4	94:4 95:19 105:25
303:25	236:22 264:21	419:15,22	want (77)	110:9 112:14 129:6
users (14)	variables (16)	videotaped (2)	40:23 45:12 48:22	133:6,22 134:18
267:18,19 268:15	152:12 216:14 218:11	8:6 10:24	50:13 51:11 59:24	135:7 162:4,5
270:14,14,15	239:11,16 240:17	videotapes (1)	81:14 82:4,5,19,23	163:11,16 168:25
271:11,12,15	242:12,13 247:23	437:4	84:4 94:5 95:17	173:9 175:19
272:17 276:10,11	282:13 283:2 286:5	view (1)	100:16 106:6 125:7	185:15 201:4,9
301:16 338:2	296:1 330:22	234:20	127:17 129:2	204:17 209:25
uses (5)	430:16,18	viewpoints (2)	132:21 136:1 137:9	214:25 216:3,21
138:3 202:19,20	variance (1)	417:1,14	139:19 145:3	230:8 238:2,3,6
208:13 343:7	331:7	Virginia (1)	147:13,14,21	240:19 244:7
usually (12)	variants (2)	3:21	160:16 164:2 175:3	246:19,25 261:23
50:12 97:17 98:2	430:16,17	virtually (4)	181:10 182:10	280:8,8 289:10
104:25 135:15	variety (1)	233:18 308:14,20	191:2,7 195:1,16,20	290:21 292:22
140:14 160:10	101:5	413:8	195:20,24 196:25	316:9 323:25 324:1
225:14 273:5	various (11)	visiting (7)	208:22 211:19	325:15 335:8 344:3
284:18 309:23	85:20 98:13 150:24	14:21 15:8,17 16:7	215:14 223:22	344:24 346:6
414:13	153:1 246:9 247:22	17:9,17 18:9	240:11,13 245:21	367:17 403:22
	278:25 279:23	visual (9)	249:8,20 251:19	404:19 416:15
V	324:5 376:18	153:5,7 155:23	260:3 266:14 286:2	418:15 426:19,20
valid (9)	378:18	156:16 158:9 160:3	288:2 291:6 292:8	427:18 429:21
117:17,18 158:18	vary (3)	160:14 161:12	297:16 299:25	430:4 438:14
160:2 182:14	149:13 165:19 192:22	162:2	309:4 359:17	ways (10)
285:18 286:17,24	varying (3)	visualization (1)	361:23 362:15	41:1 55:21 110:24
359:13	30:21 280:1 433:13	162:14	366:14 368:22	161:4 187:8 292:24
validate (1)	vast (1)	visually (1)	369:3 384:11,12	368:11,15 397:17
343:13	309:10	161:4	395:18 399:9 403:4	420:13
validated (3)	venture (2)	Vitae (1)	408:5 411:23	we'll (35)
342:23 343:8,16	271:25 288:3	5:9	412:15 413:7,16	26:25 39:6 44:9,13
validation (6)	versa (2)	vital (6)	423:10 428:2	46:21,25 68:5 75:18
343:15 375:22 376:6	61:2 144:5	179:5 180:5 237:5	wanted (2)	79:18 81:24 84:4
376:10 378:15	version (2)	238:8 240:18	23:8,15	110:1 126:24
381:14	290:15 349:10	242:14	War (4)	127:21 128:3
validity (35)	versus (12)	volume (5)	149:15,18,19 150:12	154:11,11 155:5
25:7 46:18 48:10 49:2	106:4 121:3 139:3	18:4,5,11,13,17	ward (1)	156:13 158:7
49:4 88:8 91:17,22	233:1 264:11,17	vulnerable (1)	12:24	178:21 181:24
115:4 117:5,21	265:6 267:18 293:7	140:5	warn (2)	183:11 184:25
121:4 125:22	335:14 423:14,19		11:2 431:20	203:24 226:18
139:19 140:6 158:4	vice (2)	W	Washington (2)	238:16 241:15,16
293:17,18,25 294:5	61:2 144:5	Wagstaff (2)	4:5,13	242:15 297:18
294:10,14,15,24	vicinity (4)	3:3 9:2	wasn't (7)	342:2 395:25 405:7
295:4 296:6 316:25	92:16,20 93:9,15	wait (36)	58:11 218:16 233:3	408:24
317:5,9 318:5	video (4)	11:3 16:15 28:2 30:10	238:11 262:15	we're (53)
359:11 366:24	1:15 2:9 8:20 9:19	47:5 59:5,5 61:5	268:20 363:8	14:19 38:11 44:3 46:1
417:15 431:23	Videographer (31)	65:6,20 76:4 100:23	waste (1)	50:6 52:10 65:3
432:1	4:18 8:4 9:11 10:3	100:23 119:10	412:10	72:19 75:5 80:10
validly (1)	72:19,23 96:14,19	126:15 132:23	watering (1)	84:13 95:22 96:14
216:15	144:16,20 178:3,7	151:15 161:1 165:7	426:4	100:19 121:2
value (14)	203:12,18 270:20	201:14 204:15	waves (1)	125:20 126:16,21
89:19 92:11,12 108:9	270:24 306:23	231:3 237:13	149:25	127:19 129:19
112:18,19,20,22	307:4,20,24 326:2,6	249:23 258:23,23	way (75)	143:21 148:10
162:23,24 281:25	384:21,25 398:9	322:17 328:16,16	31:9,10 37:2 40:22	158:18 159:1
282:20 283:4 375:4	406:23 407:2 411:7	337:1 346:18	41:13 44:21 48:8	164:25 167:9 168:4
values (4)	419:13,20 437:1	361:11 370:4	49:10,20 50:19,22	178:3 200:1 203:14

Page 43

207:10,16 237:11	320:23 321:4,16	93:21 95:5 97:16	236:5,18 237:24	376:2,10,21 378:2,3
239:19 267:4 305:4	322:9 396:16	98:17 99:14 100:6	239:5 240:8 241:18	378:6 379:4,17
306:19,25 307:20	widely (1)	101:20 102:14	242:4,24 244:3,18	380:4,9 381:7,10
312:16 324:16	92:8	103:9,24 104:18	245:10,17 246:17	382:9,18 383:4,14
326:2 337:2 342:1	widen (2)	105:18 106:3,20	247:12 248:7,16	383:25 384:16
350:23 363:11	216:23 283:1	107:15 108:12	250:15 253:24	385:13 387:1 388:4
384:14,21 406:23	widens (2)	109:18 110:8	254:25 255:20	389:3,15 390:20
419:17 425:6	214:21 282:12	111:11 112:14	256:4,22,25 257:14	391:17,25 392:21
436:21 437:5	wider (3)	115:3,12 116:8,17	258:14 259:11	393:9,21 394:20,24
we've (10)	117:1 214:25 216:19	117:8 118:12	260:1,17,19 261:8	395:12 396:7 397:3
30:1 50:9 242:19	width (6)	119:11 121:1,16,25	261:23 262:9,12	398:24 399:15,23
313:20 320:11,11	112:1 114:22 119:3,5	122:12 123:3,21	265:14 266:2 268:9	400:10 401:4,16
321:1 338:9 339:19	280:11 320:3	124:18 125:20	268:12 269:1,13	402:13 403:4,9,17
410:24	widths (2)	126:23 127:1,12,15	270:10,12 271:9	404:2,12,24 405:17
weaknesses (1)	112:16 162:20	128:17,25 130:11	272:13 273:2,17	405:25 407:11,24
218:8	wife (3)	130:22 131:9	274:10 275:9,13	409:9,14 410:4,22
website (2)	136:2,22 137:1	132:17 133:21	276:5,9 277:9 281:4	412:2,8 413:3
283:10 382:3	Williams (2)	134:18 135:14,24	281:15 282:10,23	420:11,20 421:17
Wednesday (1)	229:2,19	136:14 137:19	283:12 284:18	422:12 423:1,11
191:17	willing (2)	139:2,18 140:9,23	285:17 286:22	425:3 436:9,18
weeded (1)	78:14 81:21	141:16 142:7 143:1	287:13 288:2,17	438:8,11,16
414:15	Wilshire (3)	145:20 146:21	289:4 290:13	wives (1)
week (1)	2:11 3:12 8:14	147:10 149:11	291:17 292:8,21	138:6
48:24	wipe (1)	151:5 153:20,24	293:15 294:5 295:4	woman (1)
weeks (2)	301:3	154:19 155:20	295:22 296:12	31:3
48:23 273:21	wish (1)	156:25 157:15	297:11 298:7,19	women (1)
weigh (3)	58:11	158:2,15 159:7	300:6 301:12	31:1
115:9,18 164:3	Wisner (15)	161:3,19 162:13	302:23 303:16	woods (1)
weighing (1)	3:15 9:5,5 81:8,12	163:16 164:16	304:8 305:16	146:5
344:2	83:7 172:20 249:20	165:9 166:5,22	308:24 309:13	WOOL (1)
weight (2)	402:11,14 405:15	168:24 170:23	311:9 312:13 314:1	3:8
305:2 415:19	412:4,20 435:4	172:4,19 173:2,19	314:7 315:9,21	word (9)
weighted (3)	436:4	174:7 175:9 176:9	317:12 320:14	19:10,13,14 63:23,24
311:21 324:8 415:21	withstood (1)	176:23 177:10	321:3,23 322:23	67:23,23 187:7
weights (1)	390:17	178:17 179:21	323:5,24 324:15	299:24
164:5	witness (445)	180:25 181:14	325:7 326:25 327:6	worded (1)
well-known (1)	5:2 6:5 10:5,8 14:18	182:9,24 183:20	327:17 328:8,17	11:8
142:14	23:24 25:10 26:9	184:16 185:12	329:21 330:18	wording (2)
went (14)	28:3,19 31:16 32:22	187:7 188:16 190:1	331:25 333:10	67:15 69:1
24:7 33:8 59:19	35:10 38:11 40:4,14	191:6 192:9 193:5	334:23 336:13,22	words (6)
204:11 281:11,16	41:24 43:5,24 44:20	193:20 195:9	337:2,24 339:23	67:16 68:24 131:2
281:22 285:6	45:12,24 46:14 47:8	196:22 198:22	340:21 341:11,18	171:20 234:9
288:24 290:16	48:7,21 49:25 51:10	199:13 201:3 202:4	342:11 343:4,12	434:14
344:1 358:12	53:12,21 55:6,19	203:4 204:19 205:5	344:17 346:3,19	work (27)
386:12 414:3	56:11 57:2,19 58:8	205:20 206:8,16	347:3 348:7 349:4	15:19,20 17:8,17
weren't (2)	58:25 59:17 60:9	207:9,22 208:8	349:17 350:13	19:16,21 20:12
160:6 202:8	61:7,21 62:6,23	209:19 210:20	351:4 352:15	21:20,22 38:8 50:2
West (1)	63:20 64:23 65:19	211:6,18 212:4	353:13 354:5,19	52:18 54:4 105:8
3:5	65:22,23 66:19	215:21 218:4 219:6	355:13 356:15	109:15 136:7,17
WHEREOF (1)	67:14 68:21 69:14	219:23 220:15	357:10 358:5 359:6	137:23 147:1 270:1
438:16	70:17 71:2,20 73:10	221:11 222:7	360:3 361:6,13	379:12 390:11
white (1)	74:8,23 75:10 78:12	223:23 224:12	362:6,10 363:6	394:5 414:12,19
226:2	79:7,24 80:3,5	225:11 227:13	364:19 365:5 366:5	418:17,17
wide (11)	83:11 84:20 85:16	229:1 230:8,20	367:9 368:6 370:9	workday (5)
112:21 117:12,14	85:25 87:22 89:22	231:6 232:8 233:11	371:6,20 372:11	272:4 273:6,13
156:25 319:21,22	90:19 91:11,21 93:1	233:22 234:25	373:8 374:21,25	274:20 275:6

Page 44

workdays (3)	X	194:6,11 195:21,21	299:10	01:56 (6)
273:7 274:16 299:21	X (4)	195:22,23,23,24	0.8 (4)	212:25 213:5,10,15
worked (7)	5:1,7 6:1 7:1	196:1,11,18 198:9	109:14,22,23 354:13	213:20,25
136:20 146:24 365:21	Xs (1)	207:7,12,16,19,22	0.84 (1)	01:57 (4)
365:24 367:4	297:11	209:12 211:3,8,25	279:20	214:5,10,15,20
374:10 376:16		212:6,7 217:18,23	0.87 (1)	01:58 (4)
worker (2)	Y	218:19,24 220:8	282:20	214:25 215:5,10,15
202:7 427:2	yeah (54)	221:4,22,25 273:21	0.9 (8)	01:59 (5)
workers (4)	15:1 26:14,14 50:7	273:24 298:12	213:10 350:9 352:4	215:20,25 216:5,10
146:23 197:12 333:2	73:23 129:19 130:3	299:19,24 300:7,8	352:13 353:9	216:15
426:23	134:6 147:13,15,15	300:23 301:1,2,19	354:13 398:21	02 (1)
working (11)	147:22 148:6,7	303:1,19,21 304:23	399:10	117:1
18:20,23 55:22 63:6	149:1 152:7 153:24	304:24 305:5,6	0.92 (1)	02:00 (5)
63:12 64:23 69:24	155:4 166:7 168:6	336:16,19 337:7,8	251:1	216:20,25 217:5,10
152:5 204:17	173:20 179:21,25	337:16 340:7	0.94 (1)	217:15
284:23 373:24	180:16 183:2	341:11,15 342:12	299:10	02:01 (4)
workplace (2)	205:10,14 213:6	355:17 371:2	0.95 (3)	217:20,25 218:5,10
274:15 275:20	214:4 228:21,21	425:10,11 432:15	306:15 396:25 397:18	02:02 (6)
works (3)	233:11 243:16	433:17	01 (3)	218:15,20,25 219:5
165:5 217:12 366:2	253:3 276:21 297:1	yes-or-no (2)	85:12,22 92:10	219:10,15
world (7)	297:2 306:8,8 313:4	409:10 410:23	01:00 (5)	02:03 (5)
52:9,9 149:15,18,19	319:24 320:7	yes/no (3)	200:15,20,25 201:5	219:20 220:5,10,15
150:12 380:20	326:12 347:7	309:16 373:18,21	201:10	220:20
worried (1)	363:13 387:17	yielded (1)	01:01 (5)	02:04 (5)
145:8	392:11 405:16,19	78:5	201:15,20,25 202:5	221:5,10,15,20,25
worry (1)	405:25 411:7	younger (1)	202:10	02:05 (5)
426:22	423:11 425:24	368:23	01:02 (4)	222:5,10,15,20,25
worst (1)	432:12	Yvonne (2)	202:15,20,25 203:5	02:06 (3)
266:5	year (61)	4:7 9:12	01:03 (2)	223:5,10,15
worth (1)	12:22 14:22 17:1,2,21		203:10,15	02:07 (3)
88:20	22:6,6 31:24 34:6	Z	01:46 (2)	223:20,25 224:5
wouldn't (14)	36:25 37:13 132:6	Zahm (10)	203:20,25	02:08 (5)
21:20 35:2 36:2	138:2 188:21	6:13 223:5,7,16 224:6	01:47 (2)	224:10,15,20,25
181:14 184:16	192:15 194:4 196:5	224:25 227:5,13,17	204:5,10	225:5
191:18 211:14	197:7,7,16,18 210:4	228:2	01:48(7)	02:09 (4)
245:10 246:3,4	264:18 266:8,25	zero (4)	204:15,20,25 205:5	225:10,15,20,25
278:16 280:5	269:16,19 271:16	272:18 301:15 303:17	205:10,15,20	02:10 (7)
286:24 343:15	271:22,23 272:14	366:7	01:49 (4)	226:5,10,15,20,25
wrapped (1)	273:7 275:15,19	Zhang (3)	206:5,10,15,20	227:5,10
49:7	297:22 298:8	16:2,22 17:6	01:50 (5)	02:11 (4)
write (2)	299:21 300:9,24,24		206:25 207:5,10,15	227:15,20,25 228:5
246:23 414:5	301:6,8,13,20	0	207:20	02:12 (3)
writer (1)	302:15 303:1,18	0.5 (1)	01:51 (5)	228:10,15,20
325:23	304:25 305:5 340:2	160:19	207:25 208:5,10,15	02:13 (5)
writing (1)	340:13 345:2,3	0.54 (1)	208:20	228:25 229:5,10,15
25:22	364:2 398:4 424:1	251:2	01:52 (5)	229:20
wrong (10)	424:24 425:12	0.55 (1)	208:25 209:5,10,15	02:14 (5)
93:12 121:25 141:12	426:25 427:10	157:7	209:20	229:25 230:5,10,15
191:1 251:14	435:16	0.69 (2)	01:53 (6)	230:20
340:15 348:13	years (86)	280:15 306:16	209:25 210:5,10,15	02:15 (4)
349:24 373:9	18:21 32:23 33:7,8	0.7 (4)	210:20,25	230:25 231:5,10,15
400:10	55:23 63:8 142:11	179:1 180:14 319:21	01:54 (6)	02:16 (4)
wrongly (1)	146:19 186:16	320:5	211:5,10,15,20,25	231:20,25 232:5,10
185:24	188:11,23 189:6,24	0.77 (1)	212:5	02:17 (5)
wrote (3)	190:11,12,13,15,15	155:18	01:55 (3)	232:15,20,25 233:5
197:3 411:16 416:25	192:12,16,25 194:6	0.78 (1)	212:10,15,20	233:10

02:18 (4)	255:5	275:20,25 276:5,10	03:41 (3)	04:12 (6)
233:15,20 234:5,10	02:42 (6)	276:15,20	297:15,20,25	314:5,10,15,20,25
02:19 (5)	255:10,15,20,25	03:19 (4)	03:42 (6)	315:5
234:15,20,25 235:5	256:5,10	276:25 277:5,10,15	298:5,10,15,20,25	04:13 (5)
235:10	02:43 (6)	03:20 (5)	299:5	315:10,15,20,25
02:20 (3)	256:15,20,25 257:5	277:20,25 278:5,10	03:43 (3)	316:5
235:15,20,25	257:10,15	278:15	299:10,15,20	04:14 (4)
02:21 (4)	02:44 (5)	03:21 (3)	03:44 (5)	316:10,15,20,25
236:5,10,15,20	257:20,25 258:5,10	278:20,25 279:5	299:25 300:5,10,15	04:15 (5)
02:22 (6)	258:15	03:22 (4)	300:20	317:5,10,15,20,25
236:25 237:5,10,15	02:45 (6)	279:10,15,20,25	03:45 (5)	04:16 (4)
237:20,25	258:20,25 259:5,10	03:23 (4)	300:25 301:5,10,15	318:5,10,15,20
02:23 (6)	259:15,20	280:5,10,15,20	301:20	04:17 (3)
238:5,10,15,20,25	02:46 (7)	03:24 (6)	03:46 (4)	318:25 319:5,10
239:5	259:25 260:5,10,15	280:25 281:5,10,15	301:25 302:5,10,15	04:18 (3)
02:24 (6)	260:20,25 261:5	281:20,25	03:47 (5)	319:15,20,25
239:10,15,20,25	02:47 (7)	03:25 (4)	302:20,25 303:5,10	04:19 (6)
240:5,10	261:10,15,20,25	282:5,10,15,20	303:15	320:5,10,15,20,25
02:25 (8)	262:5,10,15	03:26 (4)	03:48 (5)	321:5
240:15,20,25 241:5	02:48 (3)	282:25 283:5,10,15	303:20,25 304:5,10	04:20 (5)
241:10,15,20,25	262:20,25 263:5	03:27 (3)	304:15	321:10,15,20,25
02:26 (5)	02:49 (4)	283:20,25 284:5	03:49 (6)	322:5
242:5,10,15,20,25	263:10,15,20,25	03:28 (4)	304:20,25 305:5,10	04:21 (5)
02:27 (4)	02:50 (4)	284:10,15,20,25	305:15,20	322:10,15,20,25
243:5,10,15,20	264:5,10,15,20	03:29 (4)	03:50 (2)	323:5
02:28 (5)	02:51 (7)	285:5,10,15,20	305:25 306:5	04:22 (5)
243:25 244:5,10,15	264:25 265:5,10,15	03:30 (5)	03:51 (2)	323:10,15,20,25
244:20	265:20,25 266:5	285:25 286:5,10,15	306:10,15	324:5
02:29 (4)	02:52 (5)	286:20	03:52 (2)	04:23 (5)
245:5,10,15,20	266:10,15,20,25	03:31 (5)	306:20,25	324:10,15,20,25
02:30 (6)	267:5	287:5,10,15,20,25	04 (17)	325:5
245:25 246:5,10,15	02:53 (5)	03:32 (6)	93:25 94:16,25 95:13	04:24 (2)
246:20,25	267:10,15,20,25	288:5,10,15,20,25	97:4 98:9,20 99:24	325:10,15
02:31 (4)	268:5	289:5	100:8 101:12 102:5	04:47 (3)
247:5,10,15,20	02:54 (5)	03:33 (5)	102:19 103:1,16,25	326:5,10,15
02:32 (3)	268:10,15,20,25	289:10,15,20,25	104:21 105:4	04:48 (5)
247:25 248:5,10	269:5	290:5	04:03 (1)	326:20,25 327:5,10
02:33 (3)	02:55 (6)	03:34 (4)	307:5	327:15
248:15,20,25	269:10,15,20,25	290:10,15,20,25	04:04 (5)	04:49 (4)
02:34 (3)	270:5,10	03:35 (6)	307:10,15,20,25	327:20,25 328:5,10
249:5,10,15	02:56 (2)	291:5,10,15,20,25	308:5	04:50 (5)
02:35 (3)	270:15,20	292:5	04:05 (4)	328:15,20,25 329:5
249:20,25 250:5	03:13 (2)	03:36 (5)	308:10,15,20,25	329:10
02:36 (4)	270:25 271:5	292:10,15,20,25	04:06 (4)	04:51 (5)
250:10,15,20,25	03:14 (5)	293:5	309:5,10,15,20	329:15,20,25 330:5
02:37 (3)	271:10,15,20,25	03:37 (5)	04:07 (5)	330:10
251:5,10,15	272:5	293:10,15,20,25	309:25 310:5,10,15	04:52 (5)
02:38 (3)	03:15 (6)	294:5	310:20	330:15,20,25 331:5
251:20,25 252:5	272:10,15,20,25	03:38 (6)	04:08 (4)	331:10
02:39 (6)	273:5,10	294:10,15,20,25	310:25 311:5,10,15	04:53 (4)
252:10,15,20,25	03:16 (4)	295:5,10	04:09 (4)	331:15,20,25 332:5
253:5,10	273:15,20 274:5,10	03:39 (7)	311:20,25 312:5,10	04:54 (6)
02:40 (4)	03:17 (6)	295:15,20,25 296:5	04:10 (4)	332:10,15,20,25
253:15,20,25 254:5	274:15,20,25 275:5	296:10,15,20	312:15,20,25 313:5	333:5,10
02:41 (5)	275:10,15	03:40 (3)	04:11 (4)	04:55 (6)
254:10,15,20,25	03:18 (6)	296:25 297:5,10	313:10,15,20,25	333:15,20,25 334:5

334:10,15	351:20,25	05:36 (5)	394:5	06:41 (4)
04:56 (5)	05:15 (6)	373:25 374:5,10,15	06:04 (7)	416:25 417:5,10,15
334:20,25 335:5,10	352:5,10,15,20,25	374:20	394:10,15,20,25	06:42 (6)
335:15	353:5	05:37 (5)	395:5,10,15	417:20,25 418:5,10
04:57 (3)	05:16 (6)	374:25 375:5,10,15	06:05 (5)	418:15,20
335:20,25 336:5	353:10,15,20,25	375:20	395:20,25 396:5,10	06:43 (4)
04:58 (5)	354:5,10	05:38 (5)	396:15	418:25 419:5,10,15
336:10,15,20,25	05:17 (4)	375:25 376:5,10,15	06:06 (4)	06:45 (1)
337:5	354:15,20,25 355:5	376:20	396:20,25 397:5,10	419:20
04:59 (5)	05:18 (4)	05:39 (5)	06:07 (6)	06:46 (5)
337:10,15,20,25	355:10,15,20,25	376:25 377:5,10,15	397:15,20,25 398:5	419:25 420:5,10,15
338:5	05:19 (6)	377:20	398:10,15	420:20
05 (25)	356:5,10,15,20,25	05:40 (5)	06:08 (5)	06:47 (7)
85:11,21 89:17 90:3	357:5	377:25 378:5,10,15	398:20,25 399:5,10	420:25 421:5,10,15
90:12,22 91:4 92:10	05:20 (4)	378:20	399:15	421:20,25 422:5
92:16,20 93:9,16,24	357:10,15,20,25	05:41 (7)	06:09 (6)	06:48 (5)
94:1,3 95:10,12,16	05:21 (5)	378:25 379:5,10,15	399:20,25 400:5,10	422:10,15,20,25
96:2 98:20 99:10	358:5,10,15,20,25	379:20,25 380:5	400:15,20	423:5
107:17 108:1,19	05:22 (6)	05:42 (6)	06:10 (6)	06:49 (5)
117:11	359:5,10,15,20,25	380:10,15,20,25	400:25 401:5,10,15	423:10,15,20,25
05:00 (4)	360:5	381:5,10	401:20,25	424:5
338:10,15,20,25	05:23 (4)	05:43 (4)	06:11 (7)	06:50 (5)
05:01 (4)	360:10,15,20,25	381:15,20 382:5,10	402:5,10,15,20,25	424:10,15,20,25
339:5,10,15,20	05:24 (6)	05:44 (4)	403:5,10	425:5
05:02 (5)	361:5,10,15,20,25	382:15,20,25 383:5	06:12 (7)	06:51 (5)
339:25 340:5,10,15	362:5	05:45 (5)	403:15,20,25 404:5	425:10,15,20,25
340:20	05:25 (6)	383:10,15,20,25	404:10,15,20	426:5
05:03 (5)	362:10,15,20,25	384:5	06:13 (5)	06:52 (5)
340:25 341:5,10,15	363:5,10	05:46 (3)	404:25 405:5,10,15	426:10,15,20,25
341:20	05:26 (4)	384:10,15,20	405:20	427:5
05:04 (5)	363:15,20,25 364:5	05:54 (3)	06:14 (6)	06:53 (5)
341:25 342:5,10,15	05:27 (6)	384:25 385:5,10	405:25 406:5,10,15	427:10,15,20,25
342:20	364:10,15,20,25	05:55 (5)	406:20,25	428:5
05:05 (5)	365:5,10	385:15,20,25 386:5	06:32 (5)	06:54 (6)
342:25 343:5,10,15	05:28 (4)	386:10	407:5,10,15,20,25	428:10,15,20,25
343:20	365:15,20,25 366:5	05:56 (4)	06:33 (5)	429:5,10
05:06 (6)	05:29 (6)	386:15,20,25 387:5	408:5,10,15,20,25	06:55 (4)
343:25 344:5,10,15	366:10,15,20,25	05:57 (3)	06:34 (5)	429:15,20,25 430:5
344:20,25	367:5,10	387:10,15,20	409:5,10,15,20,25	06:56 (5)
05:07 (3)	05:30 (6)	05:58 (5)	06:35 (6)	430:10,15,20,25
345:5,10,15	367:15,20,25 368:5	387:25 388:5,10,15	410:5,10,15,20,25	431:5
05:08 (4)	368:10,15	388:20	411:5	06:57 (5)
345:20,25 346:5,10	05:31 (4)	05:59 (6)	06:36 (7)	431:10,15,20,25
05:09 (6)	368:20,25 369:5,10	388:25 389:5,10,15	411:10,15,20,25	432:5
346:15,20,25 347:5	05:32 (6)	389:20,25	412:5,10,15	06:58 (4)
347:10,15	369:15,20,25 370:5	06 (2)	06:37 (7)	432:10,15,20,25
05:10 (4)	370:10,15	95:13 98:21	412:20,25 413:5,10	06:59 (5)
347:20,25 348:5,10	05:33 (6)	06:00 (5)	413:15,20,25	433:5,10,15,20,25
05:11 (4)	370:20,25 371:5,10	390:5,10,15,20,25	06:38 (4)	07:00 (5)
348:15,20,25 349:5	371:15,20	06:01 (5)	414:5,10,15,20	434:5,10,15,20,25
05:12 (2)	05:34 (5)	391:5,10,15,20,25	06:39 (5)	07:01 (7)
349:20 350:5	371:25 372:5,10,15	06:02 (6)	414:25 415:5,10,15	435:5,10,15,20,25
05:13 (3)	372:20	392:5,10,15,20,25	415:20	436:5,10
350:10,15,20	05:35 (5)	393:5	06:40 (5)	07:02 (4)
05:14 (6)	372:25 373:5,10,15	06:03 (5)	415:25 416:5,10,15	436:15,20,25 437:5
350:25 351:5,10,15	373:20	393:10,15,20,25	416:20	09:04 (2)

Case 3:16-md-02741-VC Document 652-12 Filed 10/28/17 Page 159 of 806

Page 47

8:5,10	32:20,25 33:5,10	58:10	1.2 (4)	10 (14)
09:05 (3)	09:31 (3)	09:58 (6)	249:4 319:9,16 323:5	5:4 85:13,14,22 89:2
8:15,20,25	33:15,20,25	58:15,20,25 59:5,10	1.20 (1)	89:4,4,11,11 214:1
09:06 (1)	09:32 (5)	59:15	249:10	214:1 278:20 341:1
10:5	34:5,10,15,20,25	09:59 (5)	1.23 (2)	387:19
09:07 (5)	09:33 (6)	59:20,25 60:5,10,15	280:24 281:16	10:00 (7)
10:15,20,25 11:5,10	35:5,10,15,20,25 36:5		1.26 (3)	60:20,25 61:5,10,15
09:08 (5)	09:34 (5)	1	249:4,10 253:4	61:20,25
11:15,20,25 12:5,10	36:10,15,20,25 37:5	1 (47)	1.28 (1)	10:01 (5)
09:09 (6)	09:35 (4)	8:6 96:16 108:3	299:9	62:5,10,15,20,25
12:15,20,25 13:5,10	37:10,15,20,25	110:11 161:20,21	1.32 (2)	10:02 (6)
13:15	09:36 (5)	162:3,3 199:25	253:4 306:16	63:5,10,15,20,25 64:5
09:10 (5)	38:5,10,15,20,25	231:13 264:22	1.35 (1)	10:03 (6)
13:20,25 14:5,10,15	09:37 (2)	280:2,3 281:6	401:6	64:10,15,20,25 65:5
09:11 (6)	39:5,10	308:19,25 309:1,2	1.4 (1)	65:10
14:20,25 15:5,10,15	09:38 (4)	309:24,25 310:7,8	354:22	10:04 (6)
15:20	39:15,20,25 40:5	310:11 311:12,12	1.43 (1)	65:15,20 66:5,10,15
09:12 (4)	09:39 (5)	312:11,14,22,23	398:2	66:20
15:25 16:5,10,15	40:10,15,20,25 41:5	317:4,4 318:20	1.45 (1)	10:05 (5)
09:13 (5)	09:40 (4)	326:11 327:12	322:3	66:25 67:5,10,15,20
16:20,25 17:5,10,15	41:10,15,20,25	336:1 341:4 353:14	1.5 (4)	10:06 (5)
09:14 (4)	09:41 (5)	353:25,25 354:11	109:13 179:22 399:21	67:25 68:5,10,15,20
17:20,25 18:5,10	42:5,10,15,20,25	354:20,22 370:24	399:23	10:07 (5)
09:15 (5)	09:42 (4)	379:23 401:6	1.51 (4)	68:25 69:5,10,15,20
18:15,20,25 19:5,10	43:5,10,15,20	425:19 439:4	155:17 279:20 282:18	10:08 (5)
09:16 (6)	09:43 (6)	1.0 (18)	282:24	69:25 70:5,10,15,20
19:15,20,25 20:5,10	43:25 44:5,10,15,20	43:3 47:2 107:22	1.53 (1)	10:09 (6)
20:15	44:25	131:5 160:18	399:24	70:25 71:5,10,15,20
09:17 (6)	09:44 (5)	281:24 282:21	1.55 (1)	71:25
20:20,25 21:5,10,15	45:5,10,15,20,25	308:16,22 309:11	251:2	10:10 (6)
21:20	09:45 (5)	352:4 353:22	1.6 (5)	72:5,10,15,20,20,21
09:18 (4)	46:5,10,15,20,25	354:13 396:4,15	153:17 233:7 234:5	10:27 (2)
21:25 22:5,10,15	09:46 (4)	398:20 400:23	281:5,16	72:22,24
09:19 (4)	47:5,10,15,20	401:8	1.66 (2)	10:29 (5)
22:20,25 23:5,10	09:47 (4)	1.02 (1)	282:17,24	73:5,10,15,20,25
09:20 (5)	47:25 48:5,10,15	424:8	1.68 (4)	10:30 (4)
23:15,20,25 24:5,10	09:48 (5)	1.03 (1)	253:13 256:12,18	74:5,10,15,20
09:21 (5)	48:20,25 49:5,10,15	89:6	257:2	10:31 (4)
24:15,20,25 25:5,10	09:49 (4)	1.06 (1)	1.73 (5)	74:25 75:5,10,15
09:22 (4)	49:20,25 50:5,10	300:19	298:8 424:7,20	10:32 (6)
25:15,20,25 26:5	09:50 (5)	1.08 (1)	425:23 427:11	75:20,25 76:5,10,15
09:23 (5)	50:15,20,25 51:5,10	300:19	1.77 (2)	76:20
26:10,15,20,25 27:5	09:51 (5)	1.1 (11)	298:9 427:12	10:33 (5)
09:24 (4)	51:15,20,25 52:5,10	178:25 182:12 212:24	1.85 (1)	76:25 77:5,10,15,20
27:10,15,20,25	09:52 (3)	216:18 217:19	157:7	10:34 (4)
09:25 (5)	52:15,20,25	218:21 319:17	1.88 (3)	77:25 78:5,10,15
28:5,10,15,20,25	09:53 (6)	321:8 323:5 398:15	256:19 257:1 281:23	10:35 (5)
09:26 (3)	53:5,10,15,20,25 54:5	401:8	1.9 (4)	78:20 79:5,10,15,20
29:5,10,15	09:54 (5)	1.10 (1)	179:1 180:14 319:22	10:36 (5)
09:27 (5)	54:10,15,20,25 55:5	399:11	320:5	79:25 80:5,10,15,20
29:20,25 30:5,10,15	09:55 (5)	1.13 (6)	1.92 (4)	10:37 (7)
09:28 (5)	55:10,15,20,25 56:5	279:19 285:15 287:24	258:5,8 259:2 260:6	80:25 81:5,10,15,20
30:20,25 31:5,10,15	09:56 (5)	396:24 397:18	1:03 (2)	81:25 82:5
09:29 (4)	56:10,15,20,25 57:5	401:8	203:15,17	10:38(7)
31:20 32:5,10,15	09:57 (6)	1.17 (1)	1:46 (2)	82:10,15,20,25 83:5
09:30 (4)	57:10,15,20,25 58:5	299:10	203:17,19	83:10,15

Page 48

10:39 (4)	99:15,20,25 100:5,10	120:25 121:5,10,15	142:5,10,15,20,25	12:12 (5)
83:20,25 84:5,10	100:15	121:20,25 122:5	143:5,10	159:5,10,15,20,25
10:40 (5)	11:01 (4)	11:22 (6)	11:42 (5)	12:13 (4)
84:15,20,25 85:5,10	100:20 101:5,10,15	122:10,15,20,25	143:15,20,25 144:5	160:5,10,15,20
10:41 (4)	11:02 (5)	123:5,10	144:10	12:14 (6)
85:15,20,25 86:5	101:20 102:5,10,15	11:23 (5)	11:43 (3)	160:25 161:5,10,15
10:42 (3)	102:20	123:15,20,25 124:5	144:15,17,18	161:20,25
86:10,15,20	11:03 (6)	124:10	11:55 (4)	12:15 (4)
10:43 (3)	102:25 103:5,10,15	11:24 (5)	144:19,20,21,25	162:5,10,15,20
86:25 87:5,10	103:20,25	124:15,20,25 125:5	11:56 (5)	12:16 (5)
10:44 (4)	11:04 (4)	125:10	145:5,10,15,20,25	163:5,10,15,20,25
87:15,20,25 88:5	104:5,10,15,20	11:25 (5)	11:57 (5)	12:17 (5)
10:45 (3)	11:05 (6)	125:15,20,25 126:5	146:5,10,15,20,25	164:5,10,15,20,25
88:10,15,20	104:25 105:5,10,15	126:10	11:58 (4)	12:18 (2)
10:46 (4)	105:20,25	11:26 (9)	147:5,10,15,20	165:5,10
88:25 89:5,10,15	11:06 (6)	126:15,20,25 127:5	11:59 (4)	12:19 (4)
10:47 (4)	106:5,10,15,20,25	127:10,15,20,25	148:5,10,15,20	165:15,20,25 166:5
89:20 90:5,10,15	107:5	128:5	113 (3)	12:20 (4)
10:48 (6)	11:07 (4)	11:27 (6)	5:16 227:24 228:1	166:10,15,20,25
90:20,25 91:5,10,15	107:10,15,20,25	128:10,15,20,25	1157 (1)	12:21 (4)
91:20	11:08 (5)	129:5,10	275:14	167:5,10,15,20
10:49 (5)	108:5,10,15,20,25	11:28 (5)	1161 (1)	12:22 (6)
91:25 92:5,10,15,20	11:09 (6)	129:15,20,25 130:5	244:6	167:25 168:5,10,15
10:50 (6)	109:5,10,15,20,25	130:10	12 (7)	168:20,25
92:25 93:5,10,15,20	110:5	11:29 (5)	7:20 85:9 117:24	12:23 (5)
93:25	11:10 (4)	130:15,20,25 131:5	118:4 207:16 237:4	169:5,10,15,20,25
10:51 (4)	110:10,15,20 111:5	131:10	238:5	12:24 (3)
94:5,10,15,20	11:11 (5)	11:30 (3)	12/22/75 (1)	170:5,10,15
10:52 (6)	111:10,15,20,25	131:15,20,25	6:11	12:25 (4)
94:25 95:5,10,15	112:5	11:31 (6)	12:00 (4)	170:20,25 171:5,10
96:15,17	11:12 (5)	132:5,10,15,20,25	148:25 149:5,10,15	12:26 (5)
10:53 (5)	112:10,15,20,25	133:5	12:01 (5)	171:15,20,25 172:5
95:20,25 96:5,10,15	113:5	11:32 (5)	149:20,25 150:5,10	172:10
10:57 (7)	11:13 (5)	133:10,15,20,25	150:15	12:27 (4)
96:18,20,20,25 97:5	113:10,15,20,25	134:5	12:02 (6)	172:15,20,25 173:5
97:10,15	114:5	11:33 (5)	150:20,25 151:5,10	12:28 (5)
10:58 (5)	11:14 (5)	134:10,15,20,25	151:15,20	173:10,15,20,25
97:20,25 98:5,10,15	114:10,15,20,25	135:5	12:03 (4)	174:5
10:59 (4)	115:5	11:34 (5)	151:25 152:5,10,15	12:29 (7)
98:20,25 99:5,10	11:15 (6)	135:10,15,20,25	12:04 (4)	174:10,15,20,25
100 (3)	115:10,15,20,25	136:5	152:20,25 153:5,10	175:5,10,15
4:5 18:11,15	116:5,10	11:35 (5)	12:05 (5)	12:30 (5)
100,000 (3)	11:16 (3)	136:10,15,20,25	153:15,20,25 154:5	175:20,25 176:5,10
170:14 171:23,24	116:15,20,25	137:5	154:10	176:15
100s (3)	11:17 (4)	11:36 (6)	12:06 (4)	12:31 (5)
18:4,5,17	117:5,10,15,20	137:10,15,20,25	154:15,20,25 155:5	176:20,25 177:5,10
1047 (1)	11:18 (5)	138:5,10	12:07 (4)	177:15
157:5	117:25 118:5,10,15	11:37 (4)	155:10,15,20,25	12:32 (5)
108 (1)	118:20	138:15,20,25 139:5	12:09 (6)	177:20,25 178:4,5,5
3:20	11:19 (5)	11:38(4)	156:5,10,15,20,25	12:33 (4)
10816 (3)	118:25 119:5,10,15	139:10,15,20,25	157:5	178:6,8,10,15
1:23 2:14 438:22	119:20	11:39 (5)	12:10 (5)	12:34 (3)
11 (8)	11:20 (5)	140:5,10,15,20,25	157:10,15,20,25	178:20,25 179:5
5:9 7:14,18 84:7 85:9	119:25 120:5,10,15	11:40 (5)	158:5	12:35 (4)
200:7 351:12 398:9	120:20	141:5,10,15,20,25	12:11 (4)	179:10,15,20,25
11:00 (6)	11:21 (7)	11:41 (7)	158:10,15,20,25	12:36 (4)

Page 49

180:5,10,15,20	123 (1)	178 (1)	149:20,22	10:21 27:7 96:22
12:37 (4)	114:8	6:8	1960s (2)	171:2 203:13 205:9
180:25 181:5,10,15	124 (2)	18 (11)	148:13 416:25	237:18 238:20
12:38 (4)	114:8,16	1:18 2:5 8:1,16 124:6	1965 (2)	248:11,14 251:14
181:20,25 182:5,10	125 (4)	186:4,5,9 249:17,19	183:25 184:1	251:17,22 252:5,21
12:39 (5)	7:11 114:9,16,20	439:2	1972 (1)	298:9 315:16 316:3
182:15,20,25 183:5	128477 (1)	187 (1)	360:6	319:12 357:7,20
183:10	1:25	227:23	1974 (2)	362:1 365:11 373:1
12:40 (4)	13 (1)	189 (1)	199:10 208:23	374:18 375:7
183:15,20,25 184:5	7:19	34:18	1975 (13)	377:17 379:22
12:41 (5)	131 (1)	19 (6)	200:14,25 201:12,22	382:15 383:11
184:10,15,20,25	258:1	186:10 189:21 192:22	202:17,22 207:11	387:16,21 401:9
185:5	132 (1)	389:22 390:3 393:3	208:23 209:22	425:22 433:7,9,10
12:42 (3)	5:19	19-1 (3)	211:8,15 212:6	439:4
185:10,15,20	1350 (1)	5:9 11:11,12	337:14	2,4-D (36)
12:43 (3)	4:12	19-10 (3)	1980 (1)	150:8,9 223:24
186:5,10,15	14 (9)	6:8178:15,22	186:15	252:10,18,22
12:44 (4)	152:24 154:17 155:23	19-11 (2)	1982 (1)	253:18 254:21
186:20,25 187:5,10	156:23 157:18	6:9 200:4	13:1	255:24 256:11
12:45 (4)	160:4 182:21,24	19-12 (2)	1983 (2)	257:9 258:10,18
187:15,20,25 188:5	183:9	6:12 204:1	186:15 206:21	259:6 260:11 261:3
12:46 (4)	148 (1)	19-13 (2)	1985 (2)	279:12,18,25
188:10,15,20,25	5:23	6:13 223:13	211:8 212:6	280:14,22 281:9,21
12:47 (4)	15 (13)	19-14 (2)	1986 (1)	282:18 283:19
189:5,10,15,20	7:12,21 76:22 119:22	6:14 235:19	206:21	284:1 285:19 293:6
12:48 (3)	120:2 125:12 128:6	19-15 (2)	1989 (2)	293:8,11 294:3
189:25 190:5,10	128:7 206:4 283:14	6:15 243:17	13:12,13	295:1 296:7 338:20
12:49 (5)	389:22 391:7 392:8	19-16 (4)	1990 (1)	424:10,16
190:15,20,25 191:5	155 (1)	6:16 277:6,7 288:24	227:14	2,678 (2)
191:10	6:3	19-17 (3)	1990s (2)	337:20 341:7
12:50 (5)	156 (1)	6:18 313:6,7	346:11 369:21	2.0 (1)
191:15,20,25 192:5	6:4	19-18 (4)	1991 (2)	160:20
192:10	16 (23)	6:20 318:21,22,25	10:21 13:9	2.1 (5)
12:51 (4)	52:22,23 56:16,20	19-19 (2)	1992 (3)	216:17 232:13,16,19
192:15,20,25 193:5	58:18 59:9 66:19,25	6:21 349:8	178:14 213:16 217:16	234:3
12:52 (4)	76:22,22 152:1,3	19-2 (3)	1993 (11)	2.12 (1)
193:10,15,20,25	206:4 283:14,14	5:10 39:9,12	22:9 338:13,17 339:3	269:5
12:53 (4)	285:6 405:21,22,23	19-20 (4)	339:5 341:22	2.23 (1)
194:5,10,15,20	405:23,24 423:6	7:3 363:14,17,18	358:12 360:8,9	253:8
12:54 (5)	428:14	19-21 (5)	369:12 371:24	2.33 (1)
194:25 195:5,10,15	16-md-02741-VC (2)	7:4 386:15,16,19,19	1995 (7)	253:8
195:20	1:7 8:12	19-3 (4)	13:14 338:14,22	2.6 (1)
12:55 (6)	166 (1)	5:15 86:20,21 113:9	339:3 370:1,2	282:20
195:25 196:5,10,15	6:5	19-4 (4)	371:25	2.7 (1)
196:20,25	1661 (2)	5:16 113:14,21 165:5	1997 (9)	213:19
12:56 (4)	155:12 308:9	19-5 (4)	13:25 17:3 22:10	2.8 (1)
197:5,10,15,20	17 (7)	5:19 132:1,5 405:16	337:16 338:14	213:10
12:57 (5)	186:3 187:25 207:4	19-6 (2)	346:12,14 347:10	2.94 (2)
197:25 198:5,10,15	211:24 366:12	5:23 148:1	369:13	155:18 424:8
198:20	432:8,18	19-7 (3)	1999 (2)	2:56 (2)
12:58 (4)	17.4 (2)	6:3 155:8 307:10	156:2 355:23	270:21,22
198:25 199:5,10,15	206:5,16	19-8 (3)	19th (1)	20 (10)
12:59 (4)	1700's (1)	6:4 156:9 157:4	438:17	7:11 172:14 173:2
199:20,25 200:5,10	34:7	19-9 (2)		189:6 190:15 341:4
12100 (3)	172 (2)	6:5 166:10	2	364:17,24 366:13
2:11 3:12 8:13	350:22 351:7	1950s (2)	2 (38)	368:2

Page 50

20-plus (1)	351:8,13 353:2	7:17	368:12	43 (1)
371:2	355:1 357:24	243 (1)	300 (1)	153:13
200 (4)	358:25 359:23	6:15	236:7	435 (1)
6:9 119:18 132:7	361:3 362:3 383:1	2448 (2)	31 (4)	5:4
228:3	383:19 385:22	179:16,19	172:15,19,24 232:25	45 (1)
20005 (1)	386:4,9,21 387:9	2450 (1)	313 (1)	337:7
4:13	388:2,15 389:10,22	178:24	6:18	
2001 (3)	390:2,7,16 391:7	25 (4)	318 (1)	5
21:21 107:3 369:18	392:18 393:16	55:23 63:8 74:9	6:20	5 (17)
2002 (3)	395:7 398:18	370:15	34 (1)	7:16 89:19 119:18
156:8 216:5 376:15	2013AH (1)	259 (1)	353:2	171:3 172:15,15,25
2003 (30)	347:23	7:18	349 (1)	173:12,13,16,20
26:13 153:12,16	2013AHS (1)	26 (5)	6:21	231:19 277:10
154:4,13 156:2	352:11	257:24 297:16 423:14	35 (2)	312:6 316:14
181:8 184:10	2014 (10)	423:14,17	25:1 188:23	405:15 419:22
205:16 213:15	386:11,12,20 387:8	269 (1)	36 (2)	5.05 (1)
214:9,18 215:18	387:11 388:1 392:6	7:19	233:1 355:8	172:11
217:23 218:23	393:18 394:16	27 (1)	361 (1)	5:46 (2)
219:1 220:7,10	395:10	336:19	7:21	384:22,23
221:3 224:5 225:3	2015 (5)	270 (1)	363 (1)	5:54 (2)
227:5 228:7 235:24	38:23 69:18 276:18	7:20	7:3	384:24 385:1
276:25 310:7	277:15 416:18	2741 (2)	38 (4)	50 (3)
334:24 335:12	2017 (9)	1:5 8:11	368:13,18 369:1	25:1 326:11 337:8
355:23 401:17	1:18 2:5 8:1,16	277 (1)	374:2	50s (1)
2003-case (1)	131:24 405:8	6:16	386 (1)	257:24
203:24	437:16 438:17	293 (2)	7:4	51 (3)
2004 (2)	439:2	87:2 92:3	39 (1)	229:4,5 319:12
26:13 235:15	204 (1)	2A (7)	5:10	550 (5)
2005 (19)	6:12	62:9 64:24 65:3 71:7		77:5 78:6 80:14 82:14
6:20 20:18 21:11,21	21 (6)	422:8,17 424:18	4	83:1
22:24 25:14,15	172:20,24 173:12,13	2B (2)	4 (12)	55401 (1)
312:24 319:1,7	319:5 341:5	150:9 424:16	7:17 109:16,23	4:6
321:16 322:25	21.5 (1)		113:19,20 166:6	56 (1)
323:9,16 326:10	206:8	3	172:24 173:2	341:5
335:23 341:3 345:6	22 (3)	3 (19)	216:18 307:6 375:9	57 (1)
398:13	337:16 341:11 342:12	13:2 89:6 156:18	419:16	341:6
2005AHS (1)	220 (2)	157:1 181:12	4.0 (1)	
338:5	7:12,13	203:20 212:18	212:25	6
2006 (3)	223 (1)	213:12 231:15	4.25 (2)	6 (14)
17:20 21:4 25:16	6:13	232:17 236:7	173:15,19	39:18 147:24 166:13
2007 (3)	225 (1)	237:12,18 238:20	4:02 (2)	166:15 178:25
17:21 25:16 33:24	7:14	306:24 320:6 324:4	307:3,5	231:17 234:8
2008 (2)	22960 (1)	379:24 439:5	4:03 (4)	247:20,22 338:14
161:23 341:20	3:21	3.0 (1)	307:21,22,23,25	350:18,21 387:16
2009 (1)	23 (5)	180:15	4:23 (2)	433:5
36:3	7:13 263:12,19 345:8	3.2 (3)	326:3,4	6.2 (1)
201 (3)	345:16	109:14,22,23	4:47 (2)	157:8
224:17 226:2 228:5	235 (1)	3.6 (1)	326:5,7	6:14 (2)
2010 (3)	6:14	213:4	40 (3)	406:24,25
113:8 114:1 165:6	237 (1)	3:13 (2)	337:7 365:13,14	6:32 (2)
2012 (4)	7:15	270:23,25	40-some (1)	407:1,3
376:21 383:14 432:13	239 (1)	3:51 (2)	335:1	6:43 (2)
435:12	7:16	307:1,2	40-some-odd (1)	419:17,18
2013 (35)	24 (2)	30 (1)	146:19	6:45 (2)
122:4 347:20 349:6	7:15 402:14	63:8	414 (4)	419:19,21
349:12 350:3,9,23	242 (1)	30-some (1)	5:5 365:12,13 373:2	60 (6)

Page 51

132:25 133:5	83 (2)
188:25 232:25	13:3 209:8
356:12,21	86 (2)
600 (1)	5:15 209:8
77:6	
61 (5)	9
132:19,24 133:1,5	9 (7)
233:1	76:21 77:2,5 166:9
62 (12)	228:13 231:17
356:2 368:7,10,14,25	321:8
369:13,19 372:4	9:05 (3)
374:1,7,11,14	2:6 8:2,17
7	148:8,10
7 (26)	90025 (1)
21:4 39:19 85:13,23	3:13
89:3 128:15 155:7	90s (1)
155:13 157:5	341:24
166:13,15 168:1,16	94 (1)
168:17 177:16	375:10
228:13,16 232:16	95 (17)
247:20,22 296:24	90:4,8,14,25 91:5
296:25 308:7	107:12,15 108:2,6,8
385:16,17,24	108:18 109:21
7:02 (2)	110:15,16 131:4
437:5,6	214:19 249:7
7171 (1)	950 (1)
3:5	2:12
72 (1)	97 (1)
358:9	369:18
73 (1)	98 (2)
257:25	165:11 375:6
74 (2)	
199:16 207:14	
75 (4)	
207:14 366:18 375:3	
375:11	

TSG Reporting - Worldwide 877-702-9580

CURRICULUM VITAE April 2017

Beate R. Ritz, MD, Ph.D
Professor
Departments of Epidemiology and Environmental Health UCLA School of Public Health
Box 951772
Los Angeles, CA 90095-1772

EDUCATION

1995 Ph.D. in Epidemiology, School of Public Health, UCLA
1993 M.P.H. in Epidemiology, School of Public Health, UCLA
1987 Doctoral Degree in Medical Sociology, University of Hamburg
1983 Medical Examination Certificate, Registration as a Physician (M.D.). Board of Health in Hamburg
1977-1983 Medical School, University of Hamburg, Germany

PROFESSIONAL POSITIONS AND APPOINTMENTS

$\left.\begin{array}{cl}\text { 2012-2015 } & \begin{array}{l}\text { Chair, Department of Epidemiology, School of Public Health, University of California Los } \\
\text { Angeles (UCLA) }\end{array} \\
\text { 2006-current } \\
\text { Professor, Departments of Epidemiology, Environmental Health, and Center for } \\
\text { Occupational and Environmental Health, School of Public Health, and Neurology, School } \\
\text { of Medicine, UCLA }\end{array}\right]$ 2005-2012 \(\left.\begin{array}{l}Vice Chair, Department of Epidemiology, School of Public Health, University of California

Los Angeles (UCLA)\end{array}\right]\) 2004-current | Appointment in the Department of Neurology, School of Medicine, UCLA |
| :--- |
| 2002-current |
| Co-director of the UCLA-CGEP (UCLA center for Parkinson 's Disease Environmental |
| Research (CCPDER- CNS) |

OTHER HONORARY PROFESSIONAL APPOINTMENTS

2002-2008	Editorial Board: EPIDEMIOLOGY
2004-2009	Editorial Board: Epidemiologic Perspectives \& Innovations
2007-2010	Editorial Board: Environmental Health
2001-current	Chair (since 2005) and Member (since 2001) of the external advisory committee for the
	NCI/NIEHS Agricultural Health Cohort Study
2001-current	Board of Directors for the 'R. Lemelson Foundation for Psychocultural Research. Annual awards of $\$ 800,000$ for research and training including a UCLA training grant for cross- disciplinary studies in anthropology, psychology and neuroscience

2001-2002	Member of the external advisory committee for the California Biomonitoring Planning Project conducted by the Environmental Health Laboratory's Biomonitoring Project (CDHS)
Member of the EPA Science Advisory Board for Human Health Research Strategy	
(HHRS)	

FUNDED RESEARCH

NNH12ZDA006O-EVI3
Agency: NASA (PI: Ritz)
Total Direct Costs to UCLA: \$1,294,244
Multi-Angle Imager for Aerosols (MAIA)
08/01/16-11/30/25
This project will assess air pollution and adverse birth outcomes using exposure data provided by Dr Diner's group from the MAIA NASA project. UCLA researchers will be responsible for the modeling the effects of prenatal air pollution exposures on adverse birth outcomes derived from vital statistics records for multiple locations across the world.

```
1 U01 HD087221 (PI: Devaskar/UCLA Ob-GYN)
Agency: NIH/NICHD
                                    Period: 01/01/16-12/30/19
Total Direct Costs: $2,999,640
Imaging Innovations for Placental Assessment in Response to Environmental Pollution
The objective of this proposal is to develop and evaluate a suit of cutting-edge multi-parametric magnetic
resonance imaging (mp-MRI) technologies and translate these novel placental imaging modalities to
assessing the impact of environmental pollution exposure on prediction of placental insufficiency
```

Psychosocial stressors, air pollution and childhood respiratory health in LAFANS
Agency: NIEHS R03ES025908 (PI: Ritz) Period: 07/01/15-06/30/17

Total Direct Costs $\$ 100,000$

This study will add to the previous literature by constructing a more holistic measure of the stress perceived by the child, and use that measure to determine if a child's perceived stress modifies their risk of asthma or reduced lung function from air pollution.

Pesticide Exposures and Risk of Cerebral Palsy
Agency: NIEHS R03ES025904 (PI: Ritz) Period: 07/01/15-06/30/17 Total Direct Costs $\$ 100,000$
Using records from the California Department of Developmental Services (DDS), we will identify children born 1995-2007 and diagnosed with CP in California until 2010. For $\sim 10,000$ CP cases we will randomly select $1: 10$ matched controls from the California birth certificates. Ambient pesticide exposure estimates pre-pregnancy, during pregnancy and/or first year of life for each child will be estimated using a Geographic Information System (GIS) model we previously developed based on the California Pesticide Use Reporting (PUR) system. We will examine specific vulnerable periods in pregnancy (trimesters or months of pregnancy) to assess pesticide exposure effects on CP

Autism, Metabolomics, and Environment (AIME)
Agency: NIEHS R21ES25573 (Pl: Ritz)
Period: 07/01/15-06/30/17
Total Direct Costs $\$ 275,000$
We will assess whether autism risk factors can be identified using metabolomic biomarkers of exposure in stored maternal serum samples from mid-pregnancy from 200 case and 200 control pregnancies in Central California and compare biomarker exposure patterns with modelled air pollution and pesticide exposures. Metabolomics analyses will be performed in a targeted as well as untargeted manner with high-resolution metabolomics that uses mass spectrometry and advanced data extraction algorithms to quantify up to 20,000 chemicals in small biologic extracts

Air Pollution and Childhood Autism

Agency: NIEHS
R21ES024006 (PI: Ritz/Ehrenstein - multiple PI) Period: 07/01/15-06/30/17 Total Direct Costs \$275.000
We use highly sophisticated modeling and analytical techniques for the detaled spatial and temporal assessment of air pollution to examine their influence on neurodevelopment in a California birth cohort linked to autistic disorder records of the CA Department of Developmental Services.

Environment and cognitive decline in older Hispanics
Multi-PI: Ritz/Haan
Agency: NIEHS Type: R01-RES023451A Period 04/01/15-03/31/19
Total Direct Costs: $\$ 2,000,000$
The goal of the proposed research is to investigate whether long-term exposure to two ubiquitous environmental exposures, air pollution and pesticides, contribute to cognitive decline and dementia in elderly Mexican Americans (MA) from the "Sacramento Area Latino Study on Aging" (SALSA) cohort. We capitalize upon our expertise in modeling air pollution and pesticide exposure and plan to model 1) long and short term regional, local, and traffic related air pollution using monitored criteria pollutants, CALINE4 - emissions and land use regression (LUR) models and 2) long-term exposures to pesticides of specific chemical classes with our GIS model: and 3) assess impairment in cognitive domains and the onset of dementia longitudinally based on multiple complex environmental exposure patterns while taking into account vulnerability due to genetic and physiologic risk factors for dementia.

Air Pollution and Autism in Denmark

PI: Ritz
Agency: NIEHS Type: R21
Period 04/01/15-03/31/17
Total Direct Costs: \$275,000
The goal of the proposed research is to utilize Danish nationwide population-based registers and sophisticated individual-level air pollution exposure measures to assess whether early life exposure to traffic-related and particulate air pollution during critical periods of fetal development are associated with autism risk. We will use the Danish National Birth Cohort (DNBC) which enrolled pregnant women and collected extensive prospective risk factor data during pregnancy and early life for $\sim 100,000$ children
among whom 720 are already diagnosed with ASD to examine potential confounding bias for a large number of risk factors assessed in pregnancy

Air Pollution and Cardiovascular Diseases: Identification of Novel Biomarkers
 Agency: NIEHS R21 ES024560 (PI: Zhu) Period: 05/01/15-04/30/17

Total Direct Costs \$275,000
Objectives: The goal of this project is to identify novel and sensitive biomarkers of cardiovascular health effects, in association to air pollution exposures
Role Co^{-1}

Environmental exposure, DNA methylation, and Parkinson's disease

Agency NIEHS 21ES024356 (PI: Ritz/ Horvath) Period: 08/06/14-07/31/16

Total Direct Costs: \$250,000

Environmental exposure, DNA methylation, and Parkinson's disease

Here we use a powerful new tool and systems biology analytic methods to identify signatures for toxic exposures that evoke long-term biologic responses. Using DNA methylation we will investigate specific epigenetic markers (CpGs) correlate with toxic exposures and the role these epigenetic changes play in PD progression using epigenome wide technologies combined with analytic tools to integrate these data We will investigate epigenetic determinants of Parkinson's disease in over 800 subjects with existing biospecimens.
Role: PI
Maternal comorbidities, prescription drug use in pregnancy, and childhood cancer (COMPAC): a record linkage study in Denmark

Pl: Heck

Agency: $\mathrm{NiH} / \mathrm{NCl}$ Type: R21CA175959
Period: 04/01/14-03/31/16
Total Direct Costs: \$275,000
This study aims to link several large-scale databases in Denmark to examine maternal health and medication use in pregnancy in relation to childhood cancers. We propose to examine common pregnancy conditions that have been linked to cancers in adults and children in other studies as well as common medications taken in pregnancy which are suspected carcinogens or linked to cancer in other studies.
Role: Co-l

Inflammatory Cytokine Polymorphisms, Air Pollution, and Very Preterm Birth

PI: von Ehrenstein
Agency: NIEHS Type: R21ES022734 Period: 07/01/13-06/30/15
Total Direct Costs \$275.000
We examine the hypotheses that maternal exposure to air pollutants during pregnancy is associated with an increased risk of very preterm birth (VPTB, < 32 weeks gestation), and that polymorphisms in inflammatory genes modify the influence of air pollution on the risk of VPTB. We use data from the CA Very Preterm Birth (CVPTB) Study, a nested case-control study of VPTB from 5 counties in Southern CA known for high particulate matter, ozone, and traffic exposures that has genotyped SNPs related to PTB in 26 inflammatory/immune response pathway genes in mother-infant pairs and will utilize a combination of extensive air monitoring data and air pollution modeling approaches (land use regression (LUR), CALINE4, kriging) to estimate air pollution exposures in pregnancy for CVPTB Study subjects.

Role CO-I

Pesticide Exposure and Childhood Autism

PI: von Ehrenstein
Agency: NIEHS Type: R21ES022389 Period 01/01/14-12/31/15
Total Direct Costs $\$ 275,000$
We examine the hypothesis that exposure to specific pesticides during vulnerable periods, particularly during fetal development determines risks of subsequent development of autistic disorder (AD). We developed a geographic pesticide exposure assessment tool (GRAPES) that utilizes the unique California Pesticide Use Report system, in combination with agricultural land-use maps, to derive record-based estimates of historical residential exposures. and expect to identify >20.000 autism cases with diagnoses up to the age of 72
months from the CA-DDS database born in CA 1997-2009 and >1.700 from agricultural areas as weil as 1:10 age-sex match controls from birth records, the largest cohort ever to address hypotheses that exposures to specific chemicals (e.g. neurotoxic or endocrine disrupting agents) contribute to AD during vulnerable periods of development.
Role: CO-1

Parkinson's Susceptibility Genes and Pesticides (PEG-Renewal)
Principal Investigator: Ritz
Agency: NIEHS/NINDS
Type:R01ES010544
03/01/11-11/30/15
Total Direct Costs: $\$ 2,500,000$
In this renewal of an epidemiologic population-based case-control study we recruit 500 additional PD patients in three rural California counties and will assessed their exposures to pesticide exposures and the effects of gene-pesticide interactions
Role: PI
Systems genetic and reverse phenotypic analysis of age and retirement.
PI: Horvath (UCLA)
Agency: NIA Type: R01AG042511-02 07/01/13-06/30/17
Total Direct Costs: \$ 1,000,000
We will apply/develop state of the art computational, statistical, and bioinformatic approaches with which to investigate the association between genetic data and aging- related phenotypes. Specifically, the study uses data from the Health and Retirement Study (HRS) and a systems biology approach to identifying relevant SNPs and genetic pathways and machine learning techniques and reverse phenotyping methods to better understand the complex relationship between genetics and aging outcomes including cognition and wealth
Role: CO-1
Exposure to C8-chemicals and autism, ADHD, and cerebral Palsy in the Danish Birth Cohort PI: Jorn Olsen (UCLA and Aarhus University, Denmark)
Agency: Danish Medical Council
Total Direct Costs (at UCLA) $\$ \mathbf{2 5 0 , 0 0 0}$
01/01/11 -
08/31/15
The overall goal of the project is to assess the impact of $\mathrm{C8}$ persistent organic pollutants in materna! serum during pregnancy and childhood outcomes of autism, ADHD and cerebral palsy in the Danish Birth cohort using follow-up data from the National Danish medical registry systems
Role CO-I

A Cohort Study on Air Pollution and Breast Cancer in Los Angeles County liR13262718 Wu (co-Pl)
 02/13/14-02/150/17 Susan G Komen $\$ 217,728$

The overall objective is to examine the role of air poliution and risk of breast cancer among whites and non-whites in Los Angeles using the large Multiethnic Cohort Study
Role: Co-Principal Investigator
Improvements in Air Quality and Health Outcomes among California Medicaid Enrollees Due to Goods Movement Actions - Phase I: Assessing Air Quality Changes
PI: Meng UCLA
Agency: Health Effects Institute (HEI) \#. 4914-RFA11-1/2-6 09/01/12-08/31/15
This phase of the project will evaluate the effect of goods movement emission reduction actions on ambient air quality in goods movement corridors, non-goods movement corridors, and areas outside of these two corridors in 10 major California counties between the 2003-2007 pre-policy and 2008-2012 post-policy years.

COMPLETED RESEARCH

Assessing and Reducing Taxi Drivers' Exposure to Ultrafine Particles
PI: Yifang Zhu (UCLA)
Agency: CDC/NIOSH
Total Direct Costs $\$ 275,000$

Goal: The major goals of this project are to develop ultrafine particle exposure assessment instrument and explore novel low-cost ultrafine particle exposure mitigation strategies for taxi drivers Role: Co-l

Air Pollution and PD in Denmark

Pl: Ritz Type: R21-ES022391 12/01/12-30/11/14
Agency NIEHS
Total Direct Costs: \$ 275,000
This study will use a sophisticated and validated GIS-based dispersion model, AirGIS, to assess exposure to traffic-related air poilution in PASIDA participants; i.e. $\mathrm{NO}_{2} / \mathrm{NO}_{x}$. Specific aims are to (1) assess the influence of long-term traffic-related air pollution exposure on PD risk for 1,867 cases and 1,920 population controls combining existing PASIDA data with new exposure measures from AirGIS; and (2) investigate the combined action of air pollution and genetic variants in inflammatory genes previously linked to PD
Role: Pl
Parental Occupation and Childhood Cancers in Denmark
PI: Heck (UCLA)
TYPE: R03 ES021643
4/15/12-3/31/14
Agency: NIEHS
Total Direct Costs: $\$ 50,000$
The specific aims of this study are: 1) Create a linked database of all childhood cancers in Denmark diagnosed 1965-2010 with recorded information on parental employment. 2) Examine the relation between parental employment and childhood cancers focusing on maternal occupational exposures. 3) Examine specific hypotheses in childhood cancer risk (occupational social contact; contact with animals; organic dust; welding fumes; bitumen fumes; outdoor work; and several associations seen in previous literature (solvents, paints and pigments, motor vehicle exhaust related occupations))
Role Co-I
Pesticides and Childhood Cancers
Principal Investigator: Ritz (UCLA)
NIEHS R21- ES019986
4/1/11-12/31/13
Total Direct Costs: \$275000
The specific aims of this study are to examine associations between prenatai exposure to pesticides andi specific childhood cancers in California between 1980-2009 using ambient measurement data using our GIS model of pesticide exposures based on land use maps and pesticide use report (PUR) data.

UCLA Center for Centers for Neurodegeneration Science (CNS; former CGEP)
Director Chesselet UCLA, Co-director: Ritz
NIEHS P01ES016732 09/15/08-08/31/13
Total Direct Costs: $\$ 5,000,000$
We have previously shown associations between high levels of exposure to specific environmental pesticides and Parkinson's disease and will build on this knowledge to determine the mechanisms of action that may be causing this association. We will use an integrated, multidisciplinary approach to identify additional agricultural pesticides that are disrupting similar molecular pathways, and determine whether these also increase the risk of Parkinson's. This work is expected to shed light on the pathological processes involved in sporadic Parkinson's disease, the most frequent form of the disorder, and could have public health implications for precautions in the use of some pesticides

Project 4: Pesticides and Genes in PD: Studies in Humans

Principal Investigator: Ritz
NIEHS
09/15/08-08/31/13
Total Direct Costs \$1,250,000
This project will use the existing PEG data to test biological candidate genes and newly identified putative environmental toxicants for association with PD. We will recruit and collect biological (DNA) samples from and construct exposures estimates for 400 additional population controls. This will enable us to test new hypotheses for rarer exposures to specific toxins and will allow us to investigate gene-gene (GxG) and gene-environment (GxE) interactions with sufficient power. Targeted toxins are either (a) interfering with the ubiquitin proteasomal system (UPS), (b) altering microtubule integrity, and/or (c) inhibiting the aldehyde/alcohol dehydrogenase. Targeted genes include UBE1 and UBE1L2; PSMC2, 3, 4, and 5 HIP2; SKP1A; GSK3B: CDK5; MAPT, Sirt2 and ALDH and ADH gene clusters.

Registry of Parkinson's Disease Study In Denmark (PASIDA)

Principal Investigator: Ritz
NIEHS RO1 - ES013717 09/01/06-08/31/13
Total Direct Costs: $\$ 5,600,000$
We conduct 1) a case-control study of ~ 13.000 PD cases and age-gender matched controls from the Danish population via passive record linkage by unique ID between the National Patient Register. Pharmacy Database, and National Pension fund to identify risk factor information contained in these records (e.g. occupations, medication use, diseases prior to PD onset), and 2) recruit actively ~ 2500 of the most recently registered PD patients and population controls to collect additional risk factor information per interview and biological materials for gene-environment interaction analyses and to characterize PD patients phenotypically.

Air Pollution and Childhood Cancers
Principal Investigator Heck (UCLA)
NIEHS R21- ES018960

$$
4 / 1 / 10-12 / 31 / 13
$$

Total Direct Costs: $\$ 250,000$
The specific aims of this study are to examine associations between prenatal exposure to motor vehicle related air pollution toxics and specific childhood cancers in Los Angeles County and all of California between 1980-2009 using ambient measurement data, land use based regression (LUR) and CALINE4 models

California Parkinson's Disease Registry Pilot Feasibility Study

Principal Investigator: Ritz
DOD 09/01/07-04/30/12
Total Direct Costs: $\$ 390,000$
The primary goal is to conduct a pilot study for the legally mandated statewide population-based PD registry. We will identify PD cases in Kern, Tulare and Fresno counties from legally mandated sources (pharmacists, health care institutions, physicians and other providers). A secure prototype database will be established, and associations between PD and toxicant chemical exposure will be determined by linking to a database of toxicant chemicals established previously by UCLA based on California state data (e.g. the pesticide use databases)

UCLA UDALL Parkinson's Disease center

Principal Investigator: Chesselet, UCLA
NINDS Type P50 NS38367
04/01/06-03/31/12
Total Direct Costs: $\$ 7,500,000$
Project 6 within the center (budget of $\$ 500,000$ annual direct costs): Progression and Health
Impacts of PD Motor and Non-Motor Manifestations (C-PI Ritz)
Research goals are to assess whether development and progression of PD motor and non-motor manifestations in 300 PD patients ascertained in the PEG study (PI: Ritz see below) are influenced by environmental, behavioral, and social factors and by genetic variants of ApOE and serotonin transporter alleles; and to determine the relative contributions of progression of motor and non-motor manifestations of PD to changes in HRQOL over time.

Sunlight exposure and variations in vitamin D metabolic genes in Parkinson's disease

Principal Investigator: Ritz
NIEHS R03- ES017139
09/01/09-08/31/11
Total Direct Costs: \$100,000
The goal of the proposed research based on the PEG study population is to examine the hypothesis that long-term low levels of vitamin D either through inadequate sunlight exposure or alterations in metabolic genes that influence physiological vitamin D levels increase the risk of PD. We will test associations between long-term UV exposure measures and PD and examine whether genetic alterations presumed to result in different physiological vitamin D activity in genes critical to the vitamin D pathway (VDR, CYP27B1 and CYP24A1) increase the risk of PD

Traffic-Related Air Pollution and Ultrasound Measures of Fetal Growth
Principal Investigator: Wilhelm Turner (UCLA)

NIEHS R03- ES017314
04/01/09-03/31/11
Total Direct Costs: $\$ 100,000$
The specific aims of this study are to estimate prenatal exposures to O 3 and PM10 and pollutants originating from traffic (NOx) using CALINE4 air dispersion modeling and examine associations with fetal size throughout pregnancy using ultrasound measures to examine associations with weight, length, head circumference, fetal growth ratio, ponderal index, and cephalization index at birth

Ambient Air Toxics and Adverse Birth Outcomes
Principal Investigator: Wilhelm Turner (UCLA)
NIEHS R03 ES017119-01
12/15/08-12/30/10
Total Direct Costs: $\$ 100,000$
The specific aims of this study are to: (1) examine associations between prenatal exposure to motor vehicle air toxics and low birth weight (LBW) and preterm bith in women residing in Los Angeles County, California between 1994-2006 using both ambient measurement data and land use based regression (LUR) models; and (2) gain information about how LUR models built on NOx measurements reflect exposures to specific toxins thought to have biological relevance for these outcomes.

Exposure to mobile source air pollution and adverse birth outcomes in the Los Angeles Air Basin Principal Investigator: Jun Wu (UCI)
NIEHS R21 ES016379
9/11/08-12/31/10
Total Direct Costs: $\$ 250,000$
The overall goal of the project is to improve exposure assessment of air pollution exposure in pregnant women and investigate the impact of air pollution exposure on adverse reproductive outcomes, such as preterm birth. low birth weight, and intrauterine growth retardation.

Disparity in asthma among Californians from pollutant exposures.
Principal Investigator: Meng, UCLA
California Air Resources Board 04/22/08-12/31/10
Direct Costs: $\$ 270,000$
The goal of the research is to conduct a population-based study to examine the effects of long-term air pollution exposure near residence on chronic severe asthma and asthma-like symptoms in vulnerable populations

Development of Exposure and Health Outcome Indicators for Those with Asthma or Other Respiratory Problems
Principal Investigator: Meng UCLA
EPA- R833629
09/01/07-12/31/10
Direct Costs \$410,000
The goal of this research is to investigate the feasibility of combining existing environmental monitoring and health survey data to develop indicators that signal trends in exposures and health for those with asthma or other respiratory problems

Neighborhood Effects on Children's Health \& Access to Care
Principal Investigator: A Pebley, UCLA
HRSA
09/01/07-8/31/10
Total Direct Costs: \$500,000
The goal of this study is to significantly advance our knowledge about the relative importance of specific family and neighborhood characteristics in the development of major child health problems. This project is based on the Los Angeles Family and Neighborhood Survey (L.A.FANS), a longitudinal study of neighborhoods, families, adults, and children in Los Angeles County

Traffic-Related Air Pollution and Asthma in Economically Disadvantaged and High Traffic Density Neighborhoods in Los Angeles County, California (with LA F.A.N.S.)
Principal Investigator: Ritz
California Air Resources Board 01/06/05-09/30/09
Total Direct Costs: $\$ 420,000$
The objectives of this research are (1) to conduct NO_{x} and NO_{2} monitoring at 200 locations within LA County neighborhoods with varying levels of economic disadvantage and varying exposures to air
pollution originating from vehicular sources; (2) to use these monitoring data to help inform land usebased regression (LUR) models developed to predict traffic pollutant exposures; (3) to use geostatistical models to estimate regional background concentrations of O_{3} and PM_{25}; (4) to evaluate associations between exposure to $\mathrm{NO}_{\mathrm{x}}, \mathrm{NO}$ and NO_{2} and measures of lung function and asthma prevalence, exacerbation and possibly incidence in children ages $0-17$ years in conjunction with the Los Angeles Family and Neighborhood Survey (L.A. FANS) study; and (5) to evaluate whether concentrations of the more regionally distributed background pollutants (O_{3} and PM_{25}) confound or modify the effects of exposure to the more heterogeneously distributed traffic-related pollutants ($\mathrm{NO}_{\mathrm{x}}, \mathrm{NO}$ and NO_{2}) on lung function and asthma

Aggregate Exposure Assessment: Longitudinal Surveys of Human Exposure-Related Behavior Principal Investigator: Irva Hertz-Picciotto. UC Davis EPA 01/12/04-11/30/09

Direct Direct Costs: $\$ 388.111$
This project develops data collection platforms for longitudinal assessment of exposure-related behavior. The data characterize short-term, seasonal, and long-term changes in time-activities, food consumption habits, and use of household and personal care products. We assess exposure-related behaviors at multiple collection points over time, and evaluate a number of data collection methods for validity (accuracy), precision completion rates, cost. feasibility, and user acceptability.

UCLA Center for Gene-Environment Studies in Parkinson's Disease (CGEP-part of the NIEHS CCPDER)
Director: Chesselet, UCLA; Co-director: Ritz
NIEHS
09/01/02-08/31/09
Total Direct Costs: $\$ 7,000,000$
The overall objective of this Center is to understand how the detrimental effects of pesticides, a suspected environmental risk factor for Parkinson's disease, are modulated by genetic variations that impact dopamine homeostasis in nigrostriatal neurons. The center integrates 3 RO1 research projects that investigate these questions in fly, mouse. cell culture models and applies the results also to human genetics (project 1: PI Ritz)
Research Project I within the CGEP center "Environmental toxins and genes that influence dopamine in Drosophila and humans"
Principal Investigator Ritz
NIEHS
09/01/02-08/31/09
Total Direct Costs: $\$ 1.000 .000$
This project examines interindividual variability of dopamine vesicular transporter (VMAT) expression due to promoter variants in two human populations in parallel with a reporter gene assay. These populations will be genotyped for functional VMAT2 variants and association analyses of gene-environment interactions and pesticide exposures collected in the parent grant will be conducted. In addition, Drosophila genetics will be used to determine how the expression of VMAT affects dopamine-mediated toxicity and identify genes that modulate VMAT function, which will then be examined in the human population for their relevance to increase risk of PD

Parkinson's Susceptibility Genes and Pesticides (PEG)
Principal Investigator: Ritz
NIEHS/NINDS
10/01/00-09/30/07
Total Direct Cost $\$ 2.653 .852$
We are testing the gene-environment interaction hypothesis for Parkinson's disease by conducting an epidemiologic population-based case-control study of 400 newly diagnosed PD patients from three rural California counties matched to population controls: in addition we are collecting data for unaffected sibling controls. Environmental and occupational pesticide exposure estimate are derived from California pesticide-use reporting (PUR) and other data We are examining the effects of gene-environment interactions by testing for associations of PD using multiallelic repeat markers and genotyping intragenic single nucleotide polymorphisms (SNPs) and/or deletions in 50 candidate genes

PD Consortium: Genetic and Environmental Factors in Parkinson's Disease

Principal Investigator: L. Nelson, Stanford
MJ Fox Foundation
10/01/04-09/30/07

Total Direct Costs \$50,000
We established the Consortium for the Study of Genetic and Environmental Factors in Parkinson's disease, with the goal of organizing the collaborative efforts of five investigative groups that have who have conducted (or are conducting) seven case-control studies of PD. For approximately 1700 PD cases and 2100 gender- and age-matched control subjects, we investigate how the risk of developing PD varies according to tobacco and caffeine intake, as well as variants in ten candidate genes that code for proteins that may be involved in conferring the protective effect of these agents.

Alpha Synuclein and Environmental Exposures: A Study in Humans
Principal Investigator Langston, The Parkinson's Institute
MJ Fox Foundation
01/01/05-12/31/07
Total Direct Costs $\$ 100,000$
We are investigating the joint effects of (1) consequences of alpha-synuclein over-production and enhanced mapping of the SNCA promoter region and (2) the biologic effects specific toxicants (e.g. rotenone, paraquat, organochlorine pesticides). We take advantage of two unique cohorts at high risk for pesticide exposure currently evaluated by members of the NIEHS-funded Collaborative Centers for Parkinson's Disease Environmental Research (CCPDER) at the Parkinson's Institute (PI) and UCLA, the Agricultural Health Study cohort and a population-based study of PD and pesticide exposure in rural Central California (the PEG study)

Prostate Cancer and Pesticide Exposure in Diverse Populations in California's Central Valley Principal Investigator Cockburn, USC
DOD
05/01/06-12/31/07
Total Direct Costs: 250,000\$
This is a pilot study bringing an innovative collaborative approach to prostate cancer research Specifically, this study will apply novel methods of pesticide exposure assessment using Geographical Information Systems (GIS), examine whether our proposed method of recruiting and approaching cases and controls for a large population-based case-control study will result in acceptable response rates, or whether our sample will be biased with respect to socioeconomic status, race, and disease characteristics, and whether we will be able to obtain sufficient DNA from mailed (Oragene) spit collection kits to assess effect modification by known relevant genes, and have sufficient stored DNA to assess the impact of genes that may be discovered in future

Traffic-related Air Pollution and Adverse Birth Outcomes
Principal Investigator Ritz
NIEHS

$$
07 / 15 / 01-06 / 14 / 07
$$

Total Direct Costs $\$ 641,612$
The objectives of this project are to determine whether exposures to elevated and traffic-related ambient air pollution during pregnancy result in low birth weight, preterm birth, intrauterine and postneonatal mortality, or cardiac defects in infants born to women living in the South Coast Air Basin (SoCAB) We performed a cohort study of all births (between 1995 and 1999), fetal and infant deaths (between 1989 and 1997), and conducted a nested case-control study of 2600 women who delivered children in LA in 2003 to collect additional exposure, confounder, and effects modifier data

Ergonomic Interventions for Sewing Machine Operators
 Principal Investigator: Ritz
 CDC/NIOSH 10/01/02-09/31/06

Total Direct Costs: $\$ 868.262$
We are conducting a randomized trial of a newly developed ergonomic intervention in sewing machine operators working in LA garment shops. The ergonomic intervention package includes changes in workstation design, training of employees, and suggestions of improvement in work procedures We are examining whether interventions can reduce rates of upper extremity, neck (and lower back) musculoskeletal disorders, severity of pain and impairment and lost-time compared to 'placebo' (control) interventions. This study will provide employers, employees and public agencies with evidence of the effectiveness of ergonomic interventions in order to guide health and safety policy.

Traffic-Related Air Pollution and Acute Respiratory Diseases and Asthma in Children Ages 0-5 in the SoCAB From 1990-2000

Principal Investigator: Ritz
California Air Resources Board 01/06/04-09/30/05
Total Direct Costs: $\$ 55,000$
The aims of this study are to estimate the transient effects of traffic related and background air pollution in the South Coast Air Basin (SoCab) on the risk for hospitalization for acute respiratory illness and asthma in children ages $0-5$ using a case- crossover study design and a time-series analysis.

Assessment of In-Traffic Exposures and Human Reproductive Health

Pilot project Principal Investigator: Ritz, SCEHSC Center Principal Investigator: Froines, UCLA EPA

07/01/04-06/30/05
Total Direct Costs Pilot Project within the PM-center: $\$ 28,000$
The goal of this project is to evaluate whether maternal in-vehicle air pollutant exposures during commutes (either in passenger cases, buses or other means of public transportation) affected the risk of low birth weight (LBW) and preterm birth in infants born to women living in Los Angeles County, California between 2003-2004. Commuting behavior (travel time, mileage and/or modeled routes) will be used to evaluate exposure to motor vehicle exhaust pollutants while in-transit

Molecular Epidemiology and Gene-Environment Interaction

Principal Investigator: Zhang. UCLA
NIH/NIEHS R21 ES 011667
04/01/02-03/31/05
Total Direct Costs: $\$ 450,000$
This was a planning grant for molecular epidemiology in Environmental genome. The award was to establish a molecular epidemiology research program focusing on environmental genome

Uncontrolled Asthma and Exposure to Air Pollutants: Linking Chronic Disease and Environmental Data Sources
Principal Investigator: Meng, UCLA
CDC/NIOSH/
10/01/02-09/01/05
Total Direct Costs: $\$ 600,000$
Based on the California Health Interview Survey (CHIS 2001) data an extensive air monitoring network. and detailed information on traffic density we are conducting a population-based epidemiologic casecontrol study to (1) ascertain the relationship between control of asthma and exposure to air pollutants in Los Angeles County and San Diego County, California; and (2) buld and enhance the partnerships between public health and environmental agencies and local communities.

Center of Excellence for Environmental Public Health Tracking

Principal Investigator: Balmes, UCSF
CDC/ATSDR 10/01/02-09/01/05
Total Direct Costs (UCLA only): $\$ 300.000$
The UCLA part of this center grant uses the data from 5,200 California Health Interview Survey (CHIS 2001) respondents who reported having been diagnosed with asthma at some point in their lives and live in the Greater Bay Area, San Joaquin Valley, and Los Angeles County. Criteria pollutant averages are employed as measures of background ambient air quality and linked with sociodemographic information and data on asthma management access to care, and risk behaviors collected through CHIS for each targeted respondent

Community Response to Maternal/Child Heath Disparities

Principal Investigator: Hobel. Cedars Sinai
NIH 04/1/03-9/30/05
The major goals of this study are to examine the interrelating biological and social-behavioral factors that contribute to health disparities in pregnancy outcomes and infant and early childhood mortality and morbidity. We will participate as one of five selected sites in the nation to plan for a multi-centered, community-based study examining the relationship between environmental factors and child health disparities

Extension of the Rocketdyne/Al Worker Cohort Through 1999
Principal Investigator: Ritz
California Cancer Research Program
07/01/00-06/30/04

CRP award \#00-00781V-20218
Total Direct Cost: $\$ 324,508$
We extended the mortality follow-up of two previously established cohorts of workers employed at Rocketdyne/Atomics International (now Boeing North American) facility for an additional 5 years and added a cancer incidence component for the period 1972-1998. This study allowed evaluating the impact of radiation and some known animal carcinogens on cancer mortality and morbidity

Assessment Scale for End-of-Life Care in End-Stage Dementia
Principal Investigator: Ackerman, UCLA
Alzheimer's Association
10/01/00-09/30/03
Total Direct Costs: $\$ 217.583$
This pilot project developed a scale to assess end-of-life care for end-stage dementia patients and evaluated its performance using mortality data.

Pilot grant from Southern California Center for Airborne Particulate Matter (SCCAPM)
Principal Investigator Froines, UCLA; Pilot grant Principal Investigator: Ritz
U S -EPA-Star grant
07/01/01-12/31/02
Total Direct Cost: $\$ 12,000$
The pilot grant supported exposure assessment for an epidemiologic study of traffic related adverse birth outcomes.

Evaluation and Validation of Pesticide Use Reporting in California
Principal Investigator: Ritz
UC Toxic Substances Research \& Teaching Program 07/01/99-06/30/01
Total Direct Costs: \$50,000
The goal of this pilot grant was to use biomarker data to evaluate the validity of pesticide exposures estimates derived from geographic models of environmental exposure based on pesticide use reports and land use maps in California residents

Identify and Reduce Work Hazards in Home Health Care Workers
Principal Investigator: Ritz
Institute of Labor and Employment Pilot Study 02/01/01-30/08/01
Total Direct Costs: $\$ 7.500$
This pilot project developed and tested a survey instrument and collected preliminary data for a study of job hazards in 74000 home health care workers in LA county

Pilot Study for Gene-Environment Interaction and Parkinson's Disease Study
Principal Investigator Ritz
APDA Center Pilot Grant
03/01/99-12/31/00
Total Direct Costs: $\$ 35,000$
This pilot project involved establishing data resources to improve exposure measures for pesticides and setting up of a county-wide networks to reach incident Parkinson's cases in rural California

Development of a Temporary Parkinson's Disease Registry for Southern California
Principal Investigator: Ritz
APDA/Pilat Grant from the PD-center at UCLA 03/01/99-12/31/00
Total Direct Costs: $\$ 10,000$
This pilot project established mechanisms to obtain incident Parkinson's cases in rural California using information provided by local health care providers, Parkinson's disease foundations, clinics, and Medicare, and to determine which data sources exist for the application of capture-recapture methods to validate coverage of a future PD registry

Modeling Air Pollution and Birth Defects

Principal Investigator: Ritz
CBDMP Grant/SCEHS/NIEHS Pilot Grant 07/01/00-09/30/00
Total Direct Costs: $\$ 5.600$
The objective of this project was to examine the usefulness of some advanced statistical modeling procedures in order to determine whether exposures to elevated levels of ambient air pollutants (PM10.

CO) at the levels found in the South Coast Air basin (SoCAB) basin caused defects of the cardiac system of fetuses

Pesticide Exposure Modeling Based on Historical Use Reporting in California to Investigate LongTerm Health Effects
Principal Investigator: Ritz
UCLA-USC NIEHS-Center Pilot Grant 05/01/99-04/30/00
Total Direct Costs: $\$ 18,000$
The objectives of this pilot grant were to develop a geographic model for pesticide exposure of California residents between 1950 and 1990 using satellite images of crops, aerial photographs, and Pesticide Use Reporting Data from the California Department of Pesticide Regulations.

Epidemiologic Study to Determine Possible Adverse Health Effects on Rockwell/Rocketdyne
Workers from Exposure to Radioactive and Hazardous Substances
Principal Investigator: Morgenstern, UCLA
CPHF/DOE/DE-FG-03-91SF18983 01/10/93-03/31/99
Total Direct Costs: $\$ 740,000$
The major goal of this study was to test the hypothesis whether exposure to toxic chemicals and ionizing radiation among Rockwell/Rocketdyne workers caused an excess of cancer mortality.

Hazard Surveillance in the Defense Nuclear Industry
Principal Investigator: Froines, UCLA
CDC/NIOSH/R01-CCR912034 09/01/95-08/31/99
Total Direct Costs: $\$ 1,244.745$
The major goals of this project were to develop an integrated theory, approach, and methodology to exposure assessment and hazard surveillance in the US defense nuclear industry

The Influence of Air Pollution in the Los Angeles Metropolitan Area on the Occurrence of Birth Defects, 1990-1993
Principal Investigator: Ritz
SCEHSC/NIEHS/UCLA-USC NIEHS-Center Pilot Grant 09/01/97-09/30/98
Total Direct Costs: $\$ 24,000$
The objective of this pilot project were to examine whether the exposure of pregnant women to elevated levels of ambient air pollutants (Ozone, NO2. PM $10, \mathrm{CO}$) at the levels found in the Los Angeles Metropolitan Area or the South Coast Air basin (SoCAB) basin cause low birth weight or preterm birth.

RESEARCH CONDUCTEO IN GERMANY (1984-1989)

Health effects of airborne-dioxin exposure in Hamburg nursery schools
Rheumatic disorders, working conditions and coping behaviors in female office workers
Work-related knee-joint and elbow injuries in pipe-fitters and welders
Back and neck pain psycho-social and ergonomic stresses in nursing professions

HONORS AND AWARDS

1999 UCLA Faculty Career Development Award
1999 'Rothman' award presented at SER by C. Poole
1989-1992 Post-doctoral fellowship received from DAAD ("German Academic Exchange Office of the
Ministry of Research and Technology")
2001
Delta-Omega Award
Robert M. Zweig M D. Memorial Award (Clean Air Award) from the South Coast Air Quality Management District (AQMD)
2009
Award from the American Parkinson's Disease Association for outstanding contributions to the medical and scientific communities and for my work towards the advancement of Parkinson's disease research

TEACHING

UCLA, School of Public Health, graduate courses, 1995-present
Epidemiology Methods (Core methods course (200B) in the UCLA Epidemiology program)
Environmental Epidemiology
Occupational Epidemiology
Advanced Methods in Occupational and Environmental Epidemiology
Seminar Occupational and Environmental Cancers
Seminar: Policy Issues in Occupational and Environmental Health
University of Hamburg, Medical School, 1984-89
Lectures and seminars in Medical Sociology for medical students
Lectures and seminars in Psychiatry for medical students
ADVISING AND MENTORING OF DOCTORAL STUDENTS (PH.D) AND POSTDOCTORAL FELLOWS
(SUBJECT OF DISSERTATION OR FELLOWSHIP)- note: this list only includes primary advisees (i.e. chair of committee and not member of dissertation committee) and does not include master level students
At UCLA:
1997-2001
1998-2000
1998-2004
1998-2004
1998-2004
2001-2004
2003-2004
2002-2006
2003-2006
2003-2005
Kurt Straif (Cancer mortality in the German rubber industry)
Timothy Clary (Pancreatic cancer mortality and pesticide use in California)
Michelle Wilhelm (Traffic-related air pollution and pregnancy related health effects)
Rudy Rull (GIS modeling of pesticide exposure and neural tube defects)
Anusha Krishnadsan (Occupational physical activity and prostate cancer incidence)
Yingxu Zhao (Work place exposures to chemicals and cancer incidence)
Gail Asleson Kang (Movement Disorder Fellow: Clinical characteristics of PD patients)
Pin-Chieh Jason Wang (Ergonomic interventions and health effects in LA garment workers)
Chad Lewis (TTHM contamination in drinking water and adverse birth outcomes) outcomes)
2004-2008 Angelika Wahner (Doctoral student \& postdoctoral fellow Parkinson's disease, genetic factors and anti-inflammatory drug use;
2004-2008 Marie Sharp (The Latina Paradox in Birth Outcomes)
2004-2008 Sadie Costello (Parkinson's disease and life style factors)
2005-2008 Shannon Rhodes (Doctoral student \& postdoctoral fellow: Iron genetics and Parkinson's disease)
2008-2010 Nicole Gatto (Postdoctoral fellow Vitamin D: sunlight and Parkinson's disease)
2004-2008 Amanda Colligan (Residential pesticide exposure and Parkinson's disease)
2005-2012 Anthony Wang (Occupational pesticide exposures and Parkinson's disease)
2007-2011 JoKay Ghosh (Air toxics and adverse birth outcomes)
2008-2013 Tracy Becerra (Autism and race ethnicity in Los Angeles)
2008-2013 Erin Jacob-Marcotte (Pesticides in pregnancy and childhood cancers)
2011-2012 Anshu Shresta; post-doctoral fellow (Childhood cancers and the environment)
2011-2013 Pei Chen Lee: postdoctoral fellow (Air pollution and pregnancy biomarkers)
2009-2014 Shilpa Narayan (Progression in Parkinson's disease)
2009-2014 Christina Lombardi (Air pollution and childhood cancers)
2011-2014 Zeyan Liew: PFOA exposures in the Danish birth cohort and ADHD and autism)
2012 -present Gretchen Bandoli (Stress, asthma and birth outcomes in LA)
2012 -present Kristina Vanderwaal Hool (breast cancer and methylation patterns)
2011- present Kim Paul (Gene-environment interactions in Parkinson's - PASIDA study)
2011- present Xin Cui (Bias analysis in the PASIDA study of Parkinsons)
2011- present Andrew Park (Pesticides and childhood cancers)
2012- present Vivian Alonso (Nutrition, vitamins use and reproductive health)
2013- present Yu-Hsuan Chuang (Parkinsons, gene methylation. and gene-environment interactions)
2013- present Xiaoqing Xu (Pharmaceuticals and childhood cancers in Denmark)
2013- present Matt Feaster (Occupations risk factors for childhood cancers)
2013- present 1-Fan Shih (Parkinsons and physical activity)
2013- present Negar Omid (Childhood cancer risk factors)

```
2013-present Aline Duarte (Parkinsons non-motor symptoms)
2013- present Chenxiao Ling (Bias analysis in environmental epidemiology)
2014- present Cynthia Kuster (Parkinsons' and estrogen receptors)
2014-present Zuelma Esquivel (Childhood cancer risk factors)
At University of Washington:
2004-2006 Kathrine Carr (Postdoctoral Fellow: Bronchiolitis and air pollution in LA infants)
At UCI:
2011-2013 Jun Wu (junior faculty mentor for W Rosenblith award given by HEI)
At the University of Copenhagen, Denmark:
2008-present Line Kenborg (Parkinson's disease and outdoors work and sunlight exposures)
2007-2009 Kathrine Rugbjerg (Parkinson's disease and head trauma and auto-immune diseases)
University of Umea/Sweden
2014 Opponent for doctoral student David Olsson (Air pollution and PTB and preeclampsia in
Stockholm)
```


PARTICIPATION IN GRANT AND CENTER REVIEWS

Reviewer on a NCI Special Emphasis Panel "Improving Exposure Assessment in Environmental and Occupational Epidemiology of Cancer", May 2001
Reviewer of the NIEHS-funded Columbia University Environmental Health Sciences Center, May 2002
Reviewer of the Charles Harkin Award Application for Research in Thyroid Cancer, NIH, April 2003
Reviewer of the Welicome Trust Application "Pre and post-natal exposure to particulate matter and pregnancy and infant outcomes: an historical cohort study", 2003
Reviewer of the Health Effects Institute's (HEI) Walter Rosenblith New Investigator Award application, April 2003
Reviewer of pilot grants for the Southern California NIEHS center grant (2004 and 2005)
Reviewer of pilot grants for the UCLA-CCPDER center (NIEHS funded) (2003 and 2005 and 2008)
Reviewer for NCI , Epidemiology of Cancer (2004/05 Council EPIC)
Reviewer for several NIH, Department of Health \& Human Services meeting applications, 2003-2005
Reviewer (Chair of Review Committee) for a NIEHS-PO1 application (2004)
Appointment to Review Committee of the European Science Foundation (ESF) (2005)
Annual Review of SCEHSC Pilot Project Submission (permanent member 2004-current)
Institutional Patient-Oriented Career Development Programs in the Environmental Health Sciences [K12]
(ES06-005). (2007)
Conference grant applications (2004-2007)
NIH reviewer for Outstanding New Environmental Scientist (ONES) award in the Environmental Health Sciences (2006)
Member of the EPA's Clean Air Scientific Advisory Committee (CASAC) Carbon Monoxide (CO) Review
Panel (2008-current)
Grant review for an internal NIEHS scientist's application (Dr. Chen) (2007 and 2008)
Grant review for NIEHS special emphasis panels 2009-2010
Grant review for NIH-BCHI 2011
Pilot grant review for the Northern California Center for the National Children's Study -Pilot Projects
Program August 2011
External Review of the Neurology Department at Columbia (NY), 2011
Scientific Review of Superfund Site Projects as EAC member for University of Washington, 2012
External Review of the Swiss Tropical and Public Health Institute (TPH), 2012 and 2013
External Review of the Epidemiology Branch at NIEHS, 2013
Review for Harvard NIEHS center pilot grant, 2014
Review of applications for Health Effects Institute (HEI Boston), Rosenblith awardees, 2014
Review for Mount Sinai (NY) NIEHS center pilot grants, 2014
Review for NIEHS USC-UCLAEnvironmental Health Science center pilot grants, 2014
Review of NIEHS conference grants July 2015
Review of Parkinson's disease grant for Parkinson's UK foundation in Great Britain

JOURNAL REVIEWER FOR:

American Journal of Epidemiology
Epidemiology
International Journal of Epidemıology
Annals of Epidemiology

```
Environmental Health Perspectives
Environmental Health
Occupational and Environmental Medicine
Archives of Neurology
Annals of Neurology
Neurology
Movement Disorders
Pediatrics
JAMA
Lancet
Parkinson's and Related Disorders
Pharmacogenetics and Genomics
Journal of the Air & Waste Management Association
Journal of Exposure Analysis and Environmental Epidemiology
Chemosphere
Zeitschrift Sozial- und Präventivmedizin (SPM)
Human Reproduction
Women & Health
Etc
```


INVITED SEMINARS AND LECTURES (SELECTED)

The Health Effects of Low-level Ionizing Radiation, USC, Health Sciences 1996
2. Work Environment and Health UCLA Health Sciences 1996
3. The Effects of Carbon Monoxide Exposure on Low Bith Weight in the LA Metropolitan Area, 19891993, USC, Southern California Environmental Health Sciences, 1997
4. Cancer Mortality in Radiation Workers, USC Southern California Environmental Health Sciences 1997
5. Basic Principles of Reproductive Epidemiology, European School of Risk Assessment in Reproduction" in Florence/Italy December, 1997
6. The Rocketdyne/Al Worker Health Study: Results and Lesson's Learned California Department of Health Services, Occupational Health Branch, 1998
7. Air Follution and Low Birth Weight in Southern California GSF Munich Germany 1998
8. Air Pollution and Adverse Birth Outcomes: Methodological Issues and First Results, Southern California Environmental Health Science Center USC 1998
9. Gene-Environment Interaction and Parkinson's Disease, Neurology Grand Rounds, UCLA 1998

10 Air Pollution and Adverse Birth Outcomes in Southern California Dept of Reproductive Epidemology University of Michigan, East Lansing, 1999
11. Methodologic Issues in Studying of Gene-Environment Interaction. GSF Munich Germany, 1999
12. Methodologic Aspects of Studying Cancer Mortality in Radiation Workers, Dept of Epidemiology University of Michigan, East Lansing, 2000
13 Cancer Mortality in Fernald Uranium Workers, NIOSH, Cincinnatti, 2000
14 GIS Modeling of Pesticide Exposures in California, Dept. Environmental Epidemiology. GSF Munich Germany, 2000
15. Traffic-related Air Pollution and Adverse Birth Outcomes in Southern California, Dept. Environmental Epidemiology GSF Munich Germany, 2000
16. Studying Parkinson's disease in Populations: American Parkinson's Disease Association conference for patients and care providers at UCLA, 2001
17. From the Epidemiology of Parkinson's Disease to Gene-Environment Interactions VA-PD conference. Woodland Hills, 2001
18. GIS Modeling of Air Pollution and Pesticide Exposures in California, USC-UCLA NIEHS Town hall meeting; Dec, 2001
19. GIS Modeling in the context of a Gene-Environment Interaction study of Parkinson's disease, Dept. Environmental Epidemiology, GSF Munich Germany. 2001
20 The Epidemiology of Parkinson's Disease, Conference of the Society for Research on Amyotrophic Lateral Sclerosis, Colorado May 2002
21. Traffic-related Air Pollution and Reproductive Health Effects: An Overview; Environmental Health Sciences seminar at UC Riverside, Feb. 2002
22. Reproductive Health Effects due to Carbon Monoxide Air Pollution in Southern California, NRC

Subcommittee on Health Effects from CO pollution meeting at UC Irvine. April 2002
23. Traffic-related Air Pollution and GIS Modeling in Southern California, USC-GIS Workshop Pasadena May 2002
24 Health Effects Modeling with GIS USC-GIS Workshop Public Forum at USC, May 2002
25. Dopamine Imbalance and Oxidative Stress in Parkinson's Disease, VA Research Conference on PD and Movement Disorders, Los Angeles 2002
26. The Center for Gene Environment Interaction in Parkinson's disease (CGEP) at UCLA: Dopamine Imbalance in Parkinson's Disease, Inaugural NIEHS Conference at the Parkinson's Institute in Sunnyvale CA, August 2002
27. Air pollution effects on birth outcomes: An overview. Health Effects institute. Annual conference held at Georgetown University; 2003
28. Linking air pollution effects and adverse birth outcomes in the Los Angeles basin throughout the 1990s. U.S. EPA, Chapel Hill, NC; 2003
29. Air Pollution and Adverse Birth Outcomes in the South Coast Air Basin, 1989-2000; Conference of the Czech NAS meeting on air pollution effects (Dr. Sram), Prague, 2003.
30. Air pollution and adverse birth outcomes, an update on recent developments. Department of Preventive Medicine at the University of Southern California, 2003
31. GIS modeling of environmental exposures: applications to air pollution and pesticide exposures. Department of Environmental Health, Harvard, 2004
32. Air pollution models of adverse birth outcomes. Department of Epidemiology at the University of North Carolina, 2004
33. Parkinson's disease, metals and pesticides. Department of Toxicology, Symposium on Toxics Risks and Aging, Duke 2005
34. Air pollution and adverse birth outcome research in the SoCAB from 1995-2005. California Air Resources Board, Sacramento, Sept 2005
35. Parkinson's disease and pesticide exposure assessment in farming communities in the California Central Valley. Symposium of the Ramazzini Conference, Bologna, Italy Sept. 2005
36. Parkinson's disease and aging. UCLA Center on Aging Research Conference on Aging 2006.
37. Air Pollution and Asthma in Children. AQMD Asthma Impacts of Air Pollution Conference Los Angeles, Feb 2006
38. Parkinson's disease and pesticides in the Central California Valley NIEHS center at Columbia University, NY 2007
39 Assessing pesticides exposures for prostate cancers in the Central California Valley IARC Lyon 2007
40. Air pollution and adverse birth outcomes in LA. INSERM. Paris 2007
41. Gene Environment Interactions in Parkinson's disease CREAL Institute, Barcelona 2008
42. Latest results on Gene Environment Interactions in Parkinson's disease INSERM, Paris 2008
43. Re-assessing Gene Environment Interactions in Parkinson's disease. MDS conference symposium, Chicago 2008
44. Methodological Issues in studying risk factor for Parkinson's disease in populations. MDS conference symposium, Chicago 2008
45. Environmental and occupational health studies in California University of Dublin 2008
46. Air pollution, pregnancy and child health; Healthy Development and Ageing Workshop, British Foreign \& Commonwealth Office, LA 2009
47. Air pollution, pregnancy and child health; Physicians for Social Responsibility Environmental training 2009
48. Air pollution and adverse pregnancy outcomes in LA; Annenberg School of Journalism 2009

49 Parkinson's disease and pesticides. George Washington University Environmental Health Program 2009
50. LUR model for traffic related exposures and adverse birth outcomes in LA. Heimholtz Center Munich 2010
51. Parkinson's disease and gene-pesticide interactions Symposium on Predictive Health, Human Health: Molecules to Mankind Emory University Atlanta Dec 2010
52. Air Pollution and Adverse Birth Outcomes, invited speaker at HEI annual conference Boston 2011
53. Parkinson's disease in Denmark; the PASIDA study; University of Odense Denmark, May 2011
54. Gene-environment interactions in Parkinson's disease, invited symposium speaker at the International Society for Environmental Epidemiology (ISEE), Barcelona 2011
55. Air Pollution and the Brain; invited plenary speaker at the annual conference of the International Society for Environmental Epidemiology (ISEE), South Carolina 2012
56. Air Pollution and Autism, invited speaker at the University of Aarhus, Denmark 2012
57. Air Pollution, Children and Women's Health in LA: invited speaker at the SCAMQD conference for stakeholders. LA 2013
58. How to be an Epidemiologist, invited speaker at SER, Boston 2013
59. Pesticides and Neurodegeneration; invited speaker at the Conference on safety of fumigated container shipping in Berlin, Germany 2014
60. History of Environmental and Occupational Epidemiology, invited speaker at SER, Seattle 2014
61. History of Air Pollution. Adverse Birth Outcomes and Chiidren's Health in California; Invited Plenary Speaker for the ISEE Young Researcher Conference. Barcelona 2014
62. Environmental Causes of Adverse Neurodevelopment, Invited Speaker at the B-Debate Barcelona (Environment and Child Brain Development: the Challenges in the Global Context) Conference, Barcelona 2014
63. Autism Epidemiology invited speaker at the annual CART meeting UCLA 2014

64 Epidemiology of Parkinson's disease, invited speaker at annual GEO-PD meeting Vancouver CA, 2014
65. Parkinson's Disease Epidemiology: a Gene-Environment Perspective, invited speaker at the Neurogenetics Institute of Luebeck/Germany, 2015

PUBLICATIONS

PEER REVEIWED JOURNAL ARTICLES (*indicates mentored students/fellows)

1. Ritz B. Humeral Epicondylitis Among Gas- And Waterworks Employees Scandinavian Journal of Work, Environment and Health, 1995 Dec, 21 (6). 478-86
2. Ritz B, Heinrich J, Wjst M, Wichmann E, Krause C. Effect Of Cadmium Body Burden On Immune Response Of School Children. Archives of Environmental Health 1998, Jul-Aug, Vol 53: 272-280
3. Ritz B, Morgenstern H, Froines J, Young B. Effects Of Exposure To External lonizing Radiation On Cancer Mortality In Nuclear Workers Monitored For Radiation At Rocketdyne/Atomics International. AJIM 1999, Jan: Vol 35: 21-31.
4. Ritz B. YuF. The Effect Of Ambient Carbon Monoxide On Low Birth Weight Among Children Born In Southern California Between 1989 and 1993. Environmental Health Perspectives 1999 Jan, 107(1):17-25. PMCID: PMC1566307
5. Hennich J, Hoeischer B. WJst M, Ritz B, Cyrys J, Wichmann HE. Respiratory Diseases And Allergies In Two Polluted Areas In East Germany. Environmental Health Perspectives 1999, Jan; 107(1):53-62 PMCID PMC1566314
6. Ritz B, Morgenstern H, Moncau J Age At Exposure Modifies The Effects Of Low-Level lonizing Radiation On Cancer Mortality In An Occupational Cohort. Epidemiology 1999, Mar, 10(2):135-140.
7. Ritz B Radiation Exposure and Cancer Mortality In Uranium Processing Workers Epidemiology, 1999, Sep 10:531-538
8. Ritz B Cancer Mortality Among Workers Exposed To Chemicals During Uranium Processing. JOEM 1999, Jul:41(7):556-566
9 Ritz B. Morgenstern H, Froines J., Moncau J. Chemical Exposures Of Rocket Engine Test Stands Personnel And Cancer Mortality In A Cohort Of Aerospace Workers. JOEM, 1999 Oct, 41(10): 903910.
9. Jacob B, Ritz B, Heinrich J, Hoelscher B. Wichmann HE. The Effect Of Low-Level Blood Lead On hematologic parameters In Children. Environmental Research, 2000 Feb, 82 (2): 150-159.
10. Ritz B, Yu F. Parkinson's Disease Mortality And Pesticide Exposure In California 1984-1994 International Journal of Epidemiology, 2000 Apr. Vol 29:323-329
11. Hoelscher B, Heinrich J, Jacob B, Ritz B, Wichmann HE Gas Cooking, Respiratory Health And White Blood Cell Counts In Children. Int. J. Hygiene and Environ Health, 2000 Mar; 203 (1): 29-37
13 Ritz B, Morgenstern H, Crawford-Brown D, Young B. The Effects Of Internal Radiation Exposure On Cancer Mortality In Nuclear Workers At Rocketdyne/Atomics International. Environ Health Perspect, 2000 Aug; 108(8) 743-751. PMCID PMC1638302
12. Ritz B. Yu F, Chapa G, Fruin S. Effect Of Air Pollution On Preterm Birth Among Children Born In Southern California Between 1989 And 1993. Epidemiology, 2000 Sep 11(5):502-511
15 Morgenstern H, Ritz B. Effects of Radiation And Chemical Exposures On Cancer Mortality Among Rocketdyne Workers: A Review of Three Cohort Studies. Occup. Med. 2001 Apr-Jun: 16(2): 219-237
13. Ritz B. Yu F, Chapa G. Fruin S. Shaw G, Harris J. Ambient Air Pollution And Risk of Birth Defects in Southern California Am J Epidemiol 2002 Jan 1:155 17-25.
14. Ritz B, Hoelscher B, Frye C, Meyer I, Heinrich J. Allergic sensitization owing to 'second-hand' cat exposure in schools. Allergy 2002 Apr:57(4):357-61
15. Jacob B, Ritz B, Gehring U, Koch A, Bischof W, Wichmann HE, Heinrich J for the INGA-Study group Indoor Exposure To Molds And Allergic Sensitization. Environ Health Perspect 2002 Jul;110(7):64753. PMCID: PMC1240910
16. Clary T, Ritz B. Pancreatic Cancer Mortality And Organochlorine Pesticide Exposure In California, 1989-1996. Am J Ind Med. 2003 Mar, 43(3) 306-13
17. Wilhelm M, Ritz B. Residential Proximity To Traffic And Adverse Birth Outcomes In Los Angeles County, California, 1994-1996. Environ Health Perspect. 2003 Feb; 111(2):207-16. PMCID PMC1241352
18. Rull R, Ritz B Historical Pesticide Exposure In California Using Pesticide Use Reports And Land-Use Surveys: An Assessment Of Misclassification Error And Bias. Environ Health Perspect. 2003 Oct: 111(13):1582-9. PMCID: PMC1241678
19. Hashibe M, Ritz B, Le AD, Li G, Sankaranarayanan R, Zhang ZF. Radiotherapy For Oral Cancer As A Risk Factor For Second Primary Cancers. Cancer Letters 2005 Apr 8: 220(2):185-195.
20. Ritz,B, Tager I, Balmes J. Can Lessons From Public Health Disease Surveillance Be Applied To Environmental Public Health Tracking? Environ Health Perspect. 2005 Mar, 113(3):243-9. PMCID: PMC1253746
21. Kang G, Bronstein JM, Masterman DL, Redelings M, Crum JA, Ritz B. Clinical Characteristics In Early Parkinson's Disease In A Central Californian Population-Based Study. Mov Disord. 2005 Sep, 20(9):1133-42. PMCID: PMC3643967
22. Ponce NA, Hoggatt KJ, Wilhelm M, Ritz B Preterm Birth The Interaction Of Traffic-Related Air Pollution With Economic Hardship In Los Angeles Neighborhoods. Am J Epidemiol. 2005 Jul 15;162(2):140-8 PMCID PMC3636775
23. Wilhelm M, Ritz, B. Local Variations In CO And Particulate Air Pollution And Adverse Bith Outcomes In Los Angeles County, California, USA. Environ Health Perspect; 2005 Sep;113(9):1212-21. PMCID PMC1280404
24. Rull RP, Ritz B, Shaw GM. Validation Of Self-Reported Proximity To Agricultural Crops In A CaseControl Study Of Neural Tube Defects. Journal of Exposure Analysis and Environmental Epidemiology: J Expo Sci Environ Epidemiol. 2006 Mar; 16(2):147-55.
25. Zhao Y, Krishnadasan A, Kennedy N, Morgenstern H. Ritz B. Estimated effects of solvents and mineral oils on cancer incidence and mortality in a cohor of aerospace workers Am J Ind Med 2005 Oct;48(4):249-58
26. Lewis C, Suffet I, Ritz B Estimated Effects Of Disinfection By-Products On Birth Weight in A Population Served By A Single Water Utility. Am J Epidemiol 2006 Jan 1, 163(1) 38-47
27. Karr C, Lumley T, Shepherd K, Davis R, Larson T, Ritz B. Kaufman J. A Case Crossover Study Of Wintertime Ambient Air Pollution And Infant Bronchiolitis. Environ Health Perspect. 2006 Feb:114(2):277-81. PMCID: PMC1367844
28. Ritz B, Zhao Y. Krishnadasan A, Kennedy N, Morgenstern H. Estimated Effects of Hydrazine Exposure on Cancer Incidence and Mortality in Aerospace Workers. Epidemiology. 2006 Mar;17(2).154-61
29. Rull RP, Ritz B, Shaw GM. Neural Tube Defects And Maternal Residential Proximity To Agricultural Pesticide Applications. Am J Epidemiol. 2006 Apr 15:163(8):743-53
33 Glatt CE, Wahner AD, White DJ, Ruiz-Linares A, Ritz B. Gain Of Function Haplotypes In The Vesicular Monoamine Transporter Promoter Are Protective For Parkinson Disease In Women. Hum Mol Genet 2006 Jan 15:15(2):299-305. PMCID:PMC3643966
30. Marusek JC, Cockburn MG, Mills PK, Ritz B Control Selection And Pesticide Exposure Assessment Via GIS In Prostate Cancer Studies. Am J Prev Med. 2006 Feb;30(2 Suppl):S109-16
31. Ritz B, Wilhelm M, Zhao Y. Air pollution and infant death in southern California, 1989-2000 Pediatrics 2006 Aug;118(2);493-502. PMCID: PMC3636770
32. Schernhammer E, Chen H, Ritz B. Circulating Melatonin Levels: Possible Link Between Parkinson's Disease And Cancer Risk? 2006 May 17(4):577-82.
33. Karr C, Lumley T, Schreuder A, Davis R, Larson T, Ritz B, Kaufman J. Effect of Subchronic and Chronic Exposure to Ambient Air Pollutants on Infant Bronchiolitis. Am J Epidemiol 2007 Mar 1,165(5):553-60
34. Ritz B, Ascherio A. Checkoway H. Marder KS, Nelson LM. Rocca WA. Ross GW, Strickland D, Van Den Eeden SK, Gorell J. Pooled Analysis Of Tobacco Use And Risk Of Parkinson Disease. Arch Neurol. 2007 Jul;64(7) 990-7
35. Ritz B, Costello S. Geographic model and biomarker-derived measures of pesticide exposure and Parkinson's disease. Ann N Y Acad Sci. 2006 Sept;1076:378-87. PMCID. PMC3656600
36. Elbaz A, Nelson LM, Payami H, loannidis JPA. Fiske BK, Annesi G, Belin AC, Factor SA, Ferrarese C, Hadjigeorgiou GM, Higgins DS. Kawakami H. Krüger R, Marder KS. Mayeux RP, Mellick GD, Nutt JG, Ritz B, Samii A, Tanner CM, Van Broeckhoven C, Van Den Eeden SK, Wirdefeldt K Zabetian CP, Dehem M, Montimurro JS, Myers RM, Southwick A, Trikalinos TA Lack Of Replication Of Thiteen Single-Nucleotide Polymorphisms Implicated In Parkinson's Disease A Large-Scale International Study Lancet Neurol 2006 Nov, 5(11) 917-23. PMCID PMC3636768
37. Rempel DM, Wang PC, Janowitz I, Harrison RJ, Yu F, Ritz B. A Randomized Controlled Trial Evaluating the Effects of New Task Chairs on Shoulder and Neck Pain among Sewing Machine Operators: The Los Angeles Garment Study. 2007 Apr 20. Spine, 32(9): 931-938
38. Wahner AD, Sinsheimer JS, Bronstein JF, Ritz B. Inflammatory Cytokine Gene Polymorphisms And Increased Risk of Parkinson disease. Arch Neurol. 2007 Jun; 64(6):836-40
39. Wahner AD, Glatt CE, Bronstein JM, Ritz B. Glutathione S-Transferase Mu, Omega, Pi. And Theta Class Variants And Smoking In Parkinson's Disease. Neurosci Lett. 2007 Feb 21;413(3):274-8. PMCID: PMC1864949
40. Lewis C, Suffet HI, Hoggatt KJ, Ritz B. Estimated Effects of Disinfection By-products On Preterm Birth in a Population Served by a Single Water Utility. Environ Health Perspect. 2007 Feb; 115(2):2905. PMCID: PMC1831522

45 Krishnadasan A, Kennedy N, Zhao Y, Morgenstern H Ritz B Nested Case-Control Study of Occupational Chemical Exposures and Prostate Cancer in Aerospace and Radiation Workers. Am J Ind Med 2007 May: 50(5) 383-90
46. Meng YY, Wilhelm M, Rull R, English P, Ritz B. Traffic And Outdoor Air Pollution Levels Near Residences And Poorly-Controlled Asthma In Adults. Ann Asthma. Allergy, Immunol; 2007 May, 98(5), 455-63.
47. Wang PC, Rempel DM, Harrison RJ, Chan J, Ritz B. Work-Organizational And Personal Factors Associated With Upper Body Musculoskeletal Disorders Among Sewing Machine Operators Occup Environ Med. 2007 Dec;64(12):806-13. Epub 2007 May 23 PMCID: PMC2095384
48. Ritz B, Wilhelm M, Hoggatt KJ, Ghosh JKC. Ambient Air Pollution And Preterm Birth In the Environment And Pregnancy Outcomes Study at the University of California, Los Angeles. Am J Epidemiol. 2007 Nov 1;166(9):1045-52.
49 Wahner AD, Bronstein JM, Bordelon YM, Ritz B. Nonsteroidal Anti-Inflammatory Drugs May Protect Against Parkinson Disease. Neurology 2007 Nov $8,69(19)$ 1836-42.
50. Wahner AD, Bronstein JM, Bordelon YM, Ritz B. Statin Use and the Risk of Parkinson's Disease. Neurology. 2008 Apr 15.70(16 Pt 2). 1418-22. PMCID. PMC3690297
51. Krishnadasan A, Kennedy N, Zhao Y, Morgenstern H, Ritz B Nested Case-control Study of Occupational Physical Activity and Prostate Cancer Among Workers Using a Job Exposure Matrix Cancer Causes Control. 2008 Feb; 19(1): 107-14.
52. Ritz B. Wilhelm M Ambient Air Pollution And Adverse Birth Outcomes: Methodologic Issues In An Emerging Field. Basic Clin Pharmacol Toxicol 2008 Feb,102(2):182-90 PMCID: PMC3656653
53. Meng YY, Wilhelm M, Rull RP, English P, Nathan S, Ritz B. Are frequent asthma symptoms among low-income individuals related to heavy traffic near homes, vulnerabilities, or both? Ann Epidemiol 2008 May 18(5):343-50
54. Wilhelm M, Qian L, Ritz B. Outdoor air pollution family and neighborhood environment, and asthma in LA FANS children. Health Place 2009 Mar 15(1) 25-36 PMCID PMC2658528
55 Heck JE, Ritz B. Hung R, Hashibe M, Boffetta P. The Epidemiology of Neuroblastoma: A Review. Paediatr Perinat Epidemiol. 2009 Mar 23(2):125-43.
56. Wilhelm M. Meng YY, Rull RP, English P, Balmes J, Ritz B. Environmental public health tracking of childhood asthma using California health interview survey, traffic, and outdoor air pollution data Environ Health Perspect 2008 Sep;116(9):1254-60. PMCID PMC2535631
57. Wang PC, Ritz, B. Janowitz I, Harrison RJ, Yu F, Chan J, Rempel DM. A Randomized Controlled Trial of Chair Interventions on Back and Hip Pain Among Sewing Machine Operators: The Los Angeles Garment Study J Occup Environ Med. 2008 Mar, 50:255-262
58. Wang PC, Rempel DM, Hurwitz EL, Harrison RJ, Janowitz I, Ritz B Self-Reported Pain And Physical Signs For Musculoskeletal Disorders In The Upper Body Region Among Los Angeles Garment Workers Work 2009;34(1):79-87.
59. Rhodes SL. Ritz, B Genetics of Iron Regulation and the Possible Role of Iron in Parkinson's Disease. In Neurobiol Dis. 2008 Nov 32(2). 183-95. PMCID: PMC3643980
60. Goldberg DW, Wilson JP, Knoblock CA, Ritz B, Cockburn MG. An effective and efficient approach for manually improving geocoded data. International Journal of Health Geographics 2008 Nov 26, 7:60 PMCID PMC2612650
61. Ritz B. Rull R. Assessment of Environmental Exposures from Agricultural Pesticides in Childhood Leukemia Studies: Challenges and Opportunities. Radiat Prot Dosimetry. 2008;132(2):148-55.
62. Rugbjerg K, Ritz B, Korbo L, Martinussen N, Olsen JH. Risk for Parkinson's disease after hospital contact for head injury: a population-based case-control study. BMJ. 2008 Dec 15;337. PMCID: PMC2603581
63. Costello S*, Cockburn M., Bronstein J, Zhang X, Ritz B. Parkinson's disease and residential exposure to Maneb and Paraquat from agricultural applications in the central valley of California. Am J Epidemiol 2009 Apr 15:169(8) 919-26. PMCID: PMC2727231.
64. Hoggatt KJ, Greenland S, Ritz B. Adjustment for response bias via two-phase analysis: an application. Epidemiology. 2009 Nov;20(6):872-9. PMCID: PMC3656648
65. Wang PC, Harrison RJ, Yu F, Rempel DM, Ritz B. Follow-up Of Neck And Shoulder Pain Among Sewing Machine Operators: the Los Angeles Garment Study. Am JInd Med. 2010 Apr;53(4):352-60.
66. Ritz B, Manthripragada A, Costello S, Lincoln SJ, Farrer M, Cockburn M, Bronstein J. Dopamine transporter genetic variants and pesticides in Parkinson's disease. Environ Health Perspect 2009 Jun, 117(6):964-9 PMCID: PMC2702414.
67. Meng YY, Rull RP, Wilhelm M , Lombardi C,Balmes J, Ritz B. Outdoor air pollution and uncontrolled asthma in the San Joaquin Valley, California. J Epidemiol Community Health. 2010 Feb;64(2):142-7.
68. Manthripragada A, Cockburn M, Costello S, Bronstein J, Ritz B. Paraoxonase 1, agricultural organophosphate exposure, and Parkinson disease. Epidemiology. 2010 Jan; 21(1):87-94. PMCID: PMC3117899
69. Su JS, Jerrett M, Beckerman B, Wilhelm M, Ghosh JK, Ritz B. Predicting traffic-reiated air pollution in Los Angeles using a distance decay regression selection strategy. Environ Res. 2009 Aug: 109(6) 657-70 PMCID PMC 3656661
70. Wu J, Ren C , Delfino R, Chung J, Wilhelm M, Ritz B. Association between local traffic-generated air pollution and preeclampsia and preterm delivery in the South Coast Air Basin of California Environ Health Perspect. 2009 Nov;117(11):1773-9. PMCID: PMC2801174.
71. Gatto N, Cockburn M, Bronstein J, Manthripragada A, Ritz B Well Water Consumption and Parkinson's Disease in Rural California. Environ Health Perspect 2009 Dec, 117: 1912-1918 PMCID: PMC2799466
72. Rugbjerg K. Friis S. Ritz B. Schernhammer ES. Korbo L. Olsen JH Autoimmune disease and risk for Parkinson's disease: a population based case-control study. Neurology. 2009 Nov 3;73(18):1462-8. PMCID: PMC2779008
73. Rod-Nielsen N, Schernhammer E, Hansen J, Ritz B. Major life events and risk of Parkinson's disease. Mov Disord. 2010 Aug 15;25(11): 1639-45. PMCID: PMC2928859
74. Plaitakis A, Latsoudis H, Kanavouras K, Ritz B, Bronstein JM, Skoula I, Mastorodemos V, Papapetropoulos S, Borompokas N, Zaganas I, Xiromerisiou G, Hadjigeorgiou GM, Spanaki C. Gain-of-function variant in GLUD2 glutamate dehydrogenase modifies Parkinson's disease onset. Eur J Hum Genet. 2010 Mar, 18(3) 336-41. PMCID: PMC2987208
75. Ritz B, Rhodes SL, Qian L, Schernhammer E, Olsen J, Friis, S L-type Calcium Channel blockers and Parkinson disease in Denmark. Ann Neurol 2010 May;67(5):600-6. PMCID PMC2917467
76. Gosh JKC, Wilhelm M, Dunkel-Shetter C, Lombardi C*, Ritz B. Paternal support and preterm birth, and the moderation of effects of chronic stress: a study in Los Angeles county mothers. Arch Womens Ment Health. 2010 Aug, 13(4):327-38. PMCID: PMC2896639
77 Costello S. Bordelon Y, Bronstein J, Ritz B. Familial Associations of Alzheimer Disease and Essential Tremor with Parkinson Disease. Eur J Neurol. 2010 Jun 1;17(6):871-8. PMCID PMC2895681
78. Wu J, Hou H, Ritz B, Chen Y Exposure to Polycyclic Aromatic Hydrocarbons and Missed Abortion in Early Pregnancy in a Chinese Population. Science of the Total Environment 2010 May 1:408(11):2312-8.
79. Ritz B, Mandripragada A, Qian L, Schernhammer E. Olsen J. Wermuth L, Friis S. Statin use and Parkinson's Disease in Denmark. Mov Disord. 2010 Jul 15;25(9): 1210-6. PMCID: PMC2910157
80. Rugbjerg K, Friis S, Jorgensen T, Ritz B, Korbo L. Olsen JH. Risk of Parkinson disease among patients with osteoarthritis: a Danish cohort study. Mov Disord 2010 Oct 30;25(14) 2355-60 PMCID: PMC2992436
81. Gatto NM, Rhodes SL, Manthripragada AD, Bronstein J, Cockburn M, Farrer M, Ritz B a-Synuclein Gene May Interact with Environmental Factors in Increasing Risk of Parkinson's Disease Neuroepidemiology. 2010;35(3):191-5. PMCID: PMC2945263
82. Wu X, Bennett DH, Rítz B, Frost J, Cassady D, Lee K, Hertz-Picciotto I. Residential Insecticide Usage in Northern California Homes with Young Children. J Expo Sci Environ Epidemiol 2011 Jul-Aug:21(4):427-36.
83 Jacob EL, Gatto NM, Thompson A. Bordelon Y, Ritz B. Occurrence of Depression and Anxiety prior to Parkinson's Disease. Parkinsonism Relat Disord 2010 Nov; 16(9) 576-81. PMCID: PMC2963655
84. Wu X, Bennett DH, Ritz B, Cassady DL, Lee K, Hertz-Picciotto I. Usage Pattern of Personal Care Products in California Households. Food Chem Toxicol. 2010 Nov; 48(11) 3109-19.
85. Rhodes SL, Sinsheimer JS, Bordelon Y, Bronstein JM, Ritz B Replication of GWAS associations for GAK and MAPT in Parkinson's disease. Annals of Human Genetics. Ann Hum Genet. 2011 Mar; 75(2): 195-200. PMCID: PMC3074465
86 Kenborg L, Funch C, Ritz B, Schernhammer E, Hansen J, Gatto N, Olsen JH. Outdoor work and risk for Parkinson disease: a population-based case-control study. Occup Environ Med. 2011 Apr;68(4):273-8 PMCID: PMC3667158
87. Hertz-Picciotto I, Cassady D, Lee K, Bennett DH, Ritz B, Vogt R. Study of Use of Products and Exposure-Related Behaviors (SUPERB): study design, methods, and demographic characteristics of cohorts. Environ Health. 2010 Aug 29;9:54. PMCID: PMC2940867
88. Sapkota A, Chelikowski A, Nachman K, Cohen A, Ritz B. Exposure to Particulate Matter and Adverse Birth Outcomes: A Comprehensive Review and Meta Analysis. Air Quality, Atmosphere and Health 2012, Vol 5, Issue 4; 369-381
89. Cockburn M, Mills P, Zhang X, Zadnick j, Goldberg D, Ritz B. Prostate cancer and ambient pesticide exposure in agriculturally intensive areas in California. Am J Epidemiol 2011 Jun 1;173(11):1280-8 PMCID: PMC3121318
90. Popat R, Van Den Eeden SK, Tanner CM, Kamel F, Umbach D. Marder K, Mayeux R, Ritz B, Ross GW, Petrovitch H, Topol B, McGuire V, Costello S, Manthripragada AD, Southwick A. Myers RM, Nelson LM. Coffee, ADORA2A, and CYP1A2: the caffeine connection in Parkinson's disease. Eur J Neurol. 2011 May 18(5):756-65. PMCID: PMC3556904
91. Lewis C, Hoggatt KJ, Ritz B The Impact of Different Causal Models on Estimated Effects of Disinfection By-Products on Preterm Birth. Environ Res. 2011 Apr; 111(3) 371-6
92. Lee FC, Talbott EO; Roberts JM, Catov JM, Sharma RK, Ritz B. Particulate Air Pollution Exposure and C-Reactive Protein during Early Pregnancy. Epidemiology 2011 Jul;22(4):524-31
93. Schernhammer E, Hansen J, Rugbjerg K, Wermuth L, Ritz B. Diabetes and the risk of developing Parkinson's disease in Denmark. Diabetes care. 2011 May; 34(5) 1102-8. PMCID PMC3114482
94. Wang A, Costello S. Cockburn M. Zhang X, Bronstein J, Ritz B Parkinson's Disease risk from ambient exposure to pesticides. Eur J Epidemiol 2011 Jul; 26(7) 547-55. Epub 2011 Apr 20 PMCID PMC3643971
95. Manthripragada A, Schernhammer ES, Qiu J, Friis S, Wermuth L, Olsen J, Ritz B. Non-steroidal anti-inflammatory drug use and the risk of Parkinson's Disease. Neuroepidemiology. 2011;36(3):15561 PMCID PMC3095838
96 Wu X, Bennett DH Lee K, Cassady DL, Ritz B, Hertz-Picciotto I. Feasibility of Using Web Surveys to Collect Time-Activity Data. Journal Of Exposure Science And Environmental Epidemiology. J Expo Sci Environ Epidemiol. 2012 Mar-Apr:22(2). 116-25
97 Gatto NM, Bordelon Y, Gatz M, Ritz B. Personality Characteristics and Motor Skills Attributed to Occupations in Parkinson Disease. Cognitive and Behavioral Neurology. Cogn Behav Neurol 2011 Mar; 24(1): 18-25. PMCID: PMC3656654
98. Wu J, Wilhelm M, Chung J, Ritz B Comparing exposure assessment methods for traffic-related air pollution in an adverse pregnancy outcome study. Environ Res 2011 Jul:111(5):685-92. PMCID. PMC3114297
99. McGuire V, Van Den Eeden SK, Tanner CM, Kamel F, Umbach D, Marder K, Mayeux R, Ritz B, Ross GW, Petrovitch H. Topol B, Popat RA, Costello S, Manthripragada AD, Southwick A, Myers RM, Nelson LM, Association of DRD2 and DRD3 Polymorphisms with Parkinson's Disease in a Multiethnic Consortium. J Neurol Sci. 2011 Aug 15:307(1-2):22-9. PMCID: PMC3155471
100. Wilhelm M, Ghosh JK, Su J, Cockburn M, Jerrett M, Ritz B. Traffic-related air toxics and preterm birth: a population-based case-control study in Los Angeles County. California. Environmental Health Environ Health 2011 Oct 7;10:89. PMCID PMC3204282
amza TH, Chen H, Hill-Burns EM, Rhodes SL, Montimurro J, Kay DM, Tenesa A, Kusel VI, Sheehan P, Eaaswarkhanth M, Yearout D, Samii A, Roberts JW, Agarwal P, Bordelon Y, Park Y Wang L, Gao J, Vance JM, Kendler KS, Bacanu SA, Scott WK, Ritz B, Nutt J, Factor SA, Zabetian CP, Payami HGenome-Wide Gene-Environment Study Identifies Glutamate Receptor Gene GRIN2A as a Parkinson's Disease Modifier Gene via Interaction with Coffee. PLoS Genet 2011 Aug;7(8):e1002237. PMCID: PMC3158052
102. Armes MN, Liew Z. Wang A, Wu X, Bennett DH, Hertz-Picciotto I, Ritz B. Residential Pesticide Usage in Older Adults Residing in Central California. International Journal of Environmental Research and Public Health. Int J Environ Res Public Health. 2011 Aug;8(8):3114-33. PMCID:PMC3166730
103. Wihhelm M, Gosh J, Su J, Cockburn M, Jerret M, Ritz B. Traffic-Related Air Toxics and Term Low Birth Weight in Los Angeles County, California. Environ Health Perspect. 2012 Jan; 120(1):132-8. PMCID:PMC3261935
104. Wu X, Bennett DH, Lee K, Cassady DL, Ritz B, Hertz-Picciotto I. Longitudinal variability of timelocation/activity patterns of population at different ages: a longitudinal study in California. Environmental Health 2011 Sep 20;10:80 PMCID: PMC3184256
105. Hoggatt KJ, Sharp M, Wihelm M, Solorio R, Ritz B. The Latina Epidemiologic Paradox revisited the role of birthplace and acculturation in predicting infant low birth weight for Latinas in Los Angeles, CA Journal of Immigrant and Minority Health (JOIH). J Immigr Minor Health. 2012 Oct; 14(5):875-84. PMCID: PMC3643973
106. Gosh JK, Wilhelm M, Su J, Goldberg D, Cockburn M, Jerrett J, Ritz B. Assessing the influence of traffic-related air pollution on risk of term low birth weight on the basis of land-use-based regression models and measures of air toxics. Am J Epidemiol. 2012 Jun 15;175(12):1262-74. PMCID: PMC3372317
107. Nielsen HH, Qiu J, Friis S. Wermuth L, Ritz B. Treatment of Helicobacter Pylori infection and risk of Parkinson's disease in Denmark. Eur J Neurol. 2012 Jun; 19(6):864-9. PMCID: PMC3330170
108. Wermuth L, Lassen CF, Himmerslev L, Olsen J, Ritz B. Validation of hospital register-based diagnosis of Parkinson's disease. Dan Med J. 2012 Mar;59(3):A4391. PMCID: PMC3643969
109. Rugbjerg K, Friis S, Lassen CF, Ritz B, Olsen J. Malignant melanoma, breast cancer and other cancers in patients with Parkinson's disease. 2012 Oct 15;131(8): 1904-11. PMCID: PMC3636769
110. Heck JE, Lombardi CA, Cockburn M, Meyers TJ, Wilhelm M, Ritz B. Epidemiology of rhabdoid tumors of early childhood. Pediatr Blood Cancer. 2013 Jan;60(1):77-81. PMCID: PMC3399923
111. Li L, Wu J, Wilhelm M, Ritz B. Use of Generalized Additive Models and Cokriging of Spatial Residuals to Improve Land-Use Regression Estimates of Nitrogen Oxides in Southern California Atmos Environ_2012 Aug 1;55:220-228. PMCID: PMC3579670
112. Lee PC, Roberts JM, Catov JM, Talbott EO, Ritz B. First trimester exposure to ambient air pollution pregnancy complications and adverse birth outcomes in Allegheny County, PA. Matern Child Health J. 2013 Apr: 17(3):545-55. PMCID: PMC3636771
113. Bennett DH, Wu X, Teague C, Lee K, Cassady DL, Ritz B, Hertz-Picciotto I. Passive Sampling Methods to Determine Household and Personal Care Product Use. J Expo Sci Environ Epidemiol 2012 Mar-Apr 22(2): 148-60
114. Ritz B. Rhodes SL, Bordelon Y, Bronstein J. a-Synuclein genetic variants predict faster motor symptom progression in idiopathic Parkinson disease. PLoS One. 2012;7(5):e36199. PMCID. PMC 3352914
115 Lee PC, Talbott EO; Roberts JM; Catov JM Bilonick RA; Stone RA; Sharma RK; Ritz B. Ambient Air Pollution Exposure and Blood Pressure Changes during Pregnancy. Environ Res. 2012 Aug; 117:4653. PMCID PMC3656658
116. Gosh JK, Wilhelm M, Ritz B. Effects of residential indoor air quality and household ventilation on preterm birth and term low birth weight in Los Angeles County, California. Am J Public Health. 2013 Apr;103(4):686-94. PMCID PMC3643965
117. Heck JE, Lombardi CA, Meyers TJ, Cockburn M, Wilhelm M, Ritz B. Perinatal characteristics and retinoblastoma. 2012 Sep:23(9):1567-75. PMCID PMC 3429932
118. Lee PC, Bordelon Y, Bronstein J, Ritz B. Traumatic Brain Injury, Paraquat Exposure, and their Relationship to Parkinson Disease. Neurology. 2012 Nov 13;79(20):2061-6. PMCID: PMC3511918
119. Mata IF, Checkoway H, Hutter CM, Samii A, Roberts JW, Kim HM, Agarwal P, Alvarez V, Ribacoba R, Pastor P, Lorenzo-Betancor O, Infante J. Sierra M, Gómez-Garre P, Mir P, Ritz B, Rhodes SL, Colcher A, Van Deerlin V, Chung KA, Quinn JF, Yearout D, Martinez E, Farin FM, Wan JY, Edwards KL, Zabetian CP Common Variation in the LRRK2 Gene is a Risk Factor for Parkinson's Disease Mov Disord. 2012 Dec;27(14):1822-5. PMCID: PMC3536918
120. Block ML, Elder A, Auten RL, Bilbo SD, Chen H, Chen JC, Cory-Slechta DA, Costa D, Diaz-Sanchez D, Dorman DC, Gold DR, Gray K, Jeng HA, Kaufman JD, Kleinman MT, Kirshner A, Lawler C, Miller DS, Nadadur SS, Ritz B, Semmens EO, Tonelli LH, Veronesi B, Wright RO, Wright RJ. The outdoor air pollution and brain health workshop. Neurotoxicology. 2012 Oct;33(5):972-84. PMCID PMC3726250
121. Rod-Nielsen N, Bordelon Y, Thompson A, Marcotte E, Ritz B. Major life events and development of major depression in Parkinson's disease patients. Eur J Neurol. 2013:20(4):663-70. PMCID PMC3566278
122. Vogt R, Bennett D, Cassady D, Frost J, Ritz B, Hertz-Picciotto I. Cancer and non-cancer health effects from food contaminant exposures for children and adults in California: a risk assessment Environ Health 2012 Nov $9 ; 1183$. PMCID: PMC3551655
123. Becerra T, Wilhelm W, Olsen J, Cockburn M, Ritz B Ambient Air Pollution and Autism in Los Angeles County, California. Environ Health Perspect. 2013 Mar;121(3):380-6. PMCID: PMC3621187
124. Fitzmaurice AG, Rhodes SL, Lulla A, Murphy NP, Lam HA, O'Donnell KC, Barnhill L, Casida JE, Cockburn M, Sagasti A, Stahl MC, Maidment NT, Ritz B, Bronstein JM. Aldehyde dehydrogenase inhibition as a pathogenic mechanism in Parkinson disease. Proc Natl Acad Sci U S A. 2013 Jan 8;110(2):636-41. PMCID: PMC3545765
125 Lim SS. et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010 a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012 Dec 15;380(9859):2224-60. PMCID: PMC4156511
126. Clark AJ, Ritz BR, Prescott E, Rod NH. Psychosocial risk factors, pre-motor symptoms, and first-time hospitalization with Parkinson's Disease: a prospective cohort study. Eur J Neurol 2013 Aug;20(8):1113-20. PMCID: PMC3664243
127. Shrestha A. Ritz B, Ognjanovic S. Lombardi CA, Wilhelm M, Heck JE. Early life factors and risk of childhood rhabdomyosarcoma. Front Public Health 2013 May 31;1:17. PMCID: PMC3854857
128. Li L, Wu J, Ghosh JK, Ritz B Estimating Spatiotemporal Variability of Ambient Air Pollutant Concentrations with A Hierarchical Model. Atmospheric Environment 2013 Jun 1;71:54-63. PMCID PMC3627373
129. Liew Z, Wang A, Bronstein B, Ritz B Job Exposure Matrix (JEM) derived estimates of life-time occupational pesticide exposure and the risk of Parkinson's Disease. Arch Environ Occup Health. 2014;69(4):241-51. PMCID: PMC3916959
130. Lee PC, Rhodes SL, Sinsheimer JS, Bronstein J, Ritz B. Functional Paraoxonase 1 Variants Modify the Risk of Parkinson's Disease due to Organophosphate Exposure. Environ int. 2013 jun. $56: 42-7$ PMCID: PMC3690300
131. Schernhammer E, Qiu J, Wermuth L, Funch Lassen C, Friis S, Ritz B. Gout and the risk of Parkinson's disease in Denmark. European Journal of Epidemiology. 2013 Apr;28(4) 359-60. PMCID:PMC3655156
132. Lombardi C, Heck JE, Cockburn M, Ritz B. Solar UV radiation and cancer in young children. Cancer Epidemiol Biomarkers Prev. 2013 Jun:22(6):1118-28 PMCID-PMC369030
133. von Ehrenstein OS, Wilhelm M, Ritz B. Maternal Occupation and Term Low Birth Weight in a Predominantly Latina Population in Los Angeles, California J Occup Environ Med. 2013 Sep;55(9):104651.
134. Gosh JK. Heck J, Cockburn M, Su J, Jerrett M, Ritz B Prenatal exposure to traffic-related air pollution and risk of early childhood cancers. Am J Epidemiol. 2013 Oct 15;178(8):1233-9 PMCID:PMC3792733
135. von Ehrenstein OS. Wilhelm M, Ritz B. Preterm Birth and Prenatal Maternal Occupation: Preterm Birth and Prenatal Maternal Occupation: The Role of Hispanic Ethnicity and Nativity in a Population Based Sample in Los Angeles, California Am J Public Health. 2014 Feb;104 Suppl 1 S65-72. PMCID: PMC4011103
136 Chen H, Burton EA Ross GW, Huang X. Savica R, Abbott RD, Ascherio A, Caviness JN, Gao X Gray KA, Hong JS, Kamel F, Jennings D, Kirshner A, Lawler C, Liu R, Miller GW, Nussbaum R, Peddada S, Rick AC, Ritz B, Siderowf AD. Tanner CM, Troster AI, Zhang J. Research on the premotor symptoms of Parkinson's disease Clinical and etiological implications. Environ Health Perspect 2013 Nov-Dec:121(11-12):1245-52. PMCID: PMC3855519
137. Rhodes SL, Fitzmaurice AG, Cockburn M, Bronstein JM, Sinsheimer JS, Ritz B Pesticides that Inhibit the Ubiquitin-Proteasome System: Effect Measure Modification by Genetic Variation in SKP1 in Parkinson's Disease. Environ Res 2013 Oct; 126:1-8. PMCID: PMC3832349
138. Narayan S Liew Z, Paul K, Lee PC, Sinsheimer JS, Bronstein JM, Ritz B. Household Organophosphorus Pesticide Use and Parkinson's Disease. Int J Epidemiol. 2013 Oct;42(5):1476-85 PMCID:PMC3807617
139. Murray CJ et al. (125 US Burden of Disease Collaborators). The state of US health, 1990-2010 burden of diseases, injuries, and risk factors. JAMA 2013 Aug 14;310(6):591-608
140. Roede JR, Uppal K. Park YH, Lee K, Tran V, Strobel FH, Rhodes SL, Ritz B, Jones DP. Serum Metabolomics of Slow vs. Rapid Motor Progression Parkinson's Disease. a Pilot Study. PLoS One. 2013 Oct 22;8(10): e77629. PMCID PMC3805572
141. Nielsen M, Hansen J, Ritz B, Nordahl H, Schernhammer E, Wermuth L, Rod NH. Cause-specific mortality among spouses of Parkinson disease patients. Epidemiology 2014 Mar; 25(2):225-32
142. Heck JE, Wu J, Lombardi CA, Meyers TJ, Wilhelm M, Cockburn M Ritz B. Childhood cancer and traffic-related air pollution exposure in pregnancy and early life. Environ Health Perspect. 2013 11-12,121(11-12): 1385-1391. PMCID: PMC3855517
143 Heck JE, Park AS, Qiu J, Cockburn M, Ritz B. An exploratory study of ambient air toxics exposure in pregnancy and the risk of neuroblastoma in offspring. Environ Res 2013 Nov, 127:1-6. PMCID: PMC3960946
144 Rhodes SL, Buchanan D, Ahmed I, Taylor KD, Loriot MA, Sinsheimer JS, Bronstein J, Elbaz A, Mellick G, Rotter JI, Ritz B. Pooled Analysis of Iron-related Genes in Parkinson's Disease Association with Transferrin. Neurobiol Dis 2014 Feb;62:172-8. PMCID: PMC3968945
145. Wu XM, Bennett DH, Ritz B, Tancredi DJ, Hertz-Picciotto I. Temporal variation of residential pesticide use and comparison of two survey platforms: a longitudinal study among households with young children in Northern California. Environ Health. 2013 Aug 20;12(1):65. PMCID: PMC3765515
146. Heck JE, Cockburn M, Ritz B. Case-Control Study of Birth Characteristics and the Risk of Hepatoblastoma. Cancer Epidemiol. 2013 Aug;37(4):390-5. PMCID: PMC3679264
147. Heck JE, Park AS, Qiu J, Cockburn M, Ritz B. Retinoblastoma and ambient exposure to air toxics in the perinatal period. J Expo Sci Environ Epidemiol. 2013 Nov 27 PMCID: PMC4059784
148. Fitzmaurice AG, Rhodes SL, Cockburn M, Ritz B, Bronstein JM. Aldehyde dehydrogenase variation enhances effect of pesticides associated with Parkinson disease. Neurology. 2014 Feb 4;82(5):41926. PMCID: PMC3917685
149. Liew Z, Ritz B, Rebordosa C, Lee PC, Olsen J. Acetaminophen use during pregnancy, behavioral problems and Hyperkinetic disorders. JAMA Pediatr. 2014 Apr; 168(4) 313-20
150. Marcotte E, Ritz B. Cockburn M, Clarke CA, Heck JE. Birth Characteristics and Risk of Lymphoma in Young Children. Cancer Epidemiology PMCID: PMC4100477
151. Wang A, Cockburn M, Ly TT, Bronstein J, Ritz B. The Association Between Ambient Exposure to Organophosphates and Parkinson's Disease Risk. Occup Environ Med. 2014 Apr; 71(4):275-81 PMCID PMC4351788
152. Heck JE, Park AS, Qiu J, Cockburn M. Ritz B Risk of leukemia in relation to exposure to ambient air toxics in pregnancy and early childhood. Int J Hyg Environ Health. 2014 Jul 217(6):662-8. PMCID: PMC4071125
153 Shresta A, Ritz B, Wilhelm M, Qiu J, Cockburn M, Heck JE. Prenatal exposure to air toxics and risk of Wilms' tumor in $0-5$ year old children. J Occup Environ Med. 2014 Jun;56(6).573-8 PMCID PMC4204106
154. Ritz B, Qiu J, Lee PC, Lurmann F, Penfold B, Weiss RE, McConnell R Arora C, Hobel C, Wilhelm M Prenatal Air Pollution Exposure and Ultrasound Measures of Fetal Growth in Los Angeles, California Environ Research. 2014 Apr; 130:7-13. PMCID: PMC4016959
155. Greene N, Lassen C, Rugbjerg K, Ritz B. Reproductive factors and Parkinson's disease risk in Danish women. Eur J Neurol. 2014 Sep;21(9):1168-77, e68.
156. Liew Z, Ritz B, Bonefeld EC, Henriksen TB, Nohr EA, Bech BH, Fei C, Bossi R, von Ehrenstein O Streja E, Uldall P. Oisen J. Prenatal Exposure to Perfiuoroalkyl Substances and Risk of Congenital Cerebral Palsy in Children. Am J Epidemiol 2014 Sep 15;180(6):574-81
157. Becerra T, von Ehrenstein O. Heck JE, Olsen J, Arah O, Jeste S, Rodriguez M, Ritz B. Autism and Maternal Race/Ethnicity and Nativity in Los Angeles. Pediatrics. 2014 Jul;134(1):e63-71.PMCID PMC4067639
158. Marcotte E, Heck J, Cockburn M, Yu F, Ritz B. Exposure to Infections and Risk of Leukemia in Young Children Cancer Epidemiol Biomarkers Prev. 2014 Jul 23(7):1195-203 PMCID: PMC4100471
159. Burdick DJ, Watson GS, Siderowf A, Trojanowski JQ, Weintraub D, Ritz B, Rhodes S, Rausch HR Factor SA Wood-Siverio C Quinn JF, Chung K, Cholerton B Srivatsal S, Edwards KL, Montine TJ. Zabetian CP Leverenz JB. People with Parkinson's disease and normal MMSE score have a broad range of cognitive performance. Mov Disord. 2014 Sep;29(10):1258-64. PMCID: PMC4162839
160. Mata IF, Leverenz JB, Weintraub D, Trojanowski JQ, Hurtig HI, Van Deerlin V, Ritz B, Rausch R, Rhodes SL, Factor SA, Wood-Siverio C, Quinn JF, Chung KA, Peterson AL, Espay AJ, Revilla FJ, Devoto J, Hu SC, Cholerton BA, Montine TJ, Edwards KL, Zabetian CP. APOE, MAPT, and SNCA Genes and Cognitive Performance in Parkinson Disease. JAMA Neurology 2014 Nov;71(11):140512. PMCID: PMC4227942
161. Krgigård T, Christensen J, Wermuth L, Ritz B, Lassen CF. The use of antidepressant medication in Parkinson's disease patients is not affected by the type of anti-parkinson medication. J Parkinsons Dis. 2014:4(3):327-30
162. Ritz B, Lee PC, Lassen FC, Arah O. Ease of quitting is an early sign of Parkinson's Disease: Parkinson's and smoking revisited. Neurology. 2014 Oct 14;83(16):1396-402. PMCID: PMC4206154
163. Shelton JF, Geraghty EM, Tancredi DJ, Delwiche LD, Schmidt RJ, Hansen R, Ritz B, Hertz-Picciotto 1. Neurodevelopmental Disorders and Prenatal Residential Proximity to Agricultural Pesticides: The CHARGE Study. Environ Health Perspect. 2014 Oct; 122(10):1103-9. PMCID:PMC4181917
164. von Ehrenstein O, Aralis H, Cockburn M, B Ritz. In Utero Exposure to Toxic Air Pollutants and Risk of Childhood Autism. Epidemiology. 2014 Nov;25(6):851-8.PMCID: PMC4698150
165. Gatto N, Deapen D, Stoyonoff S; Pinder R, Narayan S, Bordelon Y, Ritz B. Lifetime Exposure to Estrogens and Parkinson's Disease in California Teachers. Parkinsonism Relat Disord. 2014 Nov:20(11):1149-56.
166. Ahmed I, Lee PC, Lill CN, Nielsen SS, Artaud F, Gallagher LG, Loriot MA, Mulot C, Nacfer M, Liu T Biernacka JM, Armasu S, Anderson K, Farin FM, Lassen CF, Hansen J, Olsen JH, Bertram L, Maraganore DM, Checkoway H, Ritz B, Elbaz A. Lack of replication of the GRIN2A-by-coffee interaction in Parkinson's disease PLoS Genet. 2014 Nov 20;10(11):e1004788. PMCID PMC4238979
167. Lee PC, Bordelon Y, Bronstein J, Sinsheimer JS, Farrer M; Ritz B. Head injury, alpha-synuclein genetic variability and Parkinson's disease. Eur J Neurol. 2015 May;22(5):874-8. PMCID: PMC4390403
168. Kenborg L, Rugbjerg K; Lee PC; Ravnskjær L; Christensen J; Ritz B; Lassen CF. Head injury and risk for Parkinson disease: results from a Danish case- control study. Neurology. 2015 Mar 17:84(11):1098-103 PMCID:PMC4371406
169. Kenborg L, Lassen CF, Ritz B, Andersen KK, Christensen J, Schernhammer ES, Hansen J, Wermuth L, Rod NH, Olsen JH. Lifestyle, Family History, and Risk for Idiopathic Parkinson Disease: a Large Danish Case-Control Study. Am J Epidemiol. 2015 May 15;181(10):808-16 PMCID:PMC4423523
170. Liew Z, Ritz B, von Ehrenstein OS, Bech BH, Nohr E, Fei C, Bossi R, Henriksen TB, Bonefeld Jørgensen EC, Olsen J. Attention Deficit/Hyperactivity Disorder and Childhood Autism in Association with Prenatal Exposure to Perfluoroalkyl Substances: A Nested Case-Control Study in the Danish National Birth Cohort Environ Health Perspect. 2015 Apr; 123(4) 367-73.
171. Liew Z, Olsen J, Cui X, Ritz B, Arah OA. Bias from conditioning on live birth in pregnancy cohorts: an illustration based on neurodevelopment in children after prenatal exposure to organic pollutants. Int J Epidemiol. 2015 Feb;44(1):345-54.
172. Bandoli G, von Ehrenstein OS, Flores M, Ritz B. Breastfeeding and Asthmatic Symptoms in the offspring of Latinas - the role of maternal nativity. JImmigr Minor Health. 2015 Dec; 17(6):1739-45 PMCID: PMC4499015
173. Lill CM, Rengmark A, Pihlstrøm L, Fogh I, Shatunov A, Sleiman PM, Wang LS, Liu T, Lassen CF, Meissner E, Alexopoulos P, Calvo A, Chio A, Dizdar N, Faltraco F, Forsgren L, Kirchheiner L, Kurz A, Larsen JP, Liebsch M, Linder J, Morrison KE, Nissbrandt H, Otto M, Pahnke J, Partch A, Restagno G, Rujescu D, Schnack C, Shaw CE, Shaw PJ, Tumani H, Tysnes OB, Valladares O, Silani V, van den Berg LH, van Rheenen W, Veldink JH, Lindenberger U, Steinhagen-Thiessen E, SLAGEN Consortium, Teipel S, Perneczky R, Hakonarson H, Hampel H, von Arnim CAF, Olsen JH, Van Deerlin VM, Al-Chalabi A, Toft M, Ritz B, Bertram L. The role of TREM2 R47H as a risk factor for Alzheimer's disease, frontotemporal lobar degeneration, amyotrophic lateral sclerosis, and Parkinson's disease. Alzheimers Dement. 2015 Apr 29. pii: S1552-5260(15)00122-3.
174. Lombardi C, Ganguly A, Bunin GR, Azary S, Alfonso V, Ritz B, Heck JE Maternal Diet during Pregnancy and Unilateral Retinoblastoma: A Report from the Children's Oncology Group. Cancer Causes Control. 2015 Mar;26(3):387-97. PMCID: PMC4334703
175 Bronstein JM, Paul K, Yang L, Hass RH, Shults CW, Ritz B. Platelet Mitochondrial Activity and Pesticide Exposure in Early Parkinson's Disease. Mov Disord. 2015 May;30(6) 862-6. PMCID: PMC4439327
176. Srivatsal S, Cholerton B, Leverenz JB, Wszolek ZK, Uitti RJ, Weintraub D, Trojanowski JQ, Van Deerlin VM, Quinn JF, Chung KA, Peterson AL, Factor SA, Wood-Siverio C, Goldman JG, Stebbins

GT, Bernard B, Ritz B, Rausch R, Espay AJ, Revilla FJ, Devoto J, Rosenthal LS, Dawson TM, Albert MS, Mata IF, Hu SC, Montine KS, Johnson C, Montine TJ, Edwards KL, Zabetian CP. Cognitive Profile of LRRK2-related Parkinson's Disease. Mov Disord 2015 Apr 15:30(5) 728-33. PMCID PMC4397146
177. Su JG, Jerrett M, Meng YY, Pickett M, Ritz B. Integrating smart-phone based momentary location tracking with fixed site air quality monitoring for personal exposure assessment. Sci Total Environ 2015 Feb 15; 506-507:518-26.
178. Ritz B, Lee PC, Hansen J, Lassen CF, Ketzel M Sørensen M, Raaschou-Nielsen O. Traffic-Related Air Pollution is a Risk Factor for Parkinson's Disease in Denmark. Environ Health Perspect. 2016 Mar; 124(3):351-6.
179. Paul KC, Sinsheimer JS, Rhodes SL, Cockburn M, Bronstein JM, Ritz B. Organophosphate Pesticide Exposures, Nitric Oxide Synthase Gene Variants, and Gene-Pesticide Interactions in a Case-Control Study of Parkinson's Disease, California (USA) Environ Health Perspect. 2015 Sep 18 [Epub ahead of print]
180. Lill CM, Hansen J, Olsen JO, Binder H, Ritz B. Bertram L. Impact of Parkinson's disease risk loci on age at onset. Mov Disord 2015 May; 30(6) 847-50
181. Gatto NM, Sinsheimer JS, Cockburn M, Escobedo LA, Bordelon Y, Ritz B. Vitamin D receptor gene polymorphisms and Parkinson's disease in a Population with High Uitraviolet Radiation Exposure J Neurol Sci. 2015 May 15:352(1-2). 88-93
182. Kannarkat GT, Cook DA, Lee JK, Chang J, Chung V, Sandy E, Paul KC, Ritz B, Bronstein J, Factor SA, Boss JM, Tansey MG. Common Genetic Variant Association with Altered HLA Expression, Synergy with Pyrethroid Exposure, and Risk for Parkinson's Disease: An Observational and CaseControl Study. npj Parkinson's Disease (2015) 1, 15002: doi:10.1038/npjparkd 2015.2; published online 22 April 2015
183 Heck JE, Park AS, Cockburn M, Ritz B Can the "Hispanic paradox" shed light on childhood cancer risk? Cancer Epidemiol Biomarkers Prev. 2015 Apr; 24(4):764-5
184 Pearce NE, Blair A, Vineis P, Ahrens W, Andersen A, Anto JM, Armstrong BK, Baccarelli AA, Beland FA, Berrington A, Bertazzi PA, Birnbaum LS, Brownson RC, Bucher JR, Cantor KP, Cardis E, Cherrie JW, Christiani DC, Cocco P, Coggon D, Comba P, Demers PA, Dement JM, Douwes J, Eisen EA, Engel LS, Fenske RA, Fleming LE, Fletcher T, Fontham E, Forastiere F, Frentzel-Beyme R, Fritschi L, Gerin M, Goldberg M, Grandjean P, Grimsrud TK, Gustavsson P, Haines A, Hartge P. Hansen J, Hauptmann M, Heederik D, Hemminki K, Hemon D, Hertz-Picciotto I. Hoppin JA Huff J, Jarvholm B. Kang D. Karagas MR. Kjaerheim K. Kjuus H. Kogevinas M Kriebel D. Kristensen P. Kromhout H Laden F, Lebailly P, LeMasters G, Lubin JH, Lynch CF, Lynge E, 't Mannetje A, McMichael AJ, McLaughlin JR, Marrett L. Martuzzi M, Merchant JA, Merler E, Merletti F, Miller A, Mirer FE, Monson R, Nordby KK, Olshan AF, Parent ME. Perera FP, Perry MJ, Pesatori AC, Pirastu R, Porta M, Pukkala E, Rice C, Richardson DB, Ritter L, Ritz B, Ronckers CM, Rushton L, Rusiecki JA, Rusyn I. Samet JM, Sandler DP, de Sanjose S, Schernhammer E, Seniori Constantini A, Seixas N, Shy C Siemiatycki J, Silvermann DT, Simonato L, Smith AH, Smith MT, Spinelli JJ, Spitz MR, Stallones L, Stayner LT, Steenland K, Stenzel M, Stewart BW, Stewart PA, Symanski E, Terracini B, Tolbert PE, Vainio H, Vena J, Vermeulen R, Victora CG, Ward EM, Weinberg CR, Weisenburger D, Wesseling C, Weiderpass E, Zahm SH. IARC Monographs: 40 Years of Evaluating Carcinogenic Hazards to Humans. Environ Health Perspect. 2015 Feb 24. [Epub ahead of print]
185. Schernhammer ES, Lassen CF, Kenborg L, Ritz B, Olsen JH, Hansen J. Night shift work and Parkinson's disease in Denmark. Scand J Work Environ Health. 2015 Jul 1:41(4):377-83.
186. Walker RF, Liu JS, Peters BA, Ritz BR, Ophoff R, Horvath S Epigenetic age analysis of blood from "Peter Pan" children". Aging (Albany NY). 2015 May; 7(5):334-9.
187. von Ehrenstein, Aralis H. Flores MS, Ritz B. Fast Food Consumption in Pregnancy and Subsequent Asthma Symptoms in Young Children. Pediatr Allergy Immunol. 2015 Sep;26(6):571-7
188 Coker ES, Beckerman B, Ghosh JC, Gomez-Rubio V, Jerrett M, Li A, Liverani S, Ritz B, Su J, Molitor J. Modeling spatial effects of PM2 5 on term low birth weight in Los Angeles County Environ Res. 2015 Jul 17:142:354-364.
189 Narayan S, Sinsheimer JS, Paul KC. Liew Z. Cockburn M. Bronstein JM, Ritz B Genetic Variability in ABCB1, Occupational Pesticide Exposure, and Parkinson's Disease Environ Res 2015 Nov; 143 (Pt A) $98-106$.

190 Mata IF, Leverenz JB, Weintraub D. Trojanowski JQ, Chen-Plotkin A, Van Deerlin VM, Ritz B. Rausch R, Factor SA. Wood-Siverio C, Quinn JF, Chung KA, Peterson-Hiller AL, Goldman JG, Stebbins GT, Bernard B. Espay AJ, Revilla FJ, Devoto J, Rosenthal LS, Dawson TM, Albert MS, Tsuang D, Huston H, Yearout D, Hu SC. Cholerton BA, Montine TJ. Edwards KL, Zabetian CP. GBA
variants are associated with a distinct pattern of cognitive deficits in Parkinson disease. Mov Disord 2016 Jan:31(1):95-102
191. von Ehrenstein OS Heck JE, Park A, Cockburn M, Escobedo L, Ritz B In Utero and Early-Life Exposure to Ambient Air Toxics and Childhood Brain Tumors: A Population-Based Case-Control Study in California, USA Environ Health Perspect. 2016 Jul;124(7):1093-9. PMCID: PMC4937846
192. Virk J, Liew Z, Olsen J, Nohr E, Catov JM, Ritz B. Preconceptional and Prenatal Supplementary Folic Acid and Multivitamin Intake and Autism Spectrum Disorders. Autism. 2016 Aug;20(6) 710-8.
193 Bandoli G, von Ehrenstein OS, Gosh JKC, Flores M. Dunkel-Schetter C, Ritz B. Prenatal maternal stress and the risk of lifetime wheeze in young offspring: An examination by stressor and maternal race/ethnicity. J Immigr Minor Health. 2016 Oct; 18(5):987-95
194. Heck JE, Azary S, Ritz B, Bunin GR, Ganguly A. A case-control study of sporadic retinoblastoma in relation to maternal health conditions and reproductive factors. BMC Cancer. 2015 Oct 19;15:735 PMCID: PMC4615328
195. Virk J, Ritz B, Li J, Obel C. Olsen J. Childhood Bereavement and Type 1 Diabetes: A Danish National Register Study. Paediatr Perinat Epidemiol 2016 Jan;30(1):86-92.
196. Julvez J, Paus T, Bellinger D, Eskenazi B, Tiemeier H, Pearce N, Ritz B, White T, Ramchandani P, Gispert JD, Desrivières S, Brouwer R, Boucher O, Alemany S, López-Vicente M, Suades-González E, Forns J, Grandjean P, Sunyer J. Environment and Brain Development: Challenges in the Global Context. Neuroepidemiology. 2015 Dec 19;46(2):79-82.
197. Wermuth L, Cui X, Greene NH, Schernhammer ES, Ritz BR. Medical Record Review to Differentiate between Idiopathic Parkinson's Disease (IPD) and Parkinsonism: A Danish Record Linkage Study with 10 Years of Follow-up. Parkinsons Dis. 2015;2015:781479.
198. Liew Z, Ritz B, Virk J, Olsen J. Maternal Use of Acetaminophen During Pregnancy and Risk of Autism Spectrum Disorders in Childhood: a Danish National Birth Cohort Study. Autism Res. 2016 Sep;9(9):951-8.
199. Horvath S, Ritz BR. Increased epigenetic age and granulocyte counts in the blood of Parkinson's disease patients. Aging (Albany NY). 2015 Dec;7(12): 1130-42
200. Liew Z, Ritz B, Virk J, Arah O, Olsen J Prenatal Use of Acetaminophen and Child IQ: a Danish Cohort Study. Epidemiology 2016 Novi27(6):912-8
201 Heck JE, Park AS, Contreras ZA, Davidson TB, Hoggatt KJ, Cockburn M. Ritz B. Cancer in the Children of US and Foreign-born Hispanics: a test of the "Hispanic paradox" JAMA Pediatr 2016 Jun 1,170(6):585-92
202. Paul KC, Rausch R, Creek MM. Sinsheimer JS, Bronstein JM, Bordelon Y, Ritz B. APOE, MAPT, and COMT genetic variants and cognitive symptom progression in a Parkinson's disease patient cohort. J Parkinsons Dis. 2016 Apr 2;6(2):349-59
203 Ritz B, Paul KC, Bronstein JM. Of Pesticides and Men: A California Story of Genes and Environment in Parkinson's Disease Curr Environ Health Rep. 2016 Mar;3(1):40-52
204. Coker E, Liverani S, Ghosh J, Jerrett M, Beckerman B, Su J, Li A, Ritz B, Molitor J A Multi-Pollutant Exposure Profiles Associated with Term Low Birth Weight in Los Angeles County. Environ Int. 2016 May:91:1-13
205. Heck JE, Contreras ZE Park AS, Cockburn M. Ritz B. Smoking in pregnancy and risk of cancer among young children: a population-based study. Int J Cancer. 2016 Aug 1,139(3):613-6.
206 Azary S, Ganguly A Bunin GR, Lombardi C, Park AS, Ritz B, Heck JE. Sporadic Retinoblastoma and Parental Smoking and Alcohol Consumption before and after Conception: A Report from the Children's Oncology Group. PLoS One. 2016 Mar 18,11(3)e0151728
207. Alfonso VH, Bandoli G, von Ehrenstein O. Ritz B. The influence of pre-natal supplement initiation on preterm birth among majority Hispanic women in Los Angeles County: the role of nativity. Matern Child Health J. 2016 Sep, 20(9): 1861-8
208. Bandoli G, Ghosh J, von Ehrenstein O. Ritz B. Psychosocial stressors and lung function in youth ages 10-17: an examination by stressor, age and gender. J Public Health (Oxf). 2016 May 8 . pii: fdw035. [Epub ahead of print]
209 Bandoli G, Ghosh J, von Ehrenstein O, Ritz B. Synergistic effects of air pollution and psychosocial stressors on adolescent lung function. J Allergy Clin Immunol. 2016 Apr 30. pii: S0091-6749(16)30196-8. [Epub ahead of print]
210. Shih IF, Liew Z, Krause N, Ritz B Lifetime Occupational and Leisure Time Physical Activity and Risk of Parkinson's Disease Parkinsonism \& Related Disorders. Parkinsonism Relat Disord. 2016 Jul: 28:112-7

211 Contreras ZA, Ritz B, Virk J, Cockburn M. Heck JE. Maternal diabetes, obesity, weight gain in pregnancy, and risk of childhood cancer in offspring. a population-based study in California. Cancer Causes Control. 2016 Oct;27(10):1273-85.
212. Levine ME, Lu AT, Chen BH, Hernandez DG, Singleton AB, Ferrucci L, Bandinelli S, Salfati E, Manson JE, Quach A, Kusters CDJ, Kuh D, Wong A, Teschendorff AE, Widschwendter M, Ritz BR, Absher D. Assimes T, Horvath S.. Menopause accelerates biological aging. Proc Natl Acad Sci U S A. 2016 Aug 16;113(33).9327-32.
213. Kettner LO, Kesmodel US, Ramlau-Hansen CH, Bay B, Ritz B, Mathiesen NB, Brink Henriksen T. Fertility Treatment and Childhood Epilepsy: a Nationwide Cohort Study of 565,166 Live Births. Paediatr Perinat Epidemiol 2016 Sep:30(5):488-95.
214. Hill-Burns EM, Ross OA, Wissemann WT. Ortolaza AI, Mellick GD, Scherzer CR, Ritz B, Marthi V, Zareparsi S, Zabetian CP, Factor SA, Payami H Identification of genetic modifiers of age-atonset for familial Parkinson's disease. Hum Mol Genet 2016 Jul 11. pii: ddw206.
215. Su J, Meng YY, Pickett M, Seto E, Ritz B, Jerrett M. Identification of the effects of regulatory actions on improvements in air quality in the goods movement corridors. Environ Sci Technol. 2016 Aug 16;50(16):8687-96
216. Horvath S, Gurven M, Levine ME, Trumble BC, Kaplan B, Allayee H, Ritz BR, Chen B, Lu AT, Rickabaugh TM, Jamieson BD, Sun D, Li S, Chen W, Quintana-Murci L, Fagny M, Kobor MS, Tsao PS, Reiner AP, Ediefsen KL, Absher D. Assimes TL. An epigenetic clock analysis of race/ethnicity, sex, and coronary heart disease. Genome Biol. 2016 Aug 11;17(1):171.
217. Lee PC, Raaschou-Nielsen O, Lill CM, Bertram L, Sinsheimer JS, Hansen J, Ritz B Geneenvironment interactions linking air pollution and inflammation in Parkinson's disease Environ Res. 2016 Nov 151:713-720
218. Contreras ZA, Ritz B, Virk J, Cockburn M, Heck JE. Maternal pre-pregnancy and gestational diabetes, obesity, gestational weight gain, and risk of cancer in young children: a population-based study in California. Cancer Causes Control. 2016 Oct;27(10):1273-85
219. A European Respiratory Society \& American Thoracic Society Policy Statement What Constitutes an Adverse Health Effect of Air Pollution? An analytical framework Joint ERS/ATS statement'
220. Gatto NM, Paul K, Sinsheimer JS, Bronstein JM, Bordelon Y, Rausch R, Ritz B., Ritz B. Vitamin D receptor gene polymorphisms and cognitive decline in Parkinson's disease. J Neurol Sci 2016 Nov 15;370 100-106.
221 Liew Z. Bach CC, Asarnow RF. Ritz B. Olsen J. Paracetamol use during pregnancy and attention and executive function in offspring at age 5 international Journal of Epidemiology 2016.
222. Chuang YH, Lill CM, Lee PC, Hansen J, Lassen CF, Bertram L, Greene N, Sinsheimer JS, Ritz B. Gene-environment interaction in Parkinson's disease coffee, ADORA2A, and CYP1A2. Accepted in Neuroepidemiology.
223. Malmqvist E, Liew Z, Kalien K, Rignell-Hydbom A, Rittner R, Rylander L, Ritz B. Fetal growth and air pollution -A study on ultrasound and birth measures. Environ Res. 2016 Oct 11;152:73-80
224 Hall C, Ritz B, Cockburn M, Davidson TB, Heck JE. Risk of malignant childhood germ cell tumors in relation to demographic. gestational, and perinatal characteristics. Accepted for publication in Cancer Epidemiology
225. Lee PC, Liu LL, Sun Y, Chen YA, Liu CC, Li CY, Yu HL, Ritz B. Traffic-related air pollution increased the risk of Parkinson's disease in Taiwan: A nationwide study. Environ Int. 2016 Nov:96:75-81
226. Chuang YH, Austin Quach A, Absher D, Assimes T, Horvath S, Ritz B. Coffee consumption is associated with DNA methylation leveis of human blood. Accepted: European Journal of Human Genetics
227. Virk J, Liew Z, Olsen J, Nohr EA, Ritz B. Pre-conceptual and Prenatal Supplementary Folic Acid and Multivitamin Intake, Behavioral Problems and Hyperkinetic Disorders. A Study Based on the Danish National Birth Cohort (DNBC). Accepted in Nutritional Neuroscience
228. Xu X, Ritz B, Cockburn M. Lombardi C. Heck J. Maternal Preeclampsia and Odds of Childhood Cancers in Offspring - A California Statewide Case-Control Study. Paediatric and Perinatal Epidemiology
229. Omidakhsh N, Ganguly A. Bunin GR. Ritz B, Ehrenstein O, Heck JE . Residential pesticide exposures in pregnancy and the risk of sporadic retinoblastoma: a report from the Children's Oncology Group Journal of Ophthalmology
230 Quach A. Levine M, Tanaka T, Lu A, Chen B, Ferrucci L, Ritz B, Neuhouser M, Beasly J, Snetselaar L, Wallace R. Tsao P, Absher D, Assimes T, Stewart J, Li Y, Hou L, Baccarelli A. Whitsel E, Horvath S. Epigenetic clock analysis of diet, exercise, education, and lifestyle factors. Aging.
231. Shih I, Starhof C, Lassen CF, Hansen J, Liew Z, Ritz, B Occupational and Recreational Physical Activity and Parkinson's Disease in Denmark. In Press: Scand J Work Environ Health
232. McAllister K, Mechanic LE, Amos C, Aschard H, Blair I, Chatterjee N, Conti D, Gauderman WG, Hsu L, Hutter CM, Jankowska M, Kerr J, Kraft P, Montgomery SB, Mukherjee B, Papanicolaou GJ Patel CJ, Ritchie MD, Ritz BR, Thomas DC, Wei P, Witte JS on behalf of GXE meeting participants Current Challenges and New Opportunities for Gene-Environment Interaction Studies of Complex Diseases Accepted AJE
233. Ritz BR, Chatterjee N, Garcia-Closas M, Gauderman JW, Pierce BL, Kraft P, Tanner CM, Mechanic LE, MCAllister K Lessons Learned from Past Gene-Environment (GxE) Interaction Successes. Accepted: AJE
234. Narayan S, Sinsheimer JS, Paul KC, Liew Z, Cockburn M, Bronstein JM, Ritz B. Occupational Pesticide Use and Parkinson's Disease in the Parkinson Environment Gene (PEG) Study. Accepted in: Environment International
235. Mata, Johnson, Leverenz, Weintraub, Trojanowski, Van Deerlin, Ritz, Rausch, Factor, Wood-Siverio, Quinn, Chung, Peterson-Hiller, Espay, Revilla, Devoto, Yearout, Hu, Cholerton, Montine, Edwards, Zabetian Large-scale Exploratory Genetic Analysis of Cognitive Impairment in Parkinson's Disease Accepted: Neurobiology of Aging
236. Sanders LH, Paul KC, Howlett EH, Lawal H, Boppana S, Bronstein J, Ritz B, Greenamyre TJ. Base excision repair variants and pesticide exposure increase Parkinson's disease risk. Accepted: Toxicological Sciences

MANUSCRIPTS CURRENTLY UNDER REVIEW

1. Chuang YH, Paul K, Bronstein J, Horvath S, Ritz B. EWAS in Parkinson's disease. Movement Disorders.
2. Paul KC, Ling C, Haan M, Ritz B. Organophosphate pesticides exposure and cognitive decline in SALSA. EHP
3. Paul KC, Sinsheimer JS, Cockburn M, Bronstein JM, Bordelon Y, Ritz BR. Organophosphate pesticide exposure and PON1 L55M in Parkinson's disease progression. Environment International
4. Paul KC, Sinsheimer JS, Cockburn M, Bronstein JM, Bordelon Y, Ritz B. NFE2L2, PPARGC1a, and Oxidative Stress in Parkinson's disease susceptibility and progression. Environ Health
5. Reading SR, Arun S Karlamangla,; Tara L Gruenewald,, Natalie Slopen, David R Williams, Dallas T Swendemani; Beate R Ritz, Brandon Koretz; Teresa E Seeman. Relationship between Psychosocia! Stressors and Allostatic Load: Findings from the MIDUS Study. Annals of Behavioral Medicine
6. Alfonso VH, Bandoli G, von Ehrenstein O, Ritz B. Early folic acid supplement initiation and risk of adverse early childhood respiratory health: A Los Angeles population-based study. Maternal and Child Health Journal
7. Contreras ZA, Hansen J, Ritz B, Olsen B, Yu F, Heck JE. Parental age and childhood cancer risk A Danish population-based registry study. Cancer Causes Controls
8. Alfonso, VH, Wang MC, von Ehrenstein O, Bandoli G, Ritz B. Enrollment in the Special. Supplemental Program for Women, Infants and Children reduces risk of recurrent preterm birth among eligible California siblings. IJE
9. Lee PC, Nielsen S, Loriot MA, Hansen J, Lill C. Checkoway H, Elbaz A, Ritz B. Meta-analysis of head injuries and SNCA interactions in Parkinson Disease. Neurology
10. Lee PC. Ahmed I, Loriot MA, Mulot C, Lambert JC, Ritz B, Elbaz A. Smoking and Parkinson's disease evidence for gene-by-smoking interactions. Neurology
11 Patel CJ, Kerr J Thomas DC, Mukherjee B, Ritz BR, Chatterjee N, Jankowska M, Madan J. Karagas MR, McAllister K, Leah E. Mechanic10, M. Daniele Fallin11, Chris Ladd-Acosta11, Ian Blair12, Susan Teitelbaum 13, Amos Cl. Opportunities and Challenges for Environmental Exposure Assessment in Population-Based Studies. AJE
11. Wojcik KY, Escobedo LA, Wysong A, Heck JE, Ritz B, Cockburn M. High Bith Weight, Early UV exposure, and Melanoma Risk in Children, Adolescents and Young Adults. Pediatrics
12. Park AS, B Ritz, C Ling, M Cockburn, JE Heck. Exposure to Ambient Dichloromethane in Pregnancy and Infancy from Industrial Sources and Childhood Cancers in California.
13. Omidakhsh N, Heck JE. Ritz B, Kennedy N, Ehrenstein OS, Krause N, Ganguly A, Bunin GR.. Parental occupational exposures and the risk of childhood sporadic retinoblastoma: a report from the Children's Oncology Group Occupational and Environmental Medicine
14. Li L, Lurmann F, Habre R, Urman R, Rappaport E, Ritz B, Chen JC. Gilliland FD, Wu J. Constrained Mixed-Effect Models with Ensemble Learning for Prediction of Nitrogen Oxide Concentrations at a High

Spatiotemporal Resolution. Environmental Science \& Technology

INVITED COMMENTARIES AND EDITORIAL (peer reviewed)

1. Ritz B. Environmental Toxins and Neurodegenerative Diseases: A Challenge for Epidemiologists. Epidemiology. 2006 Jan; 17(1):2-3
2. Kheifets, L, Ritz B. Electromagnetic Fields, Science and Public Concern. Soz Praeventive Med 51 (2006): 1-2
3. Ritz, B. Wahner A*: Bordelon Y, Bronstein J Can Anti-Inflammatory Agents Protect Against Parkinson's Disease? Future Neurology 2008
4. Chesselet M-F, Ritz B Transcriptional requlation of a-synuclein: insights from blood? Commentary on: GATA transcription factors directly regulate the Parkinson's disease-linked gene alpha-synuclein; Scherzer et al. Future Neurology, March 2009, Vol. 4, No. 2, Pages 145-147
5. Ritz, B. Birth defects and ambient air pollution, opportunities and challenges Editorial; Occup Environ Med. 2010 Apr;67(4):221-2
6. Ritz B, Rhodes SL. After half a century of research on smoking and PD, where do we go now? Neurology. 2010 Mar 16;74(11):870-1
7. Bower J, Ritz B Is the answer for Parkinson disease already in the medicine cabinet? Unfortunately not. Neurology 2011 Mar $8 ; 76$ (10):854-5
8. Blair A, Ritz B, Wesseling C. Beane Freeman L. Pesticides and human health. Occup Environ Med 2015 Feb; 72 (2):81-2

BOOKS AND MONOGRAPHS

1. Karmaus W, Glaser-Möller N. Hullmann B, Ritz B, Schäfer K-H, Sonn E: Arbeitsbedingte rheumatische Erkrankungen, Büroarbeit und Bewältigung. Ergebnisse einer Längsschnittstudie von weiblichen Angestellten. ("Working Conditions, Health Behaviour and Rheumatic Disorders II: Results of a Longitudinal Study on Female Office Workers") Forschungsbericht des BMFT, HDA 01 HA 033/4, 1987.
2. Hullmann B, Karmaus W, Osterholz U, Ritz B: Work-Related Musculo-Skeletal Disorders. Proceedings of an International Symposium HDA, Tagungsbericht TB 48, Wirtschaftsverlag NW, Bremerhaven, 1987
3. Osterholz U, Patjens S, Ritz B Forschungsdokumentation "Rheuma und Arbeit" "Research Documenation on Working Conditions and Musculo-Skeletal Disorders"). Arbeitspapier Nr 10, Projektgruppe HdA des WSI. Eds.: Geschaftsfuhhrung des WSI, Düsseldorf, 1987

PEER REVIEWED REPORTS

1. Morgenstern H, Froines J., Ritz B, Young B. Epidemiologic Study to Determine Possible Adverse Effects to Rocketdyne/Al Workers from Exposure to Selected Chemicals. July 1998
2. Morgenstern H, Froines J., Ritz B, Young B. Epidemiologic Study to Determine Possible Adverse Effects to Rocketdyne/Al Workers from Exposure to lonizing Radiation. June 1997
3. Sloss E, Geschwind SA, McCaffrey DF, Ritz B Groundwater Recharge with Reclaimed Water - An Epidemiologic Assessment in Los Angeles County, 1987-1991. Rand Technical Report DRR-1192WRDSC, 1995
4. Karmaus W, Glaser-Moeller N, Hullmann B, Ritz B, Schäfer K-H, Sonn E: Final Report of the project "Arbeitsbedingte rheumatische Erkrankungen in der Verwaltung" ("Work Related Rheumatic Disorders in Administrative Jobs") Schriftenreihe der Bundesanstalt fuer Arbeitsschutz, Forschung Fb 608, Bonn, 1990
5. Sloss E, McCaffrey DF, Fricker RD, Geschwind, SA, Ritz B. Groundwater Recharge with Reclaimed Water - Birth Outcomes in Los Angeles County, 1982-1993. Rand Technical Report, 1999.
6. Ritz, B. $\bar{X}-\&$ Gamma Radiation and Neutrons. In: Report on Carcinogens, $11^{\text {th }}$ edition. Carcinogen Profiles U.S Department of Health and Human Services, Public Health Service, National Toxicology Program. 2004
7. Meng YY, Rull RP, Wilhelm M, Ritz B, English P, Yu H, Nathan S, Kuruvilla M. Brown ER. Living near heavy traffic increases asthma severity. Policy Brief UCLA Cent Health Policy Res. 2006 Aug:1-5
8. Molitor J, Coker E, Jerrett M, Ritz B, Li A; Health Review Committee. Part 3. Modeling of Multipollutant Profiles and Spatially Varying Health Effects with Applications to Indicators of Adverse Birth Outcomes Res Rep Health Eff Inst. 2016 Apr:(183 Pt 3):3-47.

CHAPTERS OR SECTIONS IN BOOKS

1. Appelt H, Ritz B: Medikamentengebrauch und -abhängigkeit bei Frauen ("FemaleDrug Abuse and Dependency"). In: Medikamente und Sucht, Berichtsheft zur Arbeitstagung der Hamburgischen Landesstelle gegen die Suchtgefahren e.V.(Eds.) Hamburg 1984
2. Ritz B, Karmaus W, Ellinger S: Schmerz-,Beruhigungs-und Schlafmittel - die verordnete Normalitat ("Pain Killers, Sleeping Pills and Tranquilizers - Prescribed Norms"). In: Jahresheft 1984 Hamburgische Landesstelle gegen die Suchtgefahren e. V. (Eds.) Hamburg 1984
3. Glaser N, Ritz B Lungenkrebs, Rauchen und Schadstoffbelastung bei Hamburger Gaswerkern; Risikoabschätzung anhand der logistischen Regression ("Lung Cancer, Smoking and Air Pollutants of Workers Employed at the Hamburg Gas Company "). In: Muß Arbeit krank machen? Eds: G.Elsner, W Karmaus, L Lißner, VSA-Verlag, Hamburg 1986
4. Ritz B: Zur Epidemiologie degenerativer rheumatischer Erkrankungen im Zusammenhang mit Arbeitsbedingungen: Halswirbelsäulenveränderungen bei weiblichen Verwaltungsangestellten ("The Epidemiology of Musculo-Skeletal Disorders and Working Conditions of Female Office Workers: Work-Related Neck Disorders"). In: Rheuma und Krebs; Beiträge zur wissenschaftlichen Jahrestagung der Deutschen Gesellschaft für Sozialmedizin Eds. E.O. Krasemann, U.Laaser, E.Schach, Springer Verlag, Heidelberg, München 1987
5. Ritz B: Methodological Aspects in Studying Musculo-Skeletal Disorders and Working Conditions in Office Work Places. In. Work-related musculo-skeletal disorders. Proceedings of an International Symposium. HDA, Tagungsbericht TB 48, Wirtschaftsverlag NW, Bremerhaven, 1987.
6. Ritz B, Hullmann B: How Women Office Workers Deal with Stress In: Health Promotion in the Working World. Springer-Veriag Berlin Heidelberg 1989.
7. Ritz B: Chapter 3 - Health and Regulatory Considerations In: Using Reclaimed Water to Augment Potable Water Resources. Water Environment Federation, Virginia 1998.
8. Ritz B, Karmaus W: Die Nutzung von Surveillance-programmen und Registern fuer umweltbezogene Fragestellungen (The use of surveillance programs and registries for environmental health research. a historical perspective). In Press: Buch zur Verabschiedung von Heidrun Kaupen-Haas, Mabuse Verlag 2002
9 Van Den Eeden S, Ritz B, Cobb K. Measurement and Analysis in Neuroepidemiology; From Principles to Practice. Eds Nelson L, Tanner C, Van Den Eeden S, McGuire V. Oxford University Press 2004
9. Ritz B, and other Committee Members: Chapter 4 Cancer Gulf War and Health volume 3, Fuels, Combustion products, and Propellants, The National Academies Press Washington, D. C., 2005
10. Ritz B, and other Committee Members: Amyotrophic Lateral Sclerosis in Veterans. Review of the scientific literature. IOM, NAS National Academy Press, Washington DC, 2006

LETTERS AND OTHER PUBLICATIONS

1. Morgenstern H, Ritz B. Workplace Radiation is Indeed Harmful (letter). Los Angeles Times, March 2. 1998, p S6
2. Morgenstern H, Ritz B Alarming But Neither Absurd nor Amusing (letter). Washington Post, Febuary 11, 1998, p S6
3. Ritz B: Der Einfluß sozialer und struktureller Bedingungen an Büroarbeitsplätzen auf den Gebrauch psychotroper Medikamente; Ergebnisse einer epidemiologischen Untersuchung ("The Influence of Psycho-Social Factors and Job Latitudes on the Use of Psychotropic Medication". Ph.D.Dissertation, Hamburg 1986.
4. Meng YY, Rull RP*, Wilhelm M, Ritz B, English P, Yu H, Nathan S, Kuruvilla M, Brown ER Living near heavy traffic increases asthma severity. Policy Brief UCLA Cent Health Policy Res. 2006 Aug;15

5 Grandjean B, Bellinger D. Bergman A. Cordier S, Davey-Smith G. Eskenazi B, Gee D. Gray K, Hanson M, Van den Hazel P. Heindel JJ, Heinzow P, Hertz-Picciotto I, Hu H, Huang TK, Kold Jensen T, Landrigan PJ, McMillen IC, Murata K, Ritz B, Schoeters G, Skakkebæk NE Skerfving S, Weihe P The Faroes Statement Human Health Effects of Developmental Exposure to Chemicals in Our Environment. Basic \& Clinical Pharmacology \& Toxicology, 2007
6. Slama R, Darrow L, Parker J, Woodruff TJ, Strickland M, Nieuwenhuijsen M, Glinianaia S. Hoggatt KJ^{*}, Kannan S, Hurley F, Kalinka J, Srám R, Brauer M, Wilhelm M, Heinrich J, Ritz B Meeting report: atmospheric pollution and human reproduction. Environ Health Perspect. 2008 Jun;116(6):791-8
7. Popat RA, Van Den Eeden SK, Tanner CM, Kamel F, Umbach DM, Marder K, Ritz B, Webster Ross G, Petrovitch H. Topol B, McGuire V, Neison LM. Response to Hill-Burns et al. letter: An attempt to replicate interaction between coffee and CYP1A2 gene in connection to Parkinson's disease. Eur J Neurol. 2011 Sep;18(9):e109
8. Liew Z, Ritz B, Olsen J. Characteristics of acetaminophen users compared with nonusers during pregnancy, behavioral problems, and hyperkinetic disorders--reply, JAMA Pediatr 2014 Sep:168(9):865-6
9. Liew Z, Olsen J, Cui X, Ritz B, Arah OA Response to Werler and Parker letter: Comment on livebith bias in pregnancy cohorts. Int J Epidemiol. 2015 Jun;44(3):1080-1
10 Bennett D, Bellinger DC, Birnbaum LS, Bradman A, Chen A, Cory-Slechta DA, Engel SM, Fallin MD, Halladay A, Hauser R, Hertz-Picciotto I, Kwiatkowski CF, Lanphear BP, Marquez E, Marty M. McPartland J, Newschaffer CJ, Payne-Sturges D, Patisaul HB, Perera FP, Ritz B, Sass J, Schantz SL, Webster TF, Whyatt RM, Woodruff TJ, Zoeller RT, Anderko L. Campbell C. Conry JA. DeNicola N, Gould RM, Hirtz D, Huffling K, Landrigan PJ, Lavin A, Miller M, Mitchell MA, Rubin L, Schettler T, Tran HL, Acosta A, Brody C, Miller E, Miller P, Swanson M, Witherspoon NO. 2016. Project TENDR Targeting Environmental Neuro-Developmental Risks. Project TENDR: Targeting Environmental Neuro-Developmental Risks The TENDR Consensus Statement Environ Health Perspect. 2016 Jul 1;124(7):A118-22.
11. Thurston GD Kipen H, Annesi-Maesano I, Balmes J, Brook RD, Cromar K, De Matteis S, Forastiere F, Forsberg B, Frampton MW, Grigg J, Heederik D, Kelly FJ, Kuenzli N, Laumbach R, Peters A Rajagopalan ST, Rich D, Ritz B, Samet JM, Sandstrom T, Sigsgaard T, Sunyer J, Brunekreef B. A joint ERS/ATS policy statement: what constitutes an adverse health effect of air pollution? An analytical framework. Eur Respir J 2017: 49:1600419

UNITED STATES DISTRICT COURT

NORTHERN DISTRICT OF CALIFORNIA

IN RE: ROUNDUP PRODUCTS LIABILITY LITIGATION

This document relates to:

ALL ACTIONS

EXPERT REPORT OF DR. BEATE RITZ, M.D., Ph.D.
 IN SUPPORT OF GENERAL CAUSATION
 ON BEHALF OF PLAINTIFFS

1. Beate Ritz, MD, PhD, Background and Qualifications

I, Beate Ritz, MD, Ph.D., am Professor of Epidemiology at the UCLA Fielding School of Public Health, former Chair of the Epidemiology Department, and I hold co-appointments in Environmental Health Sciences and Neurology at the UCLA, School of Medicine. I was trained in Medicine at the University of Hamburg/Germany and received a doctoral degree from the University of Hamburg in Medical Sociology in 1986. I furthermore received another doctoral degree in Epidemiology from UCLA in 1995, and subsequently was hired as a faculty at UCLA. My faculty appointment at UCLA is one of several positions specifically assigned to the Center of Occupational and Environmental Health (COEH) mandated by the State of California to conduct research, teaching, and service to communities in California on occupational and environmental health issues. Hence, my primary research interests are health effects from occupational and environmental exposures with a focus on pesticides and air pollution and chronic diseases including cancers, reproductive outcomes, neurodevelopmental disorders and neurodegenerative diseases. I served for more than a decade as the co-director of the NIEHS-
funded UCLA Center for Gene-Environment Studies in Parkinson`s disease (PD) and am currently the Director of the American Parkinson's Disease Association Center for Excellence in PD Research. In the past two decades, I was the principal investigator of numerous Parkinson`s disease, pesticides and gene-environment epidemiology studies in California and also conducted research based on large databases (such as cancer registries) assembled in California and Denmark. As part of my research. I developed geographic information system (GIS) based exposure assessment tools to assess chronic health effects of long-term pesticide exposures and of air pollution in California. In the early 2000s, I served as a member of the external advisory committee for the NCI/NIEHS Agricultural Health Cohort Study and for one year chaired this committee. I also was a visiting scientist at IARC/Lyon in 2006-07. In 2007, I received the Robert M. Zweig M.D. Memorial Award (Clean Air Award) from the California South Coast Air Quality Management District and in 2008 I was awarded the "Excellence in Research" award from the American Parkinson`s Disease Association. I served on multiple National Academy of Sciences/Institute of Medicine (NAS/IOM) committees evaluating Gulf War Illness - including IOM reviews of cancer and of amyotrophic lateral sclerosis (ALS). Recently, I served on the NAS/IOM committee on "Incorporating 21 st Century Science into Risk-Based Evaluations" and I just newly began serving on the committee to assess "Health Effects in Vietnam Veterans from Agent Orange (herbicides)". I am a CA Governor appointed member of the scientific review board for the California Air Resources Board (CARB) panel on Air Toxics. I served on the editorial Board of the Journal Epidemiology as well as other journals (currently I am editing a section of the journal Current Environmental Health Reports) and I am the newly elected President Elect of the International Society for Environmental Epidemiology (ISEE). My Curriculum Vitae is attached as Exhibit A. A list of the materials I have reviewed, in addition to those set forth in my CV, are attached as Exhibit B. Exhibit C contains my billing rate and prior testimony.

2. Methodology

2.0 Definitions of statistical and methodological terms.

(Population-based) Case-control study. A case-control study is a study where the subjects are selected for inclusion based on their disease status. In other words, study subjects referred to as
cases are enrolled because they have the disease (in this case, NHL) and controls are subjects who at the time the cases are diagnosed are not afflicted by the disease of interest; additionally, a study is considered population-based if the controls are selected without bias from the same population from which all cases arose. After study enrollment, everyone is either asked to report their past exposures (in this case, glyphosate or Roundup) or - if possible - exposures are reconstructed from a record system (e.g. sales records or application records) or by experts who evaluate job tasks and titles among all study participants (generally referred to as a job exposure matrix).

Cohort study. In a cohort study, subjects are enrolled in the study based on their exposures (in this case, to glyphosate or Roundup), and followed over time to determine who develops the disease(s) of interest. At enrollment, all participants are asked to report their past exposures or exposure is reconstructed from records, basically similar as in the case-control study, except that at enrollment no study participant is allowed to suffer from the disease of interest yet i.e. at the time of exposure assessment. In some cohorts, exposure is only assessed at enrollment (baseline) while in others exposures continue to be assessed throughout follow-up until disease occurs.

Odds Ratio (OR). An odds ratio, or OR, is a measure of association between an exposure and a disease. It represents the odds that the disease will occur in a group of people given a particular exposure, in comparison to the odds of the disease in a group of people without the exposure. An OR of 1.00 is the null, meaning no effect. Thus, an OR of 1.40 as reported in one of the studies below, for example, represents a 40% increase in NHL from exposure to glyphosate. An OR of 3.10 in one of the studies below represents a 210% increase in the odds of NHL from exposure to glyphosate. An odds ratio is a "point estimate" or the 'central' estimate of the relationship between exposure and disease, in a given study (note: the OR is in the center of the upper and lower confidence limit boundaries, see below). Odds Ratios are the statistics that are used most often to analyze case-control studies, and they are often calculated using a statistical technique called logistic regression but can also be derived by simple calculations based on a 2×2 table of data.

Rate Ratio (RR). A rate ratio is the measure of association between exposure and disease that can be calculated from cohort study data. It compares the incidence rates of disease given an exposure, to the incidence rate of disease among people without the exposure. The incidence rate allows us to take time into account and may depend on how much time has passed from the start of the study until the point in time when disease is diagnosed (or until the end of the study), thus it not only uses information based on persons but based on person times time under observation (also known as 'persontime'). Therefore, a RR different from an OR inherently relies on measures that included time under observation (i.e. rates). However, the results are interpreted in the same way: a RR of 1.00 is the null (no effect); a RR of 1.40 is a 40% increase in the rate of disease, etc.

Risk Ratio (or Relative Risk) is a ratio of the risk in the exposed divided by the risk in the unexposed in a cohort - where risks are defined as the number of (un)exposed cases divided by the total number of (un)exposed. Thus, different from rate ratios, this measure uses the number of subjects rather than the number of person-years a subject contributes during follow-up as the denominator. This method is used for well-defined (similar length) follow-up periods in the exposed and the unexposed such that the time under observation will not contribute additional information and we can substitute persons for person-time.
NOTE: under certain circumstances often met especially for rare diseases, the odds ratio (OR), risk ratio (RR) and rate ratio (RR) are the same (albeit calculated as the ratio of odds, risks, or rates) and the interpretation of the estimates is also the same.

P-value. The p-value is the probability of obtaining an estimate at least as far from a prespecified value (in case of the null hypothesis the 'null' value) as the estimate we have obtained, if the specified value were the true value (note: no p-value, for the null hypothesis or any other hypothesis, is the probability that the specified hypothesis is true). For example, a p-value of 0.04 means that, given the null hypothesis is true, if you repeatedly conducted 100 tests of samples drawn from the same population (people), then in 4% of your tests, you would obtain the results you got solely due to random error (chance). It is a metric intended to show the likelihood of random error. It should not be interpreted as the probability that an agent causes an outcome.

Confidence interval (CI). A confidence interval, or CI , is given around an OR or a RR to give the likely interval which potentially includes the unobservable true measure of effect. In other words, it is an interval estimate (as compared to a point estimate) of the true underlying relationship between exposure and disease, in a given study. In practice, most published estimates are 95% confidence intervals, which means that in 95 out of 100 times when sampling your study subjects, you will find the true result (effect estimate) within the given confidence interval.

Hierarchical regression is a type of statistical analysis that was used in the 2003 De Roos study. ${ }^{1}$ It is used when there are many correlated exposures and as a means to adjust for multiple comparisons. In De Roos, there were many different pesticides used by farmers and pesticide applicators, and therefore use of one pesticide can be strongly correlated with the use of another pesticide. For example, imagine glyphosate is often used together with another pesticide, dicamba. If the Odds Ratio that is reported between glyphosate and cancer is 2.0, then dicamba -assuming it is mostly used together with glyphosate - would be a proxy for glyphosate exposure and its OR would also be close to 2.0 , just because these pesticides tend to be used together even if dicamba is not a carcinogen. However, if both pesticides truly increase risk (both are carcinogens) and we put them into the same (regression) model, we would not be able to estimate their effects properly, since they would now both have an attenuated effect estimate (this is also referred to as correlated variables 'stealing variance from each other'). De Roos used hierarchical regression to tease apart such correlations in order to determine which pesticides are the ones that are driving increases in NHL and narrow down the long list of pesticides to find the "bad actors" which were increasing risk of NHL. But, this approach makes a number of assumptions, for example that either all pesticides considered or pesticides within certain groups have similar effects on the outcome which might be incorrect.

N (number). The number of people in a study.

Statistical power is the ability of a study to estimate an effect. In essence, it is a reflection of the sample size (number of subjects in a study - in cohorts also the number of cases), the prevalence
of exposure, and the expected effect size. Large sample sizes give us generally higher statistical power, which means they have narrower and more stable confidence intervals around point estimates. Smaller sample sizes have wider confidence intervals. Thus, larger studies are much more able to find statistically significant results especially when exposures or outcomes are rare and the expected size of the effect moderate or small in size.

Data pooling or pooled analysis. To pool data is to use the raw (un-analyzed or nonsummarized) data from several studies and merge them together to conduct analyses. Data pooling is often done when there have been multiple small studies on a topic, because the pooling allows for larger sample sizes and a uniform approach to the analysis of the pooled data. In order to conduct data pooling, scientists need to have permission to access the data from the investigators of multiple studies. Pooled studies have greater statistical power than the original studies from which they draw.

Meta-analysis. In some instances, scientists are interested in pooling data but do not easily have access to the raw data from each study. This is, typically, because the studies were conducted many years earlier, or perhaps because the investigators do not know/trust each other or human subject restrictions do not allow for the sharing of raw data; it is quicker and more efficient to conduct a meta-analysis based on summary estimates from published reports. A meta-analysis uses the Odds Ratios or Rate Ratios and confidence intervals which were published in the original studies, and comes up with a summary estimate of the relationship between exposure and disease. Similar to pooled analyses, meta-analyses also have much greater statistical power than each study does on its own, but the authors do not have the option of re-analyzing the original data as could be done if raw data were available (such as lagging exposures or generating different exposure categories etc.).

Null hypothesis means no effect. In the studies described below, their null hypothesis was that NHL is not related to glyphosate/Roundup exposure. The statistical tests done in the studies described below aim to test the null hypothesis: they want to determine if there the null hypothesis can be rejected with adequate statistical certainty and whether they can determine
whether there any relationship between exposure to glyphosate/Roundup and the development of NHL is suggested by a study.

A Forest Plot is a visual representation of the main results of all studies on a topic. The purpose of grouping them all together visually is that it can give the reader a sense of overall size of the effect estimates and the direction of the associations in the existing literature. See pg. 14.

Dose-response. A dose-response association represents an increasing risk with an increasing dose, such as a larger number of days per year, or a longer number of years, being related to higher Odds Ratios. For example, the overall study Odds Ratio might be 1.40 , but for people who used glyphosate more often, the Odds Ratio was 2.5 while for those using it less often it might have been 1.5. This is a sign of a dose-response effect.

Incident/incidence refers to newly diagnosed cases; while prevalent cases are any existing cases at any point in time or over a certain period in time.

Confounding is a bias that occurs because a risk factor for the outcome is also a cause or precursor of the exposure of interest such that the outcome is caused by this confounder and not by the exposure one is trying to assess. For example, if sex is a risk factor for NHL and sex is also associated with occupational exposure to pesticides, we would want to adjust all effect estimates for pesticides by sex to remove potential confounding bias.

Recall bias is one type of exposure misclassification that is considered 'differential' by epidemiologists. This means that cases and controls remember or report past exposures differently because they have or do not have the disease. Generally, it has been suggested that cases may put more effort into recalling exposures since they have a need to explain their disease or are more motivated to do so to help researchers while controls are less motivated to recall past exposures. However, this is most likely a problem if the diseased subject knows or suspects an agent to cause their disease. If the subject has no way to know which pesticide might have caused a cancer for example and is asked to report all chemicals they have ever used occupationally, it is unlikely that they would only recall one and not another chemical
differentially. Thus, if recall bias existed, we would expect all pesticides they reported to the researchers to show an association with the outcome and not just one amongst many, since the tendency to recall better or more exposures than controls would not be expected to be specific to one chemical. In fact, when recall has been compared with record based evaluations, differential recall that causes recall bias has generally not been shown to be a problem. Note: non-differential recall error such that both cases and controls misreport their exposures is known to cause mainly bias towards the null i.e. masking any true effect rather that enhancing them. These recall biases are one type of information bias (see below).

Other biases include information bias which is characterized as mismeasurement of exposures or outcomes which can severely distort results in both case-control and cohort studies. As long as mismeasurement is non-differential (see above) i.e. the same for cases and controls or for exposed and unexposed, such biases most often cause underestimation of true effect sizes i.e. bias results towards the null that can be severe. Finally, there is selection-bias if controls are not representative of the exposures in the population that gave rise to the cases in case-control studies, or when there is a large and differential (with regard to case status) loss to follow-up in cohort studies.

2.1 Literature search

To obtain all published studies on the relationship between non-Hodgkin's Lymphoma (NHL) and glyphosate (the active ingredient in Roundup), I undertook a literature search using the same method to search for articles that I normally use in my research. This is the same method that I teach my UCLA students to use. As such, I relied upon two search engines, PubMed (https://www.ncbi.nIm.nih.gov/pubmed) and Google Scholar (https://scholar.google.com/). PubMed is an excellent resource for finding papers on the exact topic one is interested in, but it does not do as well in finding papers which were largely about a different topic but may have also briefly reported on the topic of interest. Google Scholar does well in capturing every possible paper of interest, but will often provide many articles not relevant to the subject matter at hand. I use both search engines to be as thorough as possible, but also to identify the most relevant articles. These searches initially yielded 290 articles in PubMed and $9000+$ articles in Google Scholar for epidemiological studies; and over 550 articles for
animal and mechanistic literature; and over 600 citations for cancer. [Most citations were not immediately relevant to the present question, due to their focus on topics such as effects in fish resulting from runoff; effects on pregnancy and child development; or effects on other cancer types.]

As is typical in most published meta-analyses and reviews, I took additional steps to ensure I did not miss any relevant articles by also reviewing other published papers to check their citations. For these, I relied on the IARC Glyphosate Monograph as well as the two metaanalyses on glyphosate and NHL, as well as other articles on the topic that were published more recently. ${ }^{2-4}$

Furthermore, I read the US EPA's Cancer Assessment Review Committee (CARC) report, however I disagreed with their results because they relied heavily on statistical significance in studies that were not sufficiently statistically powered to answer the question (more on this below).

2.2 Reliance on peer-reviewed literature

As I teach my students, the most relevant articles, and indeed the only articles I nearly ever review and cite in my own research, are those that have gone through peer review at a reputable journal. Each field has its own journals considered reputable; but in general, a reputable journal is a journal that is listed in the most well-known and respected indexing sources such as PubMed. ${ }^{\text {i }}$ Typically, these journals have been published for many years and many are backed by well-recognized and respected medical or research non-profit organizations, such as the American Medical Association, the British Medical Association, the American Association for Cancer Research (AACR), the Union for International Cancer Control (UICC), or the American Cancer Society.

Peer review, as defined by Danzik, is "a system by which manuscripts submitted for publication are evaluated, using outside referees (peers), who comment on the manuscripts' merit, originality, significance, and appropriateness to the journal. The intent is to identify flaws

[^0]in design and analysis or interpretation, to suggest improvements, to direct manuscripts to the most appropriate outlets, to discourage repetition in publishing, and to weed out poor science or scholarship." ${ }^{5}$

Independent peer review is the cornerstone of science in the United States and internationally, and has formed the basis for what is considered acceptable and reliable medical and scientific research. The peer review process, which is almost always done anonymously (the reviewer is nearly always anonymous, although the authors are usually not) provides the intellectual rigor required to ensure that manuscripts adhere to what is acceptable in the field with regards to reviewing the relevant literature, and examining the statistics, and determining whether research protocols apply widely accepted methods, report valid results and avoid or account for biases, and draw conclusions appropriate to the study's findings. Peer reviewers are responsible for deciding whether an article is acceptable for publication. Because of this, authors typically will first, only submit their best work; and secondly, authors have to respond to reviewer critiques and be willing to make changes as requested or argue against suggested changes if there is a compelling reason to not do so which must be explained and justified to and accepted by the journal editors. I have personally peer reviewed on hundreds of occasions and for more than 20 different journals. I have also served on the editorial boards of three journals: Epidemiology, Epidemiologic Perspectives and Innovations, and Environmental Health.

The system of peer review has been in practice for decades. Although it is not without imperfections, the revisions that are suggested improve the quality of published manuscripts, it heads off potential fraud, and its existence encourages honest and state-of-the-sciences work. ${ }^{5}$

It is usual that peer reviewers will assemble comments for the editors who will communicate these and the editor's own comments to the authors as requests for clarification and additional information with the intention to not only improve the manuscript but most importantly to allow them to assess research validity. When any validity issues spotted during the review process cannot be addressed sufficiently by the authors in their responses and/or a revised manuscript, the editor may decide that the manuscript is not ready for publication.

2.3 Conflicts of interest.

There have been several systematic reviews published on the role of conflicts of interest in medical research. In 2003, a review of 1140 original studies reported a strong relationship
between industry sponsorship and pro-industry conclusions, with industry-sponsored studies more than 3 times as likely to find conclusions sympathetic to industry [pooled Odds Ratio (OR): 3.60, 95% Confidence Interval (CI), 2.63-4.91]. ${ }^{6}$

Similarly, a 2016 article in the British Medical Journal (BMJ), which analyzed the results of 190 clinical trials published in 2013, reported that the presence of a financial tie between study investigators and industry resulted in a threefold increase in a positive study result ($\mathrm{OR}=3.23$, 95% CI 1.7-6.1) ${ }^{7}$

As these reviews show, and as is widely recognized across the medical and research communities, industry sponsorship and financial incentives are unequivocally related to study findings. For this reason, journals have increasingly required that investigators report conflicts of interest when they submit articles, and these conflicts are published for the reader to see and to take into account when drawing conclusions as to the verity of the findings or the interpretation of the presented data. This information is also made available to journal reviewers, because it may influence the choice to recommend a manuscript for publication i.e. it may contribute to assessing scientific validity of the reported research. Furthermore, this is what I as a professor teach my students, and UCLA teaches to students in bioethics courses and lectures.

I performed an analysis of the data contained in the literature review of Williams, et al. (2016) and provide my opinions on that and other data throughout this report. There is a clear conflict of interest with several of the authors, and my review of the Dr. William Heydens and Dr. John Acquavella transcripts shows that some of the authors failed to properly disclose these conflicts. Therefore, I put less weight on this group's conclusions since it suggests they lack an ability to be impartial.

2.4 Statistical significance.

If we start off a study assuming that there is no association between glyphosate/Roundup and NHL (the "null hypothesis"), then, after we do our statistical analysis, we can determine the p-value for the null hypothesis of our findings, which is the probability of obtaining an estimate at least as far from a pre-specified value (the null value in case of the null hypothesis) as the estimate we have obtained, if that specified value were the true value (note: no p-value, for the null hypothesis or any other, is the probability that the specified hypothesis is true). There is a convention to consider a p <0.05 as "statistically significant" however, this is simply a
convention which is sometimes replaced by other p -values such as $\mathrm{p}<0.01$ or $\mathrm{p}<10^{-7}$ (in genomic studies). What a p-value of 0.04 actually means is that, given the null hypothesis is true, if you repeatedly conducted 100 tests of samples drawn from the same population (people), then in 4% of your tests, you would obtain the results solely due to random error (chance). It is a metric intended to show the likelihood of random error. It should not be interpreted as the probability that glyphosate/Roundup causes NHL. Moreover, if $\mathrm{p}>0.05$, this doesn't "prove" the null hypothesis; absence of proof is not proof of absence.

Similarly, when a (95%) confidence interval excludes 1.0 (such as $\mathrm{OR}=2.0,95 \% \mathrm{CI}=1.2$ 2.8) - because 1.0 (the null value) is outside of the confidence interval-- it would be considered "statistically significant". As with p-values, confidence intervals can be defined as 95% intervals or 90% or 80% etc. intervals. However, confidence intervals provide additional information that p -values do not provide, and this information is related to the precision of the estimates or what is also called the informativeness of the data. In practice, p -values and confidence intervals close to the null (for example, if one side of the confidence interval is between 0.9 to 1.1) are considered marginal in terms of significance. Importantly, however, the estimates least influenced by chance are not those with low p-values, but those with narrow confidence intervals.

Statistical significance testing has been widely used and often misused in the medical literature, and is use has thus been widely criticized. One journal now bans the use of all statistical tests and even confidence intervals. ${ }^{8}$ In the last decade, there has been considerable debate on the merits and problems of significance testing, ${ }^{9-29}$ and in many Schools of Medicine and Public Health such as UCLA, students have been taught for decades to not rely upon statistical significance to draw their conclusions in accordance with the writings of the faculty member Dr. Sander Greenland, an author of the most widely used textbook in Epidemiology Methods entitled "Modern Epidemiology."30 At UCLA, we teach students to focus on the point estimate (e.g. the Odds Ratio or Rate Ratio) as a measure of the size of the association between exposure and disease and the confidence interval to gage the precision of this estimate and the informativeness of the data/study.

Also important to consider is the rarity of the disease, because the rarer a disease, the harder it is for a scientist to create a large enough study with enough cancer cases enrolled to have adequate statistical power. Cancer is by its nature a rare disease. The annual incidence rate
(number of new cases) of NHL is 19.7 cases per 100,000 people. This is why it is so hard to study NHL with a cohort study design, because you would have to follow hundreds of thousands of people for many years in order to find any result that would give us a $p<0.05$ if we assume that the effect estimate size is moderate (less 2). This is the main reason why most cancer studies are employing a case-control design which is much more efficient in terms of the necessary sample size for sufficient statistical power and in terms of costs in general.

Many of the case-control studies cited below in this review, particularly those that tried to recruit cases in rural areas, had a limited sample size simply because there are a finite number of cases of NHL in rural areas (with low population density). For example, the Nebraska study (which contributed to De Roos' pooled analysis) included 220 cases; ${ }^{31}$ the Kansas study ${ }^{32}$ included 200 cases. These are not large numbers, and the result is that we get wide confidence intervals, particularly when exposures are also rare (as they were in these two studies, with 6% of cases and 3% of controls reporting ever use of glyphosate).

As recognized by the US National Cancer Institute, wide confidence intervals are often seen in epidemiologic studies of rare diseases like NHL, but scientists are nonetheless encouraged to move forward and publish their results anyway. This is because smaller studies can later be used in pooled or meta-analyses, and those will have much improved statistical power to estimate precise effect estimates.

In addition, as we teach at UCLA, one study alone is never definitive. It is important for a reviewer to look at the information in the literature as a whole to understand relationships between exposure and disease. We teach students to consider point estimates (Odds Ratios) as indicators of associations and effect sizes, and to not dismiss or mis-interpret studies that have wide confidence intervals that may or may not include the null.

s2.5 Abstracts vs. full articles.

2.5 Abstracts vs. full articles.

Whenever possible it is preferable to examine and cite a full article over an abstract of the same study, because full articles have the space to provide a detailed overview of study methods and findings. If the full article is not yet published, however, it is common practice to cite abstracts.

3. Literature Review.

Here I summarize the findings of the epidemiologic studies on glyphosate and NHL in a forest plot, a graphical representation of all study results.

In reviewing the literature, the sample sizes and especially the number of cases should be noted, because of their bearing on 'statistical significance' and the width of confidence intervals. Because many of the smaller studies had suggestive findings but wide confidence intervals, it is particularly important to instead consider pooled and meta-analyses that summarize across these smaller studies and not only provide a much larger sample size but may allow us to assess NHL subtypes with sufficient precision. Here I show the sample sizes of each human study of glyphosate and NHL.

First author, date	Number of cases in the study (all NHL cases combined)	Number of controls in the study
Cocco, 2013	1869	2462
Pahwa, 2015 (commonly known as the NAPP study)	1690	5131
Eriksson, 2008	910	1016
Lee, 2004	872	2336
De Roos 2003	650	1933
Cantor, 1992	622	1245
McDuffie, 2001	517	1506
Hardell, 2002	515	1141
Hohenadel, 2011	513	1506
Hardell, 1999	404	781
Orsi, 2009	244	426
Nordstrom, 1996	111	400
De Roos, 2005 (commonly known as the AHS study)	92	$(54223$)*

* these are the N of unaffected cohort members, however we calculate person time and generally do not use person N in analyses.

Because sample size is so relevant in considering exposure-disease associations, an informative study to consider is Pahwa's pooled analysis of the North American and Canadian studies, the North American Pooled Project (NAPP). ${ }^{33}$ This abstract was presented at the International Society for Environmental Epidemiology's annual conference, and hence was peer-
reviewed, as are all abstracts presented at this meeting. In this analysis of 1690 cases and 5131 controls, NAPP reported an elevated risk of all NHL with any glyphosate use (OR=1.51, 95\% CI 1.18-1.95) and a dose-response effect was seen with greater use (>2 days/year, $\mathrm{OR}=2.66,1.61$ 4.40). An OR of 2.66 means that glyphosate exposure increases the risk of developing NHL by more than 160%. With regards to NHL subtypes, increases were observed for small lymphocytic lymphoma (SLL; 2.58, 95% CI 1.03-6.48, among those using for more than 5 years), and for follicular lymphoma ($\mathrm{OR}=2.36,95 \% \mathrm{CI} 1.06-5.29$), diffuse large B-cell lymphoma (DLBCL; $\mathrm{OR}=3.11,95 \% \mathrm{CI} 1.61-6.00$), and other subtypes $(\mathrm{OR}=2.99,95 \% \mathrm{CI} 1.10-8.09)$ for use more than 2 days per year. These study results were published in 2014, and as such were not included in any of the meta-analyses.

There were three meta-analyses conducted on glyphosate and NHL. The first, by Schinasi and colleagues, ${ }^{34}$ included 2928 cases from 6 studies ${ }^{1.2 .35-38}$ and reported increases in NHL risk with any glyphosate exposure (meta-RR: $1.5,95 \%$ CI 1.1-2.0), similar to the results of the NAPP study. Particularly stronger increases were reported for B-cell lymphoma (meta-RR = $2.0,95 \%$ CI 1.1-3.6). Notably, heterogeneity of study results was low, which means that the results across studies were highly consistent. This is important because it suggests that the increases in NHL risk were unlikely to be the result of random fluctuations of estimates across populations: when you see the same results in multiple studies across different settings, it improves confidence in the findings.

The IARC Working Group's Monograph on glyphosate ${ }^{4}$ noted that the above metaanalysis did not always use the most "highly adjusted estimates" from each study. The most highly adjusted estimates (also known as "fully adjusted" models) are the estimates that adjust for as many confounding variables as possible, such as adjusting for age, sex, race, and also sometimes other pesticide exposures. This is relevant because it gives the reader confidence that the findings are most likely due to glyphosate/Roundup exposure, instead of another potential cause that acts as a confounder. As such IARC's Working Group conducted their own metaanalysis using solely the most highly adjusted estimates from the same studies, ${ }^{1,2.35-38}$ and reported a meta risk-ratio of $1.3(95 \% \mathrm{CI}, 1.03-1.65)$, with consistent findings across studies (low heterogeneity). I concur with the IARC conclusions after conducting my own independent analysis of the studies included in the IARC review.

Also helpful to consider is the Swedish study by Eriksson, ${ }^{2}$ which was large ($\mathrm{N}=910$ cases) and in addition, this study examined cases diagnosed 1999-2002 and thus allowed for a longer time period to have elapsed between exposure and disease development (glyphosate first came on the market in 1974); this is known as the latency period between exposure and disease occurrence. Although a short latency period does not completely exclude the possibility of exposure-disease relationships in cancer, a longer latency period increases confidence in results due to increased biological plausibility i.e. typically we would generally expect a 5-10 year minimum latency between exposure and disease onset for blood system related cancers. (However, in an individual case the latency period could be as short as 1 year, and as long as $50+$ years.) Eriksson reported a twofold increase in NHL risk with glyphosate exposure ($\mathrm{OR}=2.02$, 95% CI 1.10-3.71). Notably, there was also evidence of a dose-response effect: with >10 days use, the risk was higher $(\mathrm{OR}=2.36,95 \% \mathrm{CI} 1.04-5.37)$ compared to less than 10 days of use ($\mathrm{OR}=1.69,95 \% \mathrm{Cl} 0.70-4.07$). This was the only study reviewed which conducted analyses and also accounted for latency (>10 years after use, $\mathrm{OR}=2.26,95 \%$ CI 1.16-4.40) and these results are more convincing due to biologic plausibility; in the group in which less than 10 years had elapsed since exposure, the effect estimate was much lower, as would be expected since these exposures are less likely to contribute to disease onset ($\mathrm{OR}=1.10,0.24-5.08$).

Eriksson also stratified by NHL subtype; effect estimates were increased for every NHL subtype and confidence intervals overlapped, meaning that there was evidence for increased risk for all NHL types: B-cell lymphomas (OR=1.87, 95\% CI 0.998-3.51); SLL/CLL (OR=3.35, 95\% CI 1.42-7.89); follicular ($\mathrm{OR}=1.89,95 \% \mathrm{Cl} 0.62-5.79$); Diffuse large $\mathrm{B}-\mathrm{cell}(\mathrm{OR}=1.22,95 \% \mathrm{Cl}$ 0.44-3.35) ; other specified B-cell lymphomas ($\mathrm{OR}=1.63,95 \% \mathrm{CI} 0.53-4.96$); unspecified B-cell ($\mathrm{OR}=1.47,95 \% \mathrm{CI} 0.33-6.61$); T-cell lymphomas ($\mathrm{OR}=2.29$, $95 \% \mathrm{CI} 0.51-10.4$); unspecified NHL (OR=5.63, 95\% CI 1.44-22.0).

An earlier Swedish study by the same research group ${ }^{39}$ ascertained cases diagnosed 1987 1990; thus this population was distinct from those in Eriksson's analysis. This study was smaller ($\mathrm{N}=404$ cases) and had few participants ever exposed to glyphosate, leading to wide confidence intervals (4 cases and 3 controls ever exposed; $\mathrm{OR}=2.3,95 \% \mathrm{CI} 0.4-13$). The small sample size limits our ability to draw definitive conclusions, but it is interesting that the estimate effect size is quite similar to the one reported by the larger later study. Likely because of this limitation, authors later conducted a pooled analysis which grouped these cases with cases of hairy-cell
leukemia (a subtype of NHL), reporting a threefold increased risk of any NHL (OR=3.04, 95\% CI 1.08-8.52). ${ }^{36}$ An earlier report of only the hairy-cell leukemia cases also reported increases in risk with glyphosate exposure ($\mathrm{OR}=3.1,95 \% \mathrm{Cl} 0.8-1.2$), but relied on a quite small sample size ($\mathrm{N}=121$ cases). ${ }^{40}$

The Canadian studies (McDuffie ${ }^{35}$ and Hohenadel ${ }^{41}$) ascertained cases diagnosed 19911994 hence allowing for a latency period between first possible use of glyphosate and disease occurrence, however the sample size ($\mathrm{N}=517$ cases) was smaller than that of the pooled US studies. McDuffie reported a weak increased risk of NHL with glyphosate exposure which was similar in size in minimally adjusted and fully adjusted models ($\mathrm{OR}=1.26,0.95-1.90 ; \mathrm{OR}=1.20$, 0.83-1.74). This study had a variety of sources for controls and a control participation rate of 48%, which is of concern if this caused selection of controls that does not reflect the population exposure to glyphosate. To examine the accuracy of self-reported pesticide use, McDuffie conducted a validation study comparing questionnaire data from farmers to records from a local chemical supplier on pesticide purchases. They stated that concordance between self-reported and sales record based exposures was excellent, although more specific information was not provided.

Pesticides sometimes exert stronger health effects when mixed (co-exposure) with other pesticides than when used alone. McDuffie reported that when glyphosate exposure was mixed with dicamba, the risk was increased ($\mathrm{OR}=1.92,95 \% \mathrm{CI} 1.39-2.66$, minimally adjusted model; $\mathrm{OR}=1.88,95 \% \mathrm{CI} 1.32-2.68$; fully adjusted model) compared to dicamba exposure alone ($\mathrm{OR}=1.59$ and 1.68 , respectively). ${ }^{35}$ Similarly, when glyphosate exposure was mixed with malathion ($\mathrm{OR}=2.10,95 \%$ CI 1.31-3.37) it was stronger than when farmers only reported using glyphosate alone ($\mathrm{OR}=0.92,95 \% \mathrm{CI} 0.54-1.55$). ${ }^{41}$

The study by Cocco was limited in how much we can glean from its results, as only 4 cases and 2 controls had ever used glyphosate. The prevalence may have been low in this study because the Cocco study included people with a range of occupations, unlike many of the other studies which focused on agricultural populations. Cocco reported increases in B-cell lymphoma with glyphosate use ($\mathrm{OR}=3.1,9 \% \mathrm{CI} 0.6$ to 17.1). ${ }^{42}$

Less informative for the current evaluation is the Cantor study ${ }^{43}$ because, although it was carefully conducted, cases (in Iowa and Minnesota) were included that were diagnosed 19801983. Hence, only 6-10 years could have elapsed between a potential first glyphosate exposure
and NHL diagnosis, which for cancer epidemiologic studies is considered an inadequate latency period (see above) and one would want to see an at least the median latency period of 10 years. Again, for an individual the latency period may vary (1 year to many decades), but on average for a study one would prefer a minimum latency period of on average 10 years.

The Lee study ${ }^{44}$ utilized Cantor's cohort to build upon by including subjects from Nebraska who were diagnosed July 1983 to June 1986, thus this study includes cases with a longer latency period, which improves confidence in results. Lee reported increases in NHL among non-asthmatics ($\mathrm{OR}=1.4,95 \% \mathrm{CI} 0.98-2.1, \mathrm{~N}$ cases=827) and a smaller elevated effect estimate in asthmatics with wide confidence intervals ($\mathrm{OR}=1.2,95 \% \mathrm{CI} 0.4-3.3$) due to the small number of asthmatic cases ($\mathrm{N}=45$).

De Roos 2003 reanalyzed the US studies ${ }^{1}$ and used hierarchical regression in addition to conventional logistic regression models, a statistical technique (described above) which can account for co-exposures and correlations between pesticides but makes some strong assumptions about all pesticides or groups of pesticides having similar effects on the outcomes. Using regular logistic regression, De Roos reported an increased risk with glyphosate use (OR $=2.1,95 \% \mathrm{CI} 1.1$ to 4.0) and in the hierarchical regression analysis the effect estimate was smaller 1.6 and the $95 \% \mathrm{Cl}$ included the null value of $1(95 \% \mathrm{Cl}=0.9-2.8)$. Notably, the OR for glyphosate was among the highest of 47 pesticides tested, which suggests that glyphosate may indeed be the pesticide most strongly related to NHL in these farmers among all pesticides they used. The selection of pesticides for this paper was based upon a "carcinogenic probability factor" developed for all cancers, not specific to NHL, so it is not clear whether the hierarchical regression represented the best analytic strategy for NHL since - as stated above - the model assumes that all pesticides included have a similarly strong effect on the outcome; thus we would expect the largest effect estimate to be pulled towards the null of 1 which is what happened. Also, in terms of possible exposure mismeasurement, a validation of questionnaire responses had previously been conducted which reported strong agreement between self-reported pesticide use in comparison to pesticide supplier records, and recall was similar between cases and controls. ${ }^{45}$

The French study by Orsi and colleagues ${ }^{38}$ utilized a hospital-based study design, i.e. in this design cases and controls are recruited from among hospital patients. This is in contrast to nearly all of the other studies described above which used a population-based study design (with the exception of some countries within the Cocco study). Population-based studies are
considered superior to hospital based designs, because epidemiologic studies aim to select controls from the same population that gave rise to the cases, because it improves study validity. The patients who go to a hospital for NHL treatment may not live in the same area as the control patients selected; this can occur if the study hospitals are regional cancer centers which draw cases from a large geographic area. Orsi's study recruited controls who had been admitted largely from orthopedic and rheumatological admissions (mostly fractures, injuries and back pain). This may be problematic because orthopedic and musculoskeletal illnesses and injuries are conditions that typically do not require travel to a distant center for treatment, suggesting there was possible non-overlap between the case and control populations. In addition, hospital patients are an unusual group: they tend to be older, sicker, and have higher tobacco and alcohol use (and other behavioral/lifestyle differences) than the general population. ${ }^{46-49}$ Consequently, the use of hospital controls can create unexpected and surprising findings (such as studies of cancer where the controls smoke more than the cases ${ }^{48}$). Further, biases can occur when the reasons for hospitalization are related to exposure. For example, if people exposed to glyphosate are more likely to be hospitalized (due to, perhaps, higher rates of time spent outdoors leading to greater injuries and back pain in farmers/gardeners) then this would bias the results. This may indeed be the case because there are known higher rates of musculoskeletal injuries among gardeners, and these people may also have higher glyphosate use. ${ }^{50-52}$ Orsi and colleagues were unable to observe any association between glyphosate and NHL (OR $=1.0,95 \% \mathrm{CI} 0.5$ to 2.2 ; all NHL types combined). When authors examined risk by subtype, elevated risk with wide confidence intervals was reported for follicular lymphoma ($\mathrm{OR}=1.4,95 \%$ CI 0.4-5.2) but not large diffuse large cell lymphoma ($\mathrm{OR}=1.0,0.3-2.7$). However, with 244 cases this study has only limited statistical power to conduct any subtype specific analyses.

De Roos 2005 is an analysis of the Agricultural Health Study (AHS). ${ }^{37}$ Pesticide applicators were recruited for this study between 1993-1997 and followed for incidence of cancers up until December 2001, therefore active follow-up ranged from 4-8 years with a median follow-up period ${ }^{\text {ii }}$ of 6.7 years, which is considered a short latency period in cancer epidemiology. Only 92 NHL cases had developed in the cohort by end of this follow-up period,

[^1]making this the smallest case sample size of any study reviewed; this is not surprising because the mean age at AHS study enrollment was 45.3 years. ${ }^{53}$ NHL, like most other cancers, is a disease of aging, with dramatically higher incidence as people age. Figure 1 shows the incidence of NHL among Americans, with data taken from the US National Cancer Institute's Surveillance, Epidemiology, and End Results (SEER) program. ${ }^{54}$ It is not informative to follow a group of workers that young for only 4-8 years and draw meaningful conclusions about their cancer risk, especially for a rare cancer and an expected risk of moderate size (OR or RR of 1.5 to 2.5). The estimated RR was low and the confidence intervals were wide: the risk for any NHL was 1.2 (95% CI 0.7-1.9, adjusted for age; RR=1.1, 0.7-1.9, adjusted for age, demographic and lifestyle factors, and other pesticides).

AHS investigators collected information on 50 pesticides at enrollment (in 1993-1997); as the study description states, participants were asked about ever/never pesticide exposures and years of use and frequency of use (\# of days per year) for 22 pesticides at enrollment and for another 28 pesticides in a take-home questionnaire that only 44% of applicators returned. The median time of employment involving mixing and applying any pesticide was 15 years at enrollment, and therefore the pesticide exposures occurring during the most relevant time period
for cancer development may not be known. ${ }^{53}$ Among all pesticide applicators included in the analysis, 76% had ever used glyphosate, which made it among the most common pesticide used among applicators in this study. This is in line with other research on glyphosate, which reports that as of 1999 , glyphosate was the highest selling crop-protection product on the market. ${ }^{55}$ However, it is important to note that the first year genetically engineered, glyphosate-tolerant crops were planted commercially in the U.S. is 1996, and that prior to this date glyphosate accounted for just 3.8% of the total volume of herbicide active ingredients applied in agriculture ${ }^{56}$ while glyphosate accounted for half of the total agricultural herbicide use in 2009 [see Coupe]. Also, in a 20-year timespan covered by EPA sales and usage reports (1987-2007), glyphosate use rose faster and more substantially than any other pesticide (in 2007, usage was in the range of $81.6-83.9$ million kilograms, more than double the next most heavily sprayed pesticide (atrazine: ~33.1-35.4 million kilograms) making it the most heavily applied pesticide in the U.S. with $2 / 3$ of the share of the total volume having been applied in just the last decade. ${ }^{57}$ 59

Given the persistence of glyphosate in soil (with a half-life of 29-60 days ${ }^{60.61}$), the possibility of exposure to glyphosate due to drift from fields ${ }^{\text {iii }},{ }^{62-64}$ and a possibility of contaminated water supplies, ${ }^{65}$ it is plausible that passive exposure may have ultimately been much higher among agricultural communities and pesticide applicators than the 76% who reported ever use; more importantly, the baseline exposure assessment in the AHS only covered the first two years of very intensive use of glyphosate i.e. those who were enrolled in 1996/97. When exposure to an agent is extremely high-and potentially even ubiquitous as in a cohort of pesticide applicators, who spend their days in agricultural fields-it eventually becomes impossible to study its health effects since there are little or no exposure contrast to measure at

[^2]least at the ever/never or cruder types of classification that do not rely on biomarker assays of dose. ${ }^{\text {iv }}{ }^{66}$

De Roos (2005) also conducted dose-response analyses by examining intensity-weighted exposure (years of use X days per year X intensity level), grouped into 3 levels (0.1-79.5; 79.6337.1; and 337.2-18,241); and by cumulative exposure days (years of use X days per year), categorized into 3 groups ($1-20,21-56,57-2,678$). Authors decided to compare the cancer risk in these exposed groups not to that among the never exposed, but instead compared high exposure to low exposure. While this type of comparison attempts to control for and eliminate other risk factors that may distinguish non-exposed from exposed (hence reduce potential confounding bias) this type of approach also reduces any remaining exposure contrasts even further and thus reduces the ability to estimate risk increases with exposure and make the effect estimates also less comparable to those form other studies.

Industry-sponsored studies

A meta-analysis by Chang and Delzell was sponsored by Monsanto. ${ }^{67}$ This meta-analysis found similar results to the above meta-analyses for any increases in NHL (meta-OR: 1.3, 95\% CI 1.0-1.6) and particularly elevated risks for B-cell lymphoma (meta-OR: 2.0, 95\% CI 1.1-3.6). This study also found extremely low heterogeneity across studies - unusual in most metaanalyses - supporting the consistency of findings across different settings.

Bradford-Hill criteria evaluation

The strength (effect size) criterion is partially met since the overall meta-analytical (point) effect estimates reported for ever never glyphosate use are between 1.3 and 1.5 reflecting a weak to moderate size association. However, the effect estimates for longer or more extensive use in several studies were larger i.e. between 2 and 3 and this can be considered a stronger endorsement of a causal relation; it is further supported by the observed dose response (biological gradient such that risk increases with dose - another Bradford Hill criterion) that these studies found (also note: a small association does not mean that there is not a causal effect,

[^3]though the larger the association, the more likely that it is unbiased and thus causal). In terms of consistency, this criterion is met since positive associations have been reported for different populations and in different places and different time periods which strengthens the likelihood of a true effect. Temporality i.e. that the cancer occurred after exposure and that there is an expected delay between the cause and effect has been shown i.e. all exposures were assessed and recorded for the periods prior to NHL occurrence. Unfortunately, only one study examined the influence of exposure lagging i.e. considered the latency period: that study found a strong association with a 10-year lag, which further corroborates causality in terms of cancer etiology. The specificity criterion (i.e. that one specific exposure causes one specific outcome) is hard to apply in the case of herbicide or pesticide exposure since almost none of the farmers/pesticide applicators is expected to solely be exposed to glyphosate, since most farming operations require the use of multiple pesticides over time. Also in the case of blood system cancers, one could argue that different pesticides have possible carcinogenic effects on different cell types. Nevertheless, it is of interest that NHL is one cancer reported consistently among farmers for the past 2 to 3 decades, and glyphosate is consistently the most widely used herbicide in farming especially after 1995 with the advent of genetically modified crops. Finally, some studies suggested that types of NHL that are showing T14/18 translocations in lymphocytes are the ones most likely caused by external agents including some pesticides and smoking and this increases also biologic plausibility for the action of genotoxic or oxidative stress pathways (see below) with certain pesticides such as glyphosate.

Biological plausibility.

Biomonitoring studies affirm that some (not all) persons who apply glyphosate occupationally have measurable glyphosate excreted in urine, and measurable glyphosate is also seen in farming household members who reside close to treated fields. ${ }^{68-70}$ Research on exposed agricultural workers suggests increases in genomic instability (binucleated cells, micronuclei). ${ }^{71}$ Rodent studies report increases in DNA oxidative damage (increases in 8-OHdG in either kidney or liver; lipid peroxidation) as well as cytogenetic damage (sister-chromatid exchanges, increases in micronuclei), and DNA single-strand breaks. ${ }^{72-74}$ Cytotoxicity and genotoxicity are also reported in studies of human cells. ${ }^{75}$

Roundup vs. glyphosate. One study compared the effects in rodents of glyphosate to those of Roundup, and results were similar with regards to cytotoxic and genotoxic effects. ${ }^{73}$ While a plausible mechanism between cause and effect is helpful, Bradford Hill noted that knowledge of the mechanism is often limited by current knowledge; nevertheless for glyphosate two mechanisms have recently been proposed, oxidative stress and genotoxicity, and been confirmed by the laboratory experiments listed above. Finally, while coherence between epidemiological and laboratory findings increases the likelihood of a true effect, Bradford Hill noted that "... lack of such [laboratory] evidence cannot nullify the epidemiological effect on associations". Due to ethical concerns, there will never be any human experimental evidence for glyphosate toxicity or carcinogenicity, but human cell based studies and animal experiments can substituted as model systems and have increasingly been used in the recent past.

4. Conclusions

The epidemiologic studies as a whole support an increased risk of NHL with exposure to glyphosate or glyphosate based formulations, including Roundup. Due to the rarity of this disease, many of the earlier studies were small in size, leading to wide confidence intervals; yet findings were consistent with nearly all studies having point estimates above 1.0. In the pooled and meta-analyses, results are consistent and unequivocal. Studies that assessed dose also generally found that higher levels of exposure were associated with increased risk and importantly in the one study that did assess the importance of having been exposed more than 10 years prior to a diagnosis of cancer, the results clearly pointed to those exposures as the relevant one as compared to the more recent exposures (within 10 years) increasing plausibility of associations greatly.

In my opinion, to a reasonable degree of scientific certainty, glyphosate causes NHL. Furthermore, to a reasonable degree of scientific certainty, glyphosate based formulations, including Roundup, cause NHL.

Beate Ritz, M.D., Ph.D.
Date: May 1st, 2017

References cited

1. De Roos AJ, Zahm SH, Cantor KP, et al. Integrative assessment of multiple pesticides as risk factors for non-Hodgkin's lymphoma among men. Occup Environ Med. 2003;60(9):E11.
2. Eriksson M, Hardell L, Carlberg M, Akerman M. Pesticide exposure as risk factor for non-Hodgkin lymphoma including histopathological subgroup analysis. Int J Cancer. 2008;123(7):1657-1663.
3. Portier CJ, Armstrong BK, Baguley BC, et al. Differences in the carcinogenic evaluation of glyphosate between the International Agency for Research on Cancer (IARC) and the European Food Safety Authority (EFSA). J Epidemiol Community Health. 2016;70(8):741-745.
4. IARC Monographs Program. Some organophosphate insecticides and herbicides. 26 January 2017.
5. Dancik BP. Importance of Peer Review. The Serials Librarian. 1991;19(3-4):91-94.
6. Bekelman JE, Li Y, Gross CP. Scope and impact of financial conflicts of interest in biomedical research: a systematic review. JAMA. 2003;289(4):454-465.
7. Ahn R, Woodbridge A, Abraham A, et al. Financial ties of principal investigators and randomized controlled trial outcomes: cross sectional study. BMJ. 2017;356:16770.
8. Trafimow D, Marks M. Editorial. Basic and Applied Social Psychology. 2015;37(1):1-2.
9. Ziliak ST, McCloskey DN. The cult of statistical significance: How the standard error costs us jobs, justice, and lives. University of Michigan Press; 2008.
10. Anscombe F. The summarizing of clinical experiments by significance levels. Stat Med. 1990;9(6):703-708.
11. Berkson J. Tests of significance considered as evidence. Int J Epidemiol. 2003;32(5):687-691.
12. Evans S, Mills P, Dawson J. The end of the p value? Br Heart J. 1988;60(3):177.
13. Gelman A, Loken E. The Statistical Crisis in Science Data-dependent analysis-a "garden of forking paths"-explains why many statistically significant comparisons don't hold up. Am Sci. 2014;102(6):460.
14. Gelman A, Stern H. The difference between "significant" and "not significant" is not itself statistically significant. The American Statistician. 2006;60(4):328-331.
15. Gigerenzer G. Mindless statistics. The Journal of Socio-Economics. 2004;33(5):587-606.
16. Goodman SN. Toward evidence-based medical statistics. 1: The P value fallacy. Ann Intern Med. 1999;130(12):995-1004.
17. Greenland S. Nonsignificance plus high power does not imply support for the null over the alternative. Ann Epidemiol. 2012;22(5):364-368.
18. Grieve AP. How to test hypotheses if you must. Pharmaceutical statistics. 2015;14(2):139-150.
19. Hoekstra R, Finch S, Kiers HA, Johnson A. Probability as certainty: Dichotomous thinking and the misuse ofp values. Psychonomic Bulletin \& Review. 2006;13(6):10331037.
20. Kaye DH. Is Proof of Statistical Significance Relevant? 1986.
21. Lecoutre M-P, Poitevineau J, Lecoutre B. Even statisticians are not immune to misinterpretations of Null Hypothesis Significance Tests. International Journal of Psychology. 2003;38(1):37-45.
22. Lew MJ. Bad statistical practice in pharmacology (and other basic biomedical disciplines): you probably don't know P. Br J Pharmacol. 2012;166(5):1559-1567.
23. Matthews JN, Altman DG. Statistics Notes: Interaction 2: compare effect sizes not P values. $B M J$. 1996;313(7060):808.
24. Poole C. Beyond the confidence interval. Am J Public Health. 1987;77(2):195-199.
25. Rozeboom WW. The fallacy of the null-hypothesis significance test. Psychol Bull. 1960;57(5):416.
26. Salsburg DS. The religion of statistics as practiced in medical journals. The American Statistician. 1985;39(3):220-223.
27. Sterne JA, Cox D, Smith GD. Sifting the evidence-what's wrong with significance tests? Another comment on the role of statistical methods. BMJ. 2001;322(7280):226-231.
28. Thompson B. The "significance" crisis in psychology and education. The Journal of Socio-Economics. 2004;33(5):607-613.
29. Walker AM. Reporting the results of epidemiologic studies. Am J Public Health. 1986;76(5):556-558.
30. Rothman KJ, Greenland S, Lash TL. Modern epidemiology. 3rd ed. Philadelphia: Wolters Kluwer Health/Lippincott Williams \& Wilkins; 2008.
31. Zahm SH, Weisenburger DD, Babbitt PA, et al. A case-control study of non-Hodgkin's lymphoma and the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) in eastern Nebraska. Epidemiology. 1990;1(5):349-356.
32. Hoar SK, Blair A, Holmes FF, et al. Agricultural herbicide use and risk of lymphoma and soft-tissue sarcoma. JAMA. 1986;256(9):1141-1147.
33. Pahwa M, Freeman LB, Demers PA, et al. An evaluation of glyphosate use and the risks of NHL major histological subtypes in the North American Pooled Project. International Society for Environmental Epidemiology; August 31, 2015; Sao Paulo, Brazil.
34. Schinasi L, Leon ME. Non-Hodgkin lymphoma and occupational exposure to agricultural pesticide chemical groups and active ingredients: a systematic review and meta-analysis. Int J Environ Res Public Health. 2014;11(4):4449-4527.
35. McDuffie HH, Pahwa P, McLaughlin JR, et al. Non-Hodgkin's lymphoma and specific pesticide exposures in men: cross-Canada study of pesticides and health. Cancer Epidemiol Biomarkers Prev. 2001;10(11):1155-1163.
36. Hardell L, Eriksson M, Nordstrom M. Exposure to pesticides as risk factor for nonHodgkin's lymphoma and hairy cell leukemia: pooled analysis of two Swedish casecontrol studies. Leuk Lymphoma. 2002;43(5):1043-1049.
37. De Roos AJ, Blair A, Rusiecki JA, et al. Cancer incidence among glyphosate-exposed pesticide applicators in the Agricultural Health Study. Environ Health Perspect. 2005;113(1):49-54.
38. Orsi L, Delabre L, Monnereau A, et al. Occupational exposure to pesticides and lymphoid neoplasms among men: results of a French case-control study. Occup Environ Med. 2009;66(5):291-298.
39. Hardell L, Eriksson M. A case-control study of non-Hodgkin lymphoma and exposure to pesticides. Cancer. 1999;85(6):1353-1360.
40. Nordstrom M, Hardell L, Magnuson A, Hagberg H, Rask-Andersen A. Occupational exposures, animal exposure and smoking as risk factors for hairy cell leukaemia evaluated in a case-control study. Br J Cancer. 1998;77(11):2048-2052.
41. Hohenadel K, Harris SA, McLaughlin JR, et al. Exposure to multiple pesticides and risk of non-Hodgkin lymphoma in men from six Canadian provinces. Int J Environ Res Public Health. 2011;8(6):2320-2330.
42. Cocco P, Satta G, Dubois S, et al. Lymphoma risk and occupational exposure to pesticides: results of the Epilymph study. Occup Environ Med. 2013;70(2):91-98.
43. Cantor KP, Blair A, Everett G, et al. Pesticides and other agricultural risk factors for nonHodgkin's lymphoma among men in Iowa and Minnesota. Cancer Res. 1992;52(9):24472455.
44. Lee WJ, Cantor KP, Berzofsky JA, Zahm SH, Blair A. Non-Hodgkin's lymphoma among asthmatics exposed to pesticides. Int J Cancer. 2004;111(2):298-302.
45. Blair A, Zahm SH. Patterns of pesticide use among farmers: implications for epidemiologic research. Epidemiology. 1993;4(1):55-62.
46. Morabia A, Stellman SD, Wynder EL. Smoking prevalence in neighborhood and hospital controls: implications for hospital-based case-control studies. J Clin Epidemiol. 1996;49(8):885-889.
47. Ruano-Ravina A, Perez-Rios M, Barros-Dios JM. Population-based versus hospitalbased controls: are they comparable? Gac Sanit. 2008;22(6):609-613.
48. Sadetzki S, Bensal D, Novikov I, Modan B. The limitations of using hospital controls in cancer etiology-one more example for Berkson's bias. Eur J Epidemiol. 2003;18(12):1127-1131.
49. Neupane B, Walter SD, Krueger P, Loeb M. Community controls were preferred to hospital controls in a case-control study where the cases are derived from the hospital. J Clin Epidemiol. 2010;63(8):926-931.
50. Bridger RS, Sparto P, Marras WS. Spade design, lumbar motions, risk of low-back injury and digging posture. Occupational Ergonomics. 1998;1(3):157-172.
51. Maeda K, Okazaki F, Suenaga T, Sakurai T, Takamatsu M. Low back pain related to bowing posture of greenhouse farmers. J Hum Ergol (Tokyo). 1980;9(2):117-123.
52. Riihimaki H. Low-back pain, its origin and risk indicators. Scand J Work Environ Health. 1991;17(2):81-90.
53. Alavanja MC, Sandler DP, McMaster SB, et al. The Agricultural Health Study. Environ Health Perspect. 1996;104(4):362-369.
54. SEER Cancer Statistics Review, 1975-2013. Table 19.7: Non-Hodgkin Lymphoma, Incidence and mortality rates by age. 2016; http://seer.cancer.gov/csr/1975 2013/, based on November 2015 SEER data submission, posted to the SEER web site, April 2016. Accessed March 27, 2017.
55. Woodburn AT. Glyphosate: production, pricing and use worldwide. Pest Management Science. 2000;56(4):309-312.
56. Coupe RH, Capel PD. Trends in pesticide use on soybean, corn and cotton since the introduction of major genetically modified crops in the United States. Pest management science. 2015.
57. Aspelin AL, Grube AH, Torla R. Pesticides industry sales and usage: 1996 and 1997 market estimates. Biological and Economic Analysis Division, Office of Pesticide Programs, Office of Prevention, Pesticides and Toxic Substances, US Environmental Protection Agency; 1999.
58. Grube A, Donaldson D, Kiely T, Wu L. Pesticide industry sales and usage: 2006 and 2007 market estimates. Washington, DC: US Environmental Protection Agency;2011.
59. Myers JP, Antoniou MN, Blumberg B, et al. Concerns over use of glyphosate-based herbicides and risks associated with exposures: a consensus statement. Environ Health. 2016;15:19.
60. Feng JC, Thompson DG. Fate of glyphosate in a Canadian forest watershed. II: Persistence in foliage and soils. Journal of Agricultural and Food Chemistry. 1990;38(4):1118-1125.
61. Newton M, Howard KM, Kelpsas BR, Danhaus R, Lottman CM, Dubelman S. Fate of glyphosate in an Oregon forest ecosystem. Journal of Agricultural and Food Chemistry. 1984;32(5):1144-1151.
62. Tiefenbacher JP. Mapping the pesticide driftscape: Theoretical patterns of the drift hazard. Geographical Environment Model. 1998;2(1):83-102.
63. Yates W, Akesson N, Bayer D. Drift of glyphosate sprays applied with aerial and ground equipment. Weed Science. 1978:597-604.
64. Office of Pesticide Programs. Reregistration eligibility decision (RED): Glyphosate US Environmental Protection Agency (EPA);1993.
65. Battaglin W, Meyer M, Kuivila K, Dietze J. Glyphosate and its degradation product AMPA occur frequently and widely in US soils, surface water, groundwater, and precipitation. JAWRA Journal of the American Water Resources Association. 2014;50(2):275-290.
66. Rose G. Sick individuals and sick populations. Int J Epidemiol. 1985;14(1):32-38.
67. Chang ET, Delzell E. Systematic review and meta-analysis of glyphosate exposure and risk of lymphohematopoietic cancers. J Environ Sci Health B. 2016;51(6):402-434.
68. Curwin BD, Hein MJ, Sanderson WT, et al. Urinary pesticide concentrations among children, mothers and fathers living in farm and non-farm households in iowa. Ann Occup Hyg. 2007;51(1):53-65.
69. Weber J, Phaneuf D, Samuel O, Guillot J, Manca D. Etude de l'exposition professionnelle des travailleurs forestiers exposés au glyphosate. Centre de toxicologie du Québec, Québec. 1988.
70. Jauhiainen A, Rasanen K, Sarantila R, Nuutinen J, Kangas J. Occupational exposure of forest workers to glyphosate during brush saw spraying work. Am Ind Hyg Assoc J. 1991;52(2):61-64.
71. Bolognesi C, Carrasquilla G, Volpi S, Solomon KR, Marshall EJ. Biomonitoring of genotoxic risk in agricultural workers from five colombian regions: association to occupational exposure to glyphosate. J Toxicol Environ Health A. 2009;72(15-16):986997.
72. Vigfusson NV, Vyse ER. The effect of the pesticides, Dexon, Captan and Roundup, on sister-chromatid exchanges in human lymphocytes in vitro. Mutat Res. 1980;79(1):5357.
73. Bolognesi C, Bonatti S, Degan P, et al. Genotoxic activity of glyphosate and its technical formulation Roundup. Journal of Agricultural and food chemistry. 1997;45(5):19571962.
74. El-Shenawy NS. Oxidative stress responses of rats exposed to Roundup and its active ingredient glyphosate. Environ Toxicol Pharmacol. 2009;28(3):379-385.
75. Gasnier C, Dumont C, Benachour N, Clair E, Chagnon MC, Seralini GE. Glyphosatebased herbicides are toxic and endocrine disruptors in human cell lines. Toxicology. 2009;262(3):184-191.

CURRICULUM VITAE
 April 2017

Beate R. Ritz, MD, Ph.D.
Professor
Departments of Epidemiology and Environmental Health
UCLA School of Public Health
Box 951772
Los Angeles, CA 90095-1772

EDUCATION

```
1995 Ph.D. in Epidemiology, School of Public Health, UCLA
1993 M.P.H. in Epidemiology, School of Public Health, UCLA
1987 Doctoral Degree in Medical Sociology, University of Hamburg
1983 Medical Examination Certificate, Registration as a Physician (M.D.),
    Board of Health in Hamburg
1977-1983 Medical School, University of Hamburg, Germany
```

PROFESSIONAL POSITIONS AND APPOINTMENTS
2012-2015 Chair, Department of Epidemiology, School of Public Health, University of California Los Angeles (UCLA)
2006-current Professor, Departments of Epidemiology, Environmental Health, and Center for Occupational and Environmental Health, School of Public Health, and Neurology, School of Medicine, UCLA
2005-2012 Vice Chair, Department of Epidemiology, School of Public Health, University of California Los Angeles (UCLA)
2004-current Appointment in the Department of Neurology, School of Medicine, UCLA
2002-current Co-director of the UCLA-CGEP (UCLA center for Parkinson 's Disease Environmental Research (CCPDER- CNS)
2001-2006 Associate Professor, Department of Epidemiology, Department of Environmental Health, and Center for Occupational and Environmental Health, School of Public Health, UCLA
1995-2001 Assistant Professor, Department of Epidemiology and Center for Occupational and Environmental Health, School of Public Health, UCLA
1993-1995 Assistant Researcher, Department of Epidemiology, School of Public Health, UCLA
1989-1991 Hochschulassistentin (Assistant Professor), Institute of Medical-Sociology, University of Hamburg, Germany.
1987-1988 Research Fellow and Resident, Psychiatric University-Hospital Eppendorf, Hamburg, Germany
1984-1986 Research Fellow, Institute of Medical Sociology, University Hospital Eppendorf, Hamburg, Germany

OTHER HONORARY PROFESSIONAL APPOINTMENTS

2002-2008	Editorial Board: EPIDEMIOLOGY
2004-2009	Editorial Board: Epidemiologic Perspectives \& Innovations
2007-2010	Editorial Board: Environmental Health
2001-current	Chair (since 2005) and Member (since 2001) of the external advisory committee for the
2001-current	NCI/NIEHS Agricultural Health Cohort Study
Board of Directors for the 'R. Lemelson Foundation for Psychocultural Research.' Annual awards of \$800,000 for research and training including a UCLA training grant for cross- disciplinary studies in anthropology, psychology and neuroscience	

$\left.\begin{array}{ll}\text { 2001-2002 } & \begin{array}{l}\text { Member of the external advisory committee for the California Biomonitoring Planning } \\ \text { Project conducted by the Environmental Health Laboratory's Biomonitoring Project } \\ \text { (CDHS) }\end{array} \\ \text { (CDE) } \\ \text { Member of the EPA Science Advisory Board for Human Health Research Strategy } \\ \text { (HHRS) } \\ \text { Member of the external advisory committee for the California Environmental Health }\end{array}\right\}$

FUNDED RESEARCH

NNH12ZDA006O-EVI3
Agency: NASA (PI: Ritz)
Total Direct Costs to UCLA: \$1,294,244
Multi-Angle Imager for Aerosols (MAIA)
08/01/16-11/30/25
This project will assess air pollution and adverse birth outcomes using exposure data provided by Dr. Diner's group from the MAIA NASA project. UCLA researchers will be responsible for the modeling the effects of prenatal air pollution exposures on adverse birth outcomes derived from vital statistics records for multiple locations across the world

1 U01 HD087221 (PI: Devaskar/UCLA Ob-GYN)
Agency: NIH/NICHD
Period: 01/01/16-12/30/19
Total Direct Costs: $\quad \$ 2,999,640$
Imaging Innovations for Placental Assessment in Response to Environmental Pollution
The objective of this proposal is to develop and evaluate a suit of cutting-edge multi-parametric magnetic resonance imaging (mp-MRI) technologies and translate these novel placental imaging modalities to assessing the impact of environmental pollution exposure on prediction of placental insufficiency.

Psychosocial stressors, air pollution and childhood respiratory health in LAFANS
Agency: NIEHS R03ES025908 (PI: Ritz) Period: 07/01/15-06/30/17

Total Direct Costs $\$ 100,000$
This study will add to the previous literature by constructing a more holistic measure of the stress perceived by the child, and use that measure to determine if a child's perceived stress modifies their risk of asthma or reduced lung function from air pollution.

Pesticide Exposures and Risk of Cerebral Palsy
Agency: NIEHS R03ES025904 (Pl: Ritz)
Period: 07/01/15-06/30/17
Total Direct Costs $\$ 100,000$
Using records from the California Department of Developmental Services (DDS), we will identify children born 1995-2007 and diagnosed with CP in California until 2010. For $\sim 10,000$ CP cases we will randomly select 1:10 matched controls from the California birth certificates. Ambient pesticide exposure estimates pre-pregnancy, during pregnancy and/or first year of life for each child will be estimated using a Geographic Information System (GIS) model we previously developed based on the California Pesticide Use Reporting (PUR) system. We will examine specific vulnerable periods in pregnancy (trimesters or months of pregnancy) to assess pesticide exposure effects on CP .

Autism, Metabolomics, and Environment (AIME)
Agency: NIEHS R21ES25573 (PI: Ritz)
Total Direct Costs $\$ 275,000$
We will assess whether autism risk factors can be identified using metabolomic biomarkers of exposure in stored maternal serum samples from mid-pregnancy from 200 case and 200 control pregnancies in Central California and compare biomarker exposure patterns with modelled air pollution and pesticide exposures. Metabolomics analyses will be performed in a targeted as well as untargeted manner with high-resolution metabolomics that uses mass spectrometry and advanced data extraction algorithms to quantify up to 20,000 chemicals in small biologic extracts.

Air Pollution and Childhood Autism

```
Agency: NIEHS R21ES024006 (PI: Ritz/Ehrenstein - multiple PI) Period: 07/01/15-06/30/17
Total Direct Costs $275,000
```

We use highly sophisticated modeling and analytical techniques for the detailed spatiai and temporai assessment of air pollution to examine their influence on neurodevelopment in a California birth cohort linked to autistic disorder records of the CA Department of Developmental Services

Environment and cognitive decline in older Hispanics

Multi-PI: Ritz/Haan
Agency: NIEHS Type R01-RES023451A Period: 04/01/15-03/31/19
Total Direct Costs: $\$ 2,000,000$
The goal of the proposed research is to investigate whether long-term exposure to two ubiquitous environmental exposures, air pollution and pesticides, contribute to cognitive decline and dementia in elderly Mexican Americans (MA) from the "Sacramento Area Latino Study on Aging" (SALSA) cohort. We capitalize upon our expertise in modeling air pollution and pesticide exposure and plan to model 1) long and short term regional, local, and traffic related air pollution using monitored criteria pollutants, CALINE4 - emissions and land use regression (LUR) models; and 2) long-term exposures to pesticides of specific chemical classes with our GIS model; and 3) assess impairment in cognitive domains and the onset of dementia longitudinally based on multiple complex environmental exposure patterns while taking into account vulnerability due to genetic and physiologic risk factors for dementia.

Air Pollution and Autism in Denmark

Pl: Ritz

Agency: NIEHS Type: R21 Period: 04/01/15-03/31/17
Total Direct Costs: $\$ 275,000$
The goal of the proposed research is to utilize Danish nationwide population-based registers and sophisticated individual-level air pollution exposure measures to assess whether early life exposure to traffic-related and particulate air pollution during critical periods of fetal development are associated with autism risk. We will use the Danish National Birth Cohort (DNBC) which enrolled pregnant women and collected extensive prospective risk factor data during pregnancy and early life for $\sim 100,000$ children
among whom 720 are already diagnosed with ASD to examine potential confounding bias for a large number of risk factors assessed in pregnancy

Air Pollution and Cardiovascular Diseases: Identification of Novel Biomarkers Agency: NIEHS R21 ES024560 (PI: Zhu)
 Period: 05/01/15-04/30/17

Total Direct Costs \$275,000
Objectives: The goal of this project is to identify novel and sensitive biomarkers of cardiovascular health effects, in association to air pollution exposures.
Role: Co-l

Environmental exposure, DNA methylation, and Parkinson's disease

Agency: NIEHS 21ES024356 (PI: Ritz/ Horvath) Period: 08/06/14-07/31/16
Total Direct Costs: $\$ 250,000$
Environmental exposure, DNA methylation, and Parkinson's disease
Here we use a powerful new tool and systems biology analytic methods to identify signatures for toxic exposures that evoke long-term biologic responses. Using DNA methylation we will investigate specific epigenetic markers (CpGs) correlate with toxic exposures and the role these epigenetic changes play in PD progression using epigenome wide technologies combined with analytic tools to integrate these data. We will investigate epigenetic determinants of Parkinson's disease in over 800 subjects with existing biospecimens.
Role: PI
Maternal comorbidities, prescription drug use in pregnancy, and childhood cancer (COMPAC): a record linkage study in Denmark
Pl: Heck
Agency: $\mathrm{NIH} / \mathrm{NCl}$ Type: R21CA175959 Period: 04/01/14-03/31/16
Total Direct Costs: \$275,000
This study aims to link several large-scale databases in Denmark to examine maternal health and medication use in pregnancy in relation to childhood cancers. We propose to examine common pregnancy conditions that have been linked to cancers in adults and children in other studies as well as common medications taken in pregnancy which are suspected carcinogens or linked to cancer in other studies.
Role: Co-l
Inflammatory Cytokine Polymorphisms, Air Pollution, and Very Preterm Birth Pl: von Ehrenstein
Agency: NIEHS Type: R21ES022734 Period: 07/01/13-06/30/15
Total Direct Costs: $\$ 275,000$
We examine the hypotheses that maternal exposure to air pollutants during pregnancy is associated with an increased risk of very preterm birth (VPTB, <32 weeks gestation), and that polymorphisms in inflammatory genes modify the influence of air pollution on the risk of VPTB. We use data from the CA Very Preterm Birth (CVPTB) Study, a nested case-control study of VPTB from 5 counties in Southern CA known for high particulate matter, ozone, and traffic exposures that has genotyped SNPs related to PTB in 26 inflammatoryfimmune response pathway genes in mother-infant pairs and will utilize a combination of extensive air monitoring data and air pollution modeling approaches (land use regression (LUR), CALINE4, kriging) to estimate air pollution exposures in pregnancy for CVPTB Study subjects.
Role: CO-I

Pesticide Exposure and Childhood Autism

PI: von Ehrenstein
Agency: NIEHS Type: R21ES022389 Period: 01/01/14-12/31/15
Total Direct Costs: $\$ 275,000$
We examine the hypothesis that exposure to specific pesticides during vulnerable periods, particularly during fetal development, determines risks of subsequent development of autistic disorder (AD). We developed a geographic pesticide exposure assessment tool (GRAPES) that utilizes the unique California Pesticide Use Report system, in combination with agricultural land-use maps, to derive record-based estimates of historical residential exposures, and expect to identify $>20,000$ autism cases with diagnoses up to the age of 72
months from the CA-DDS database born in CA 1997-2009 and $>1,700$ from agricultural areas as well as 1:10 age-sex match controls from birth records, the largest cohort ever to address hypotheses that exposures to specific chemicals (e.g. neurotoxic or endocrine disrupting agents) contribute to AD during vulnerable periods of development.
Role: CO-I

Parkinson's Susceptibility Genes and Pesticides (PEG-Renewal)

Principal Investigator: Ritz
Agency: NIEHS/NINDS Type:R01ES010544 03/01/11-11/30/15
Total Direct Costs: $\$ 2,500,000$
In this renewal of an epidemiologic population-based case-control study we recruit 500 additional PD patients in three rural California counties and will assessed their exposures to pesticide exposures and the effects of gene-pesticide interactions.
Role: PI

Systems genetic and reverse phenotypic analysis of age and retirement.

Pl: Horvath (UCLA)
Agency: NIA Type: R01AG042511-02 07/01/13-06/30/17
Total Direct Costs: $\$ 1,000,000$
We will apply/develop state of the art computational, statistical, and bioinformatic approaches with which to investigate the association between genetic data and aging- related phenotypes. Specifically, the study uses data from the Health and Retirement Study (HRS) and a systems biology approach to identifying relevant SNPs and genetic pathways and machine learning techniques and reverse phenotyping methods to better understand the complex relationship between genetics and aging outcomes including cognition and wealth
Role: CO-I
Exposure to C8-chemicals and autism, ADHD, and cerebral Palsy in the Danish Birth Cohort
PI: Jorn Olsen (UCLA and Aarhus University, Denmark)
Agency: Danish Medical Council
Total Direct Costs (at UCLA): \$250,000 01/01/11 -
08/31/15
The overall goai of the project is to assess the impact of C 8 persistent organic pollutants in maternal serum during pregnancy and childhood outcomes of autism, ADHD and cerebral palsy in the Danish Birth cohort using follow-up data from the National Danish medical registry systems
Role: CO-1
A Cohort Study on Air Pollution and Breast Cancer in Los Angeles County $\begin{array}{lr}\text { IIR13262718 } & \text { Wu (co-PI) } \\ \text { Susan G Komen } & \$ 217,728\end{array}$
The overall objective is to examine the role of air pollution and risk of breast cancer among whites and non-whites in Los Angeles using the large Multiethnic Cohort Study
Role: Co-Principal Investigator
Improvements in Air Quality and Health Outcomes among California Medicaid Enrollees Due to Goods Movement Actions - Phase I: Assessing Air Quality Changes
PI: Meng, UCLA
Agency: Health Effects Institute (HEI) \#: 4914-RFA11-1/2-6 09/01/12 - 08/31/15
This phase of the project will evaluate the effect of goods movement emission reduction actions on ambient air quality in goods movement corridors, non-goods movement corridors, and areas outside of these two corridors in 10 major California counties between the 2003-2007 pre-policy and 2008-2012 post-policy years.

COMPLETED RESEARCH

Assessing and Reducing Taxi Drivers' Exposure to Ultrafine Particles
PI: Yifang Zhu (UCLA)

Goal: The major goals of this project are to develop ultrafine particle exposure assessment instrument and explore novel low-cost ultrafine particle exposure mitigation strategies for taxi drivers Role: Co-l

Air Pollution and PD in Denmark

PI: Ritz Type: R21-ES022391 12/01/12-30/11/14
Agency: NIEHS
Total Direct Costs: $\$ 275,000$
This study will use a sophisticated and validated GIS-based dispersion model, AirGIS, to assess exposure to traffic-related air pollution in PASIDA participants; i.e. $\mathrm{NO}_{2} / \mathrm{NO}_{x}$. Specific aims are to: (1) assess the influence of long-term traffic-related air pollution exposure on PD risk for 1,867 cases and 1,920 population controls combining existing PASIDA data with new exposure measures from AirGIS; and
(2) investigate the combined action of air pollution and genetic variants in inflammatory genes previously linked to PD.
Role: PI

Parental Occupation and Childhood Cancers in Denmark

PI: Heck (UCLA) TYPE: R03 ES021643 4/15/12-3/31/14
Agency: NIEHS
Total Direct Costs: $\$ 50,000$
The specific aims of this study are: 1) Create a linked database of all childhood cancers in Denmark diagnosed 1965-2010 with recorded information on parental employment. 2) Examine the relation between parental employment and childhood cancers focusing on maternal occupational exposures. 3) Examine specific hypotheses in childhood cancer risk (occupational social contact; contact with animals; organic dust; welding fumes; bitumen fumes; outdoor work; and several associations seen in previous literature (solvents, paints and pigments, motor vehicle exhaust related occupations)).
Role: Co-l

Pesticides and Childhood Cancers

Principal Investigator: Ritz (UCLA)

NIEHS R21- ES019986

4/1/11-12/31/13
Total Direct Costs: $\$ 275,000$
The specific aims of this study are to examine associations between prenatal exposure to pesticides and specific childhood cancers in California between 1980-2009 using ambient measurement data using our GIS model of pesticide exposures based on land use maps and pesticide use report (PUR) data.

UCLA Center for Centers for Neurodegeneration Science (CNS; former CGEP)
Director: Chesselet, UCLA; Co-director: Ritz
NIEHS P01ES016732 09/15/08-08/31/13
Total Direct Costs: $\$ 5,000,000$
We have previously shown associations between high levels of exposure to specific environmental pesticides and Parkinson's disease and will build on this knowledge to determine the mechanisms of action that may be causing this association. We will use an integrated, multidisciplinary approach to identify additional agricultural pesticides that are disrupting similar molecular pathways, and determine whether these also increase the risk of Parkinson's. This work is expected to shed light on the pathological processes involved in sporadic Parkinson's disease, the most frequent form of the disorder, and could have public health implications for precautions in the use of some pesticides

Project 4: Pesticides and Genes in PD: Studies in Humans

Principal Investigator: Ritz
NIEHS

$$
09 / 15 / 08-08 / 31 / 13
$$

Total Direct Costs: $\$ 1,250,000$
This project will use the existing PEG data to test biological candidate genes and newly identified putative environmental toxicants for association with PD. We will recruit and collect biological (DNA) samples from and construct exposures estimates for 400 additional population controls. This will enable us to test new hypotheses for rarer exposures to specific toxins and will allow us to investigate gene-gene (GxG) and gene-environment (GxE) interactions with sufficient power. Targeted toxins are either (a) interfering with the ubiquitin proteasomal system (UPS), (b) altering microtubule integrity, and/or (c) inhibiting the aldehyde/alcohol dehydrogenase. Targeted genes include UBE1 and UBE1L2; PSMC2, 3, 4, and 5; HIP2; SKP1A; GSK3B; CDK5; MAPT, Sirt2, and ALDH and ADH gene clusters.

Registry of Parkinson's Disease Study In Denmark (PASIDA)

Principal Investigator: Ritz
NIEHS RO1 - ES013717
09/01/06-08/31/13
Total Direct Costs: $\$ 5,600,000$
We conduct 1) a case-control study of $\sim 13,000 \mathrm{PD}$ cases and age-gender matched controls from the Danish population via passive record linkage by unique ID between the National Patient Register, Pharmacy Database, and National Pension fund to identify risk factor information contained in these records (e.g. occupations, medication use, diseases prior to PD onset); and 2) recruit actively ~ 2500 of the most recently registered PD patients and population controls to collect additional risk factor information per interview and biological materials for gene-environment interaction analyses and to characterize PD patients phenotypically.

Air Pollution and Childhood Cancers

Principal Investigator: Heck (UCLA)
NIEHS R21- ES018960

$$
4 / 1 / 10-12 / 31 / 13
$$

Total Direct Costs: $\$ 250,000$
The specific aims of this study are to examine associations between prenatal exposure to motor vehicle related air pollution toxics and specific childhood cancers in Los Angeles County and all of California between 1980-2009 using ambient measurement data, land use based regression (LUR) and CALINE4 models.

California Parkinson's Disease Registry Pilot Feasibility Study

Principal Investigator: Ritz
DOD

09/01/07-04/30/12

Total Direct Costs: $\$ 390,000$
The primary goal is to conduct a pilot study for the legally mandated statewide population-based PD registry. We will identify PD cases in Kern, Tulare and Fresno counties from legally mandated sources (pharmacists, health care institutions, physicians and other providers). A secure prototype database will be established, and associations between PD and toxicant chemical exposure will be determined by linking to a database of toxicant chemicals established previously by UCLA based on California state data (e.g. the pesticide use databases).

UCLA UDALL Parkinson's Disease center
Principal Investigator: Chesselet, UCLA
NINDS Type: P50 NS38367
04/01/06-03/31/12
Total Direct Costs: $\$ 7,500,000$
Project 6 within the center (budget of $\$ 500,000$ annual direct costs): Progression and Health Impacts of PD Motor and Non-Motor Manifestations (C-PI Ritz)
Research goals are to assess whether development and progression of PD motor and non-motor manifestations in 300 PD patients ascertained in the PEG study (PI: Ritz see below) are influenced by environmental, behavioral, and social factors and by genetic variants of ApoE and serotonin transporter alleles; and to determine the relative contributions of progression of motor and non-motor manifestations of PD to changes in HRQOL over time.

Sunlight exposure and variations in vitamin D metabolic genes in Parkinson's disease

Principal Investigator: Ritz
NIEHS R03- ES017139 09/01/09-08/31/11
Total Direct Costs: $\$ 100,000$
The goal of the proposed research based on the PEG study population is to examine the hypothesis that long-term low levels of vitamin D either through inadequate sunlight exposure or alterations in metabolic genes that influence physiological vitamin D levels increase the risk of PD. We will test associations between long-term UV exposure measures and PD and examine whether genetic alterations presumed to result in different physiological vitamin D activity in genes critical to the vitamin D pathway (VDR, CYP27B1 and CYP24A1) increase the risk of PD.

Traffic-Related Air Pollution and Ultrasound Measures of Fetal Growth
 Principal Investigator: Wilhelm Turner (UCLA)

The specific aims of this study are to estimate prenatal exposures to O3 and PM10 and pollutants originating from traffic (NOx) using CALINE4 air dispersion modeling and examine associations with fetal size throughout pregnancy using ultrasound measures to examine associations with weight, length, head circumference, fetal growth ratio, ponderal index, and cephalization index at birth.

Ambient Air Toxics and Adverse Birth Outcomes

Principal Investigator: Wilhelm Turner (UCLA)
NIEHS R03 ES017119-01 12/15/08-12/30/10 Total Direct Costs: $\$ 100,000$
The specific aims of this study are to: (1) examine associations between prenatal exposure to motor vehicle air toxics and low birth weight (LBW) and preterm birth in women residing in Los Angeles County, California between 1994-2006 using both ambient measurement data and land use based regression (LUR) models; and (2) gain information about how LUR models built on NOx measurements reflect exposures to specific toxins thought to have biological relevance for these outcomes.

Exposure to mobile source air pollution and adverse birth outcomes in the Los Angeles Air Basin Principal Investigator: Jun Wu (UCI)
NIEHS R21 ES016379 9/11/08-12/31/10
Total Direct Costs: $\$ 250,000$
The overall goal of the project is to improve exposure assessment of air pollution exposure in pregnant women and investigate the impact of air pollution exposure on adverse reproductive outcomes, such as preterm birth, low birth weight, and intrauterine growth retardation.

Disparity in asthma among Californians from pollutant exposures.

Principal Investigator: Meng, UCLA
California Air Resources Board 04/22/08-12/31/10
Direct Costs: \$270,000
The goal of the research is to conduct a population-based study to examine the effects of long-term air pollution exposure near residence on chronic severe asthma and asthma-like symptoms in vulnerable populations.

Development of Exposure and Health Outcome Indicators for Those with Asthma or Other Respiratory Problems
Principal Investigator: Meng, UCLA
EPA- R833629
09/01/07-12/31/10
Direct Costs: $\$ 410,000$
The goal of this research is to investigate the feasibility of combining existing environmental monitoring and health survey data to develop indicators that signal trends in exposures and health for those with asthma or other respiratory problems

Neighborhood Effects on Children's Health \& Access to Care
Principal Investigator: A. Pebley, UCLA
HRSA 09/01/07-8/31/10
Total Direct Costs: $\$ 500,000$
The goal of this study is to significantly advance our knowledge about the relative importance of specific family and neighborhood characteristics in the development of major child health problems. This project is based on the Los Angeles Family and Neighborhood Survey (L.A.FANS), a longitudinal study of neighborhoods, families, adults, and children in Los Angeles County

Traffic-Related Air Pollution and Asthma in Economically Disadvantaged and High Traffic Density Neighborhoods in Los Angeles County, California (with LA F.A.N.S.)
Principal Investigator: Ritz
California Air Resources Board 01/06/05-09/30/09
Total Direct Costs: \$420,000
The objectives of this research are: (1) to conduct NO_{x} and NO_{2} monitoring at 200 locations within LA County neighborhoods with varying levels of economic disadvantage and varying exposures to air
pollution originating from vehicular sources; (2) to use these monitoring data to help inform land usebased regression (LUR) models developed to predict traffic pollutant exposures; (3) to use geostatistical models to estimate regional background concentrations of O_{3} and PM_{25}; (4) to evaluate associations between exposure to $\mathrm{NO}_{\mathrm{x}}, \mathrm{NO}$ and NO_{2} and measures of lung function and asthma prevalence, exacerbation and possibly incidence in children ages $0-17$ years in conjunction with the Los Angeles Family and Neighborhood Survey (L.A. FANS) study; and (5) to evaluate whether concentrations of the more regionally distributed background pollutants $\left(\mathrm{O}_{3}\right.$ and $\mathrm{PM}_{2.5}$) confound or modify the effects of exposure to the more heterogeneously distributed traffic-related pollutants $\left(\mathrm{NO}_{\mathbf{x}}, \mathrm{NO}\right.$ and NO_{2}) on lung function and asthma.

Aggregate Exposure Assessment: Longitudinal Surveys of Human Exposure-Related Behavior Principal Investigator: Irva Hertz-Picciotto, UC Davis EPA
 01/12/04-11/30/09

Direct Direct Costs: $\$ 388,111$
This project develops data collection platforms for longitudinal assessment of exposure-related behavior. The data characterize short-term, seasonal, and long-term changes in time-activities, food consumption habits, and use of household and personal care products. We assess exposure-related behaviors at multiple collection points over time, and evaluate a number of data collection methods for validity (accuracy), precision, completion rates, cost, feasibility, and user acceptability.

UCLA Center for Gene-Environment Studies in Parkinson's Disease (CGEP-part of the NIEHS CCPDER)
 Director: Chesselet, UCLA; Co-director: Ritz

NIEHS
09/01/02-08/31/09
Total Direct Costs: $\$ 7,000,000$
The overall objective of this Center is to understand how the detrimental effects of pesticides, a suspected environmental risk factor for Parkinson's disease, are modulated by genetic variations that impact dopamine homeostasis in nigrostriatal neurons. The center integrates 3 RO1 research projects that investigate these questions in fly, mouse, cell culture models and applies the results also to human genetics (project 1: PI Ritz)
Research Project I within the CGEP center "Environmental toxins and genes that influence dopamine in Drosophila and humans"
Principal Investigator: Ritz
NIEHS
09/01/02-08/31/09
Total Direct Costs: $\$ 1,000,000$
This project examines interindividual variability of dopamine vesicular transporter (VMAT) expression due to promoter variants in two human populations in parallel with a reporter gene assay. These populations will be genotyped for functional VMAT2 variants and association analyses of gene-environment interactions and pesticide exposures collected in the parent grant will be conducted. In addition, Drosophila genetics will be used to determine how the expression of VMAT affects dopamine-mediated toxicity and identify genes that modulate VMAT function, which will then be examined in the human population for their relevance to increase risk of PD.

Parkinson's Susceptibility Genes and Pesticides (PEG)

Principal Investigator: Ritz
NIEHS/NINDS
10/01/00-09/30/07
Total Direct Cost: $\$ 2,653,852$
We are testing the gene-environment interaction hypothesis for Parkinson's disease by conducting an epidemiologic population-based case-control study of 400 newly diagnosed PD patients from three rural California counties matched to population controls; in addition we are collecting data for unaffected sibling controls. Environmental and occupational pesticide exposure estimate are derived from California pesticide-use reporting (PUR) and other data. We are examining the effects of gene-environment interactions by testing for associations of PD using multiallelic repeat markers and genotyping intragenic single nucleotide polymorphisms (SNPs) and/or deletions in 50 candidate genes.

PD Consortium: Genetic and Environmental Factors in Parkinson's Disease
 Principal Investigator: L. Nelson, Stanford
 MJ Fox Foundation

10/01/04-09/30/07

Total Direct Costs $\$ 50,000$
We established the Consortium for the Study of Genetic and Environmental Factors in Parkinson's disease, with the goal of organizing the collaborative efforts of five investigative groups that have who have conducted (or are conducting) seven case-control studies of PD. For approximately 1700 PD cases and 2100 gender- and age-matched control subjects, we investigate how the risk of developing PD varies according to tobacco and caffeine intake, as well as variants in ten candidate genes that code for proteins that may be involved in conferring the protective effect of these agents.

Alpha Synuclein and Environmental Exposures: A Study in Humans

Principal Investigator: Langston, The Parkinson's Institute
MJ Fox Foundation 01/01/05-12/31/07
Total Direct Costs \$100,000
We are investigating the joint effects of: (1) consequences of alpha-synuclein over-production and enhanced mapping of the SNCA promoter region and (2) the biologic effects specific toxicants (e.g., rotenone, paraquat, organochlorine pesticides). We take advantage of two unique cohorts at high risk for pesticide exposure currently evaluated by members of the NIEHS-funded Collaborative Centers for Parkinson's Disease Environmental Research (CCPDER) at the Parkinson's Institute (PI) and UCLA, the Agricultural Health Study cohort and a population-based study of PD and pesticide exposure in rural Central California (the PEG study)

Prostate Cancer and Pesticide Exposure in Diverse Populations in California's Central Valley Principal Investigator: Cockburn, USC

DOD
05/01/06-12/31/07
Total Direct Costs: 250,000\$
This is a pilot study bringing an innovative collaborative approach to prostate cancer research Specifically, this study will apply novel methods of pesticide exposure assessment using Geographical Information Systems (GIS), examine whether our proposed method of recruiting and approaching cases and controls for a large population-based case-control study will result in acceptable response rates, or whether our sample will be biased with respect to socioeconomic status, race, and disease characteristics, and whether we will be able to obtain sufficient DNA from mailed (Oragene) spit collection kits to assess effect modification by known relevant genes, and have sufficient stored DNA to assess the impact of genes that may be discovered in future.

Traffic-related Air Pollution and Adverse Birth Outcomes

Principal Investigator: Ritz
NIEHS
07/15/01-06/14/07
Total Direct Costs: $\$ 641,612$
The objectives of this project are to determine whether exposures to elevated and traffic-related ambient air pollution during pregnancy result in low birth weight, preterm birth, intrauterine and postneonatal mortality, or cardiac defects in infants born to women living in the South Coast Air Basin (SoCAB). We performed a cohort study of all births (between 1995 and 1999), fetal and infant deaths (between 1989 and 1997), and conducted a nested case-control study of 2600 women who delivered children in LA in 2003 to collect additional exposure, confounder, and effects modifier data.

Ergonomic Interventions for Sewing Machine Operators

Principal Investigator: Ritz
CDC/NIOSH 10/01/02-09/31/06
Total Direct Costs: $\$ 868,262$
We are conducting a randomized trial of a newly developed ergonomic intervention in sewing machine operators working in LA garment shops. The ergonomic intervention package includes changes in workstation design, training of employees, and suggestions of improvement in work procedures. We are examining whether interventions can reduce rates of upper extremity, neck (and lower back) musculoskeletal disorders, severity of pain and impairment, and lost-time compared to 'placebo' (control) interventions. This study will provide employers, employees and public agencies with evidence of the effectiveness of ergonomic interventions in order to guide health and safety policy.

Traffic-Related Air Pollution and Acute Respiratory Diseases and Asthma in Children Ages 0-5 in the SoCAB From 1990-2000

Príncipal Investigator: Ritz
California Air Resources Board
01/06/04-09/30/05
Total Direct Costs: $\$ 55,000$
The aims of this study are to estimate the transient effects of traffic related and background air pollution in the South Coast Air Basin (SoCab) on the risk for hospitalization for acute respiratory illness and asthma in children ages 0-5 using a case- crossover study design and a time-series analysis.

Assessment of In-Traffic Exposures and Human Reproductive Health
 Pilot project Principal Investigator: Ritz; SCEHSC Center Principal Investigator: Froines, UCLA EPA
 07/01/04-06/30/05

Total Direct Costs Pilot Project within the PM-center: $\$ 28,000$
The goal of this project is to evaluate whether maternal in-vehicle air pollutant exposures during commutes (either in passenger cases, buses or other means of public transportation) affected the risk of low birth weight (LBW) and preterm birth in infants born to women living in Los Angeles County, California between 2003-2004. Commuting behavior (travel time, mileage and/or modeled routes) will be used to evaluate exposure to motor vehicle exhaust pollutants while in-transit

Molecular Epidemiology and Gene-Environment Interaction

Principal Investigator: Zhang, UCLA
NIH/NIEHS R21 ES 011667
04/01/02-03/31/05
Total Direct Costs: $\$ 450,000$
This was a planning grant for molecular epidemiology in Environmental genome. The award was to establish a molecular epidemiology research program focusing on environmental genome.

Uncontrolled Asthma and Exposure to Air Pollutants: Linking Chronic Disease and Environmental Data Sources
 Principal Investigator: Meng, UCLA
 CDC/NIOSH/ 10/01/02-09/01/05

Total Direct Costs: $\$ 600,000$
Based on the California Health Interview Survey (CHIS 2001) data, an extensive air monitoring network, and detailed information on traffic density we are conducting a population-based epidemiologic casecontrol study to (1) ascertain the relationship between control of asthma and exposure to air pollutants in Los Angeles County and San Diego County, California; and (2) build and enhance the partnerships between public health and environmental agencies and local communities.

Center of Excellence for Environmental Public Health Tracking

Principal Investigator: Balmes, UCSF

```
CDC/ATSDR
10/01/02-09/01/05
```

Total Direct Costs (UCLA only): \$300,000
The UCLA part of this center grant uses the data from 5,200 California Health Interview Survey (CHIS 2001) respondents who reported having been diagnosed with asthma at some point in their lives and live in the Greater Bay Area, San Joaquin Valley, and Los Angeles County. Criteria pollutant averages are employed as measures of background ambient air quality and linked with sociodemographic information and data on asthma management, access to care, and risk behaviors collected through CHIS for each targeted respondent.

Community Response to Maternal/Child Heath Disparities

Principal Investigator: Hobel, Cedars Sinai
NIH
04/1/03-9/30/05
The major goals of this study are to examine the interrelating biological and social-behavioral factors that contribute to health disparities in pregnancy outcomes and infant and early childhood mortality and morbidity. We will participate as one of five selected sites in the nation to plan for a multi-centered, community-based study examining the relationship between environmental factors and child health disparities.

Extension of the Rocketdyne/AI Worker Cohort Through 1999

Principal Investigator: Ritz
California Cancer Research Program
07/01/00-06/30/04

CRP award \#00-00781V-20218
Total Direct Cost: $\$ 324,508$
We extended the mortality follow-up of two previously established cohorts of workers employed at Rocketdyne/Atomics International (now Boeing North American) facility for an additional 5 years and added a cancer incidence component for the period 1972-1998. This study allowed evaluating the impact of radiation and some known animal carcinogens on cancer mortality and morbidity.

Assessment Scale for End-of-Life Care in End-Stage Dementia
 Principal Investigator: Ackerman, UCLA
 Alzheimer's Association 10/01/00-09/30/03
 Total Direct Costs: $\$ 217,583$
 This pilot project developed a scale to assess end-of-life care for end-stage dementia patients and evaluated its performance using mortality data.

Pilot grant from Southern California Center for Airborne Particulate Matter (SCCAPM)
Principal Investigator: Froines, UCLA; Pilot grant Principal Investigator: Ritz

U.S.-EPA-Star grant

07/01/01-12/31/02
Total Direct Cost: $\$ 12,000$
The pilot grant supported exposure assessment for an epidemiologic study of traffic related adverse birth outcomes.

Evaluation and Validation of Pesticide Use Reporting in California
Principal Investigator: Ritz
UC Toxic Substances Research \& Teaching Program 07/01/99-06/30/01
Total Direct Costs: $\$ 50,000$
The goal of this pilot grant was to use biomarker data to evaluate the validity of pesticide exposures estimates derived from geographic models of environmental exposure based on pesticide use reports and land use maps in California residents.

Identify and Reduce Work Hazards in Home Health Care Workers
Principal Investigator: Ritz
Institute of Labor and Employment Pilot Study 02/01/01-30/08/01
Total Direct Costs: $\$ 7,500$
This pilot project developed and tested a survey instrument and collected preliminary data for a study of job hazards in 74,000 home health care workers in LA county.

Pilot Study for Gene-Environment Interaction and Parkinson's Disease Study
Principal Investigator: Ritz
APDA Center Pilot Grant
03/01/99-12/31/00
Total Direct Costs: $\$ 35,000$
This pilot project involved establishing data resources to improve exposure measures for pesticides, and setting up of a county-wide networks to reach incident Parkinson's cases in rural California.

Development of a Temporary Parkinson's Disease Registry for Southern California

Principal Investigator: Ritz
APDA/Pilot Grant from the PD-center at UCLA 03/01/99-12/31/00
Total Direct Costs: $\$ 10,000$
This pilot project established mechanisms to obtain incident Parkinson's cases in rural California using information provided by local health care providers, Parkinson's disease foundations, clinics, and Medicare, and to determine which data sources exist for the application of capture-recapture methods to validate coverage of a future PD registry.

Modeling Air Pollution and Birth Defects

Principal Investigator: Ritz
CBDMP Grant/SCEHS/NIEHS Pilot Grant
07/01/00-09/30/00
Total Direct Costs: $\$ 5,600$
The objective of this project was to examine the usefulness of some advanced statistical modeling procedures in order to determine whether exposures to elevated levels of ambient air pollutants (PM10,

CO) at the levels found in the South Coast Air basin (SoCAB) basin caused defects of the cardiac system of fetuses.

Pesticide Exposure Modeling Based on Historical Use Reporting in California to Investigate LongTerm Health Effects
 Principal Investigator: Ritz
 UCLA-USC NIEHS-Center Pilot Grant 05/01/99-04/30/00
 Total Direct Costs: $\$ 18,000$
 The objectives of this pilot grant were to develop a geographic model for pesticide exposure of California residents between 1950 and 1990 using satellite images of crops, aerial photographs, and Pesticide Use Reporting Data from the California Department of Pesticide Regulations.

Epidemiologic Study to Determine Possible Adverse Health Effects on Rockwell/Rocketdyne Workers from Exposure to Radioactive and Hazardous Substances
 Principal Investigator: Morgenstern, UCLA
 CPHF/DOE/DE-FG-03-91SF18983 01/10/93-03/31/99
 Total Direct Costs: $\$ 740,000$
 The major goal of this study was to test the hypothesis whether exposure to toxic chemicals and ionizing radiation among Rockwell/Rocketdyne workers caused an excess of cancer mortality.

Hazard Surveillance in the Defense Nuclear Industry

Principal Investigator: Froines, UCLA
CDC/NIOSH/R01-CCR912034 09/01/95-08/31/99
Total Direct Costs: $\$ 1,244,745$
The major goals of this project were to develop an integrated theory, approach, and methodology to exposure assessment and hazard surveillance in the U.S. defense nuclear industry.

The Influence of Air Pollution in the Los Angeles Metropolitan Area on the Occurrence of Birth Defects, 1990-1993
Principal Investigator: Ritz
SCEHSC/NIEHS/UCLA-USC NIEHS-Center Pilot Grant 09/01/97-09/30/98
Total Direct Costs: $\$ 24,000$
The objective of this pilot project were to examine whether the exposure of pregnant women to elevated levels of ambient air pollutants (Ozone, NO2, PM10, CO) at the levels found in the Los Angeles Metropolitan Area or the South Coast Air basin (SoCAB) basin cause low birth weight or preterm birth.

RESEARCH CONDUCTED IN GERMANY (1984-1989)

Health effects of airborne-dioxin exposure in Hamburg nursery schools
Rheumatic disorders, working conditions and coping behaviors in female office workers
Work-related knee-joint and elbow injuries in pipe-fitters and welders
Back and neck pain, psycho-social and ergonomic stresses in nursing professions

HONORS AND AWARDS

1999	UCLA Faculty Career Development Award
1999	'Rothman' award presented at SER by C. Poole
1989-1992	Post-doctoral fellowship received from DAAD ("German Academic Exchange Office of the Ministry of Research and Technology")
2001	Delta-Omega Award
2007	Robert M. Zweig M.D. Memorial Award (Clean Air Award) from the South Coast Air Quality Management District (AQMD)
2009	Award from the American Parkinson's Disease Association for outstanding contributions to the medical and scientific communities and for my work towards the advancement of Parkinson's disease research

TEACHING

UCLA, School of Public Health, graduate courses, 1995-present
Epidemiology Methods (Core methods course (200B) in the UCLA Epidemiology program)
Environmental Epidemiology
Occupational Epidemiology
Advanced Methods in Occupational and Environmental Epidemiology
Seminar: Occupational and Environmental Cancers
Seminar: Policy Issues in Occupational and Environmental Health
University of Hamburg, Medical School, 1984-89
Lectures and seminars in Medical Sociology for medical students
Lectures and seminars in Psychiatry for medical students
ADVISING AND MENTORING OF DOCTORAL STUDENTS (PH.D) AND POSTDOCTORAL FELLOWS (SUBJECT OF DISSERTATION OR FELLOWSHIP)- note: this list only includes primary advisees (i.e. chair of committee and not member of dissertation committee) and does not include master level students At UCLA:
1997-2001 Kurt Straif (Cancer mortality in the German rubber industry)
1998-2000 Timothy Clary (Pancreatic cancer mortality and pesticide use in California)
1998-2004 Michelle Wilhelm (Traffic-related air pollution and pregnancy related health effects)
1998-2004 Rudy Rull (GIS modeling of pesticide exposure and neural tube defects)
1998-2004 Anusha Krishnadsan (Occupational physical activity and prostate cancer incidence)
2001-2004 Yingxu Zhao (Work piace exposures to chemicals and cancer incidence)
2003-2004 Gail Asleson Kang (Movement Disorder Fellow: Clinical characteristics of PD patients)
2002-2006 Pin-Chieh Jason Wang (Ergonomic interventions and health effects in LA garment workers)
2003-2006 Chad Lewis (TTHM contamination in drinking water and adverse birth outcomes)
2003-2005 Kathrine Hoggatt (co-mentored with Dr Greenland: Air pollution and adverse birth outcomes)
2004-2008 Angelika Wahner (Doctoral student \& postdoctoral fellow: Parkinson's disease, genetic factors and anti-inflammatory drug use)
2004-2008 Marie Sharp (The Latina Paradox in Birth Outcomes)
2004-2008 Sadie Costello (Parkinson's disease and life style factors)
2005-2008 Shannon Rhodes (Doctoral student \& postdoctoral fellow: Iron genetics and Parkinson's disease)
2008-2010 Nicole Gatto (Postdoctoral fellow: Vitamin D, sunlight and Parkinson's disease)
2004-2008 Amanda Colligan (Residential pesticide exposure and Parkinson's disease)
2005-2012 Anthony Wang (Occupational pesticide exposures and Parkinson's disease)
2007-2011 JoKay Ghosh (Air toxics and adverse birth outcomes)
2008-2013 Tracy Becerra (Autism and race ethnicity in Los Angeles)
2008-2013
Erin Jacob-Marcotte (Pesticides in pregnancy and childhood cancers)
Anshu Shresta; post-doctoral fellow (Childhood cancers and the environment)
2011-2012 Anshu Sei Chen Lee; postdoctoral fellow (Air pollution and pregnancy biomarkers)
2009-2014 Shilpa Narayan (Progression in Parkinson's disease)
2009-2014 Christina Lombardi (Air pollution and childhood cancers)
2011-2014 Zeyan Liew: PFOA exposures in the Danish birth cohort and ADHD and autism)
2012 -present
2012 -present
2011- present
2011- present
2011- present
2012- present
2013- present
2013- present
2013- present
2013- present
2013- present

Gretchen Bandoli (Stress, asthma and birth outcomes in LA)
Kristina Vanderwaal Hool (breast cancer and methylation patterns)
Kim Paul (Gene-environment interactions in Parkinson's - PASIDA study)
Xin Cui (Bias analysis in the PASIDA study of Parkinsons)
Andrew Park (Pesticides and childhood cancers)
Vivian Alonso (Nutrition, vitamins use and reproductive health)
Yu-Hsuan Chuang (Parkinsons, gene methylation, and gene-environment interactions)
Xiaoqing Xu (Pharmaceuticals and childhood cancers in Denmark)
Matt Feaster (Occupations risk factors for childhood cancers)
I-Fan Shih (Parkinsons and physical activity)
Negar Omid (Childhood cancer risk factors)

```
2013-present Aline Duarte (Parkinson's non-motor symptoms)
2013- present Chenxiao Ling (Bias analysis in environmental epidemiology)
2014-present Cynthia Kuster (Parkinsons' and estrogen receptors)
2014-present Zuelma Esquivel (Childhood cancer risk factors)
At University of Washington:
2004-2006 Kathrine Carr (Postdoctoral Fellow: Bronchiolitis and air pollution in LA infants)
At UCI:
2011-2013 Jun Wu (junior faculty mentor for W. Rosenblith award given by HEI)
At the University of Copenhagen, Denmark:
2008-present Line Kenborg (Parkinson's disease and outdoors work and sunlight exposures)
2007-2009 Kathrine Rugbjerg (Parkinson's disease and head trauma and auto-immune diseases)
University of Umea/Sweden
2014 Opponent for doctoral student David Olsson (Air pollution and PTB and preeclampsia in
Stockholm)
```


PARTICIPATION IN GRANT AND CENTER REVIEWS

Reviewer on a NCl Special Emphasis Panel "Improving Exposure Assessment in Environmental and Occupational Epidemiology of Cancer", May 2001
Reviewer of the NIEHS-funded Columbia University Environmental Health Sciences Center, May 2002
Reviewer of the Charles Harkin Award Application for Research in Thyroid Cancer, NIH, April 2003
Reviewer of the Wellcome Trust Application "Pre and post-natal exposure to particulate matter and pregnancy and infant outcomes: an historical cohort study", 2003
Reviewer of the Health Effects Institute's (HEI) Walter Rosenblith New Investigator Award application, April 2003
Reviewer of pilot grants for the Southern California NIEHS center grant (2004 and 2005)
Reviewer of pilot grants for the UCLA-CCPDER center (NIEHS funded) (2003 and 2005 and 2008)
Reviewer for NCI, Epidemiology of Cancer (2004/05 Council EPIC)
Reviewer for several NIH, Department of Health \& Human Services meeting applications, 2003-2005
Reviewer (Chair of Review Committee) for a NIEHS-PO1 application (2004)
Appointment to Review Committee of the European Science Foundation (ESF) (2005)
Annual Review of SCEHSC Pilot Project Submission (permanent member 2004-current)
Institutional Patient-Oriented Career Development Programs in the Environmental Health Sciences [K12]
(ES06-005). (2007)
Conference grant applications (2004-2007)
NIH reviewer for Outstanding New Environmental Scientist (ONES) award in the Environmental Health Sciences (2006)
Member of the EPA's Clean Air Scientific Advisory Committee (CASAC) Carbon Monoxide (CO) Review
Panel (2008-current)
Grant review for an internal NIEHS scientist's application (Dr. Chen) (2007 and 2008)
Grant review for NIEHS special emphasis panels 2009-2010
Grant review for NIH-BCHI 2011
Pilot grant review for the Northern California Center for the National Children's Study -Pilot Projects
Program August 2011
External Review of the Neurology Department at Columbia (NY), 2011
Scientific Review of Superfund Site Projects as EAC member for University of Washington, 2012
External Review of the Swiss Tropical and Public Health Institute (TPH), 2012 and 2013
External Review of the Epidemiology Branch at NIEHS, 2013
Review for Harvard NIEHS center pilot grant, 2014
Review of applications for Health Effects Institute (HEI Boston), Rosenblith awardees, 2014
Review for Mount Sinai (NY) NIEHS center pilot grants, 2014
Review for NIEHS USC-UCLAEnvironmental Health Science center pilot grants, 2014
Review of NIEHS conference grants July 2015
Review of Parkinson's disease grant for Parkinson's UK foundation in Great Britain

JOURNAL REVIEWER FOR:

American Journal of Epidemiology
Epidemiology
International Journal of Epidemiology
Annals of Epidemiology

```
Environmental Health Perspectives
Environmental Health
Occupational and Environmental Medicine
Archives of Neurology
Annals of Neurology
Neurology
Movement Disorders
Pediatrics
JAMA
Lancet
Parkinson's and Related Disorders
Pharmacogenetics and Genomics
Journal of the Air \& Waste Management Association
Journal of Exposure Analysis and Environmental Epidemiology
Chemosphere
Zeitschrift Sozial- und Präventivmedizin (SPM)
Human Reproduction
Women \& Health
Etc.
```


INVITED SEMINARS AND LECTURES (SELECTED)

1. The Health Effects of Low-level lonizing Radiation, USC, Health Sciences 1996
2. Work Environment and Health, UCLA Health Sciences 1996
3. The Effects of Carbon Monoxide Exposure on Low Birth Weight in the LA Metropolitan Area, 19891993, USC, Southern California Environmental Health Sciences, 1997
4. Cancer Mortality in Radiation Workers, USC Southern California Environmental Health Sciences, 1997.
5. Basic Principles of Reproductive Epidemiology, European School of Risk Assessment in Reproduction" in Florence/Italy December, 1997.
6. The Rocketdyne/AI Worker Health Study: Results and Lesson's Learned, California Department of Health Services, Occupational Health Branch, 1998
7. Air Pollution and Low Birth Weight in Southern California, GSF Munich Germany, 1998.
8. Air Pollution and Adverse Birth Outcomes: Methodological Issues and First Results, Southern California Environmental Health Science Center, USC, 1998.
9. Gene-Environment Interaction and Parkinson's Disease, Neurology Grand Rounds, UCLA 1998
10. Air Pollution and Adverse Birth Outcomes in Southern California, Dept. of Reproductive Epidemiology, University of Michigan, East Lansing, 1999.
11. Methodologic Issues in Studying of Gene-Environment Interaction, GSF Munich Germany, 1999
12. Methodologic Aspects of Studying Cancer Mortality in Radiation Workers, Dept. of Epidemiology, University of Michigan, East Lansing, 2000.
13. Cancer Mortality in Fernald Uranium Workers, NIOSH, Cincinnatti, 2000.
14. GIS Modeling of Pesticide Exposures in California, Dept. Environmental Epidemiology, GSF Munich Germany, 2000
15. Traffic-related Air Pollution and Adverse Birth Outcomes in Southern California, Dept. Environmental Epidemiology, GSF Munich Germany, 2000
16. Studying Parkinson's disease in Populations; American Parkinson's Disease Association conference for patients and care providers at UCLA, 2001
17. From the Epidemiology of Parkinson's Disease to Gene-Environment Interactions, VA-PD conference, Woodland Hills, 2001
18. GIS Modeling of Air Pollution and Pesticide Exposures in California, USC-UCLA NIEHS Town hall meeting; Dec, 2001
19. GIS Modeling in the context of a Gene-Environment Interaction study of Parkinson's disease, Dept Environmental Epidemiology, GSF Munich Germany, 2001
20. The Epidemiology of Parkinson's Disease, Conference of the Society for Research on Amyotrophic Lateral Sclerosis, Colorado May 2002
21. Traffic-related Air Pollution and Reproductive Health Effects: An Overview; Environmental Health Sciences seminar at UC Riverside, Feb. 2002
22. Reproductive Health Effects due to Carbon Monoxide Air Pollution in Southern California, NRC

Subcommittee on Health Effects from CO pollution meeting at UC Irvine, April 2002
23. Traffic-related Air Pollution and GIS Modeling in Southern California, USC-GIS Workshop Pasadena, May 2002
24. Health Effects Modeling with GIS, USC-GIS Workshop Public Forum at USC, May 2002
25. Dopamine Imbalance and Oxidative Stress in Parkinson's Disease, VA Research Conference on PD and Movement Disorders, Los Angeles 2002
26. The Center for Gene Environment Interaction in Parkinson's disease (CGEP) at UCLA: Dopamine Imbalance in Parkinson's Disease, Inaugural NIEHS Conference at the Parkinson's Institute in Sunnyvale CA, August 2002
27. Air pollution effects on birth outcomes: An overview. Health Effects Institute, Annual conference held at Georgetown University; 2003
28. Linking air pollution effects and adverse birth outcomes in the Los Angeles basin throughout the 1990s. U.S. EPA, Chapel Hill, NC; 2003
29. Air Pollution and Adverse Birth Outcomes in the South Coast Air Basin, 1989-2000; Conference of the Czech NAS meeting on air pollution effects (Dr. Sram), Prague, 2003.
30. Air pollution and adverse birth outcomes, an update on recent developments. Department of Preventive Medicine at the University of Southern California, 2003
31. GIS modeling of environmental exposures: applications to air pollution and pesticide exposures Department of Environmental Health, Harvard, 2004
32. Air pollution models of adverse birth outcomes. Department of Epidemiology at the University of North Carolina, 2004
33. Parkinson's disease, metals and pesticides. Department of Toxicology, Symposium on Toxics Risks and Aging, Duke 2005
34. Air pollution and adverse birth outcome research in the SoCAB from 1995-2005. California Air Resources Board, Sacramento, Sept 2005
35. Parkinson's disease and pesticide exposure assessment in farming communities in the California Central Valley. Symposium of the Ramazzini Conference, Bologna, Italy Sept. 2005
36. Parkinson's disease and aging. UCLA Center on Aging Research Conference on Aging 2006.
37. Air Pollution and Asthma in Children. AQMD Asthma Impacts of Air Pollution Conference Los Angeles, Feb. 2006
38. Parkinson's disease and pesticides in the Central California Valley. NIEHS center at Columbia University, NY 2007
39. Assessing pesticides exposures for prostate cancers in the Central California Valley. IARC, Lyon 2007
40. Air pollution and adverse birth outcomes in LA. INSERM, Paris 2007
41. Gene Environment Interactions in Parkinson's disease. CREAL Institute, Barcelona 2008
42. Latest results on Gene Environment Interactions in Parkinson's disease. INSERM, Paris 2008
43. Re-assessing Gene Environment Interactions in Parkinson's disease. MDS conference symposium, Chicago 2008
44. Methodological Issues in studying risk factor for Parkinson's disease in populations. MDS conference symposium, Chicago 2008
45. Environmental and occupational health studies in California. University of Dublin 2008
46. Air pollution, pregnancy and child health; Healthy Development and Ageing Workshop; British Foreign \& Commonwealth Office, LA 2009
47. Air pollution, pregnancy and child health; Physician's for Social Responsibility Environmental training 2009
48. Air pollution and adverse pregnancy outcomes in LA; Annenberg School of Journalism 2009
49. Parkinson's disease and pesticides. George Washington University Environmental Health Program 2009
50. LUR model for traffic related exposures and adverse bith outcomes in LA. Helmholtz Center Munich 2010
51. Parkinson's disease and gene-pesticide interactions. Symposium on Predictive Health, Human Health: Molecules to Mankind. Emory University Atlanta Dec 2010
52. Air Pollution and Adverse Birth Outcomes, invited speaker at HEl annual conference Boston 2011
53. Parkinson's disease in Denmark; the PASIDA study; University of Odense Denmark, May 2011
54. Gene-environment interactions in Parkinson's disease, invited symposium speaker at the International Society for Environmental Epidemiology (ISEE), Barcelona 2011
55. Air Pollution and the Brain; invited plenary speaker at the annual conference of the International Society for Environmental Epidemiology (ISEE), South Carolina 2012
56. Air Pollution and Autism; invited speaker at the University of Aarhus, Denmark 2012
57. Air Pollution, Children and Women's Health in LA; invited speaker at the SCAMQD conference for stakeholders, LA 2013
58. How to be an Epidemiologist, invited speaker at SER, Boston 2013
59. Pesticides and Neurodegeneration; invited speaker at the Conference on safety of fumigated container shipping in Berlin, Germany 2014
60. History of Environmental and Occupational Epidemiology, invited speaker at SER, Seattle 2014
61. History of Air Pollution, Adverse Birth Outcomes and Children's Health in California; Invited Plenary Speaker for the ISEE Young Researcher Conference, Barcelona 2014
62. Environmental Causes of Adverse Neurodevelopment; Invited Speaker at the B-Debate Barcelona (Environment and Child Brain Development: the Challenges in the Global Context) Conference, Barcelona 2014
63. Autism Epidemiology; invited speaker at the annual CART meeting UCLA 2014
64. Epidemiology of Parkinson's disease, invited speaker at annual GEO-PD meeting Vancouver CA, 2014
65. Parkinson's Disease Epidemiology: a Gene-Environment Perspective, invited speaker at the Neurogenetics Institute of Luebeck/Germany, 2015

PUBLICATIONS

PEER REVEIWED JOURNAL ARTICLES (*indicates mentored students/fellows)

1. Ritz B. Humeral Epicondylitis Among Gas- And Waterworks Employees. Scandinavian Journal of Work, Environment and Health, 1995 Dec, 21 (6): 478-86.
2. Ritz B, Heinrich J, Wjst M, Wichmann E, Krause C. Effect Of Cadmium Body Burden On Immune Response Of School Children. Archives of Environmental Health 1998, Jul-Aug; Vol 53: 272-280
3. Ritz B, Morgenstern H, Froines J, Young B. Effects Of Exposure To External Ionizing Radiation On Cancer Mortality In Nuclear Workers Monitored For Radiation At Rocketdyne/Atomics International. AJIM 1999, Jan; Vol 35: 21-31.
4. Ritz B, Yu F. The Effect Of Ambient Carbon Monoxide On Low Birth Weight Among Children Born In Southern California Between 1989 and 1993. Environmental Health Perspectives 1999 Jan, 107(1) 17-25 PMCID PMC1566307
5. Heinrich J, Hoelscher B, Wjst M, Ritz B, Cyrys J, Wichmann HE. Respiratory Diseases And Allergies In Two Polluted Areas In East Germany. Environmental Health Perspectives 1999, Jan; 107(1):53-62. PMCID: PMC1566314
6. Ritz B, Morgenstern H, Moncau J. Age At Exposure Modifies The Effects Of Low-Level lonizing Radiation On Cancer Mortality In An Occupational Cohort. Epidemiology 1999, Mar; 10(2):135-140.
7. Ritz B. Radiation Exposure and Cancer Mortality In Uranium Processing Workers. Epidemiology, 1999, Sep; 10:531-538
8. Ritz B. Cancer Mortality Among Workers Exposed To Chemicals During Uranium Processing. JOEM 1999, Jul;41(7):556-566.
9. Ritz B, Morgenstern H, Froines J., Moncau J. Chemical Exposures Of Rocket Engine Test Stands Personnel And Cancer Mortality In A Cohort Of Aerospace Workers. JOEM, 1999 Oct; 41(10): 903910.
10. Jacob B, Ritz B, Heinrich J, Hoelscher B, Wichmann HE. The Effect Of Low-Level Blood Lead On hematologic parameters In Children. Environmental Research, 2000 Feb, 82 (2): 150-159.
11. Ritz B, Yu F. Parkinson's Disease Mortality And Pesticide Exposure In California 1984-1994. International Journal of Epidemiology, 2000 Apr, Vol. 29:323-329.
12. Hoelscher B, Heinrich J, Jacob B, Ritz B, Wichmann HE, Gas Cooking, Respiratory Health And White Blood Cell Counts In Children. Int. J. Hygiene and Environ Health, 2000 Mar; 203 (1): 29-37.
13. Ritz B, Morgenstern H, Crawford-Brown D, Young B. The Effects Of Internal Radiation Exposure On Cancer Mortality In Nuclear Workers At Rocketdyne/Atomics International. Environ Health Perspect, 2000 Aug; 108(8):743-751. PMCID: PMC1638302
14. Ritz B, Yu F, Chapa G, Fruin S. Effect Of Air Pollution On Preterm Birth Among Children Born In Southern California Between 1989 And 1993. Epidemiology, 2000 Sep; 11(5):502-511.
15. Morgenstern H, Ritz B. Effects of Radiation And Chemical Exposures On Cancer Mortality Among Rocketdyne Workers: A Review of Three Cohort Studies. Occup. Med. 2001 Apr-Jun; 16(2): 219-237.
16. Ritz B, Yu F, Chapa G, Fruin S, Shaw G, Harris J. Ambient Air Pollution And Risk of Birth Defects in Southern California. Am J Epidemiol 2002 Jan 1,155:17-25.
17. Ritz B. Hoelscher B, Frye C, Meyer I, Heinrich J. Allergic sensitization owing to 'second-hand' cat exposure in schools. Allergy 2002 Apr ; 57 (4):357-61
18. Jacob B, Ritz B, Gehring U, Koch A, Bischof W, Wichmann HE, Heinrich J for the INGA-Study group. Indoor Exposure To Molds And Allergic Sensitization. Environ Health Perspect. 2002 Jul: 110(7):64753. PMCID: PMC1240910
19. Clary T, Ritz B. Pancreatic Cancer Mortality And Organochlorine Pesticide Exposure In California, 1989-1996. Am J Ind Med. 2003 Mar;43(3):306-13.
20. Wilhelm M, Ritz B. Residential Proximity To Traffic And Adverse Birth Outcomes in Los Angeles County, California, 1994-1996. Environ Health Perspect. 2003 Feb; 111(2):207-16. PMCID: PMC1241352
21. Rull R, Ritz B. Historical Pesticide Exposure In California Using Pesticide Use Reports And Land-Use Surveys: An Assessment Of Misclassification Error And Bias. Environ Health Perspect. 2003 Oct; 111(13):1582-9. PMCID: PMC1241678.
22. Hashibe M, Ritz B, Le AD, Li G, Sankaranarayanan R, Zhang ZF. Radiotherapy For Oral Cancer As A Risk Factor For Second Primary Cancers. Cancer Letters 2005 Apr 8; 220(2):185-195.
23. Ritz,B, Tager I, Balmes J. Can Lessons From Public Health Disease Surveillance Be Applied To Environmental Public Health Tracking? Environ Health Perspect. 2005 Mar; 113(3):243-9. PMCID: PMC1253746
24. Kang G, Bronstein JM, Masterman DL, Redelings M, Crum JA. Ritz B. Clinical Characteristics In Early Parkinson's Disease In A Central Californian Population-Based Study. Mov Disord. 2005 Sep; 20(9):1133-42. PMCID: PMC3643967
25. Ponce NA, Hoggatt KJ, Wilhelm M, Ritz B. Preterm Birth: The Interaction Of Traffic-Related Air Pollution With Economic Hardship In Los Angeles Neighborhoods. Am J Epidemiol. 2005 Jul 15;162(2):140-8.
PMCID: PMC3636775
26. Wilhelm M, Ritz, B. Local Variations in CO And Particulate Air Pollution And Adverse Birth Outcomes In Los Angeles County, California, USA. Environ Health Perspect; 2005 Sep;113(9): 1212-21. PMCID: PMC1280404
27. Rull RP, Ritz B, Shaw GM. Validation Of Self-Reported Proximity To Agricultural Crops in A CaseControl Study Of Neural Tube Defects. Journal of Exposure Analysis and Environmental Epidemiology; J Expo Sci Environ Epidemiol. 2006 Mar; 16(2):147-55.
28. Zhao Y, Krishnadasan A, Kennedy N, Morgenstern H. Ritz B. Estimated effects of solvents and minerai oils on cancer incidence and mortality in a cohort of aerospace workers. Am Jind Med. 2005 Oct,48(4):249-58.
29. Lewis C, Suffet I, Ritz B. Estimated Effects Of Disinfection By-Products On Birth Weight In A Population Served By A Single Water Utility. Am J Epidemiol. 2006 Jan 1;163(1):38-47.
30. Karr C, Lumley T, Shepherd K, Davis R, Larson T, Ritz B, Kaufman J. A Case Crossover Study Of Wintertime Ambient Air Pollution And Infant Bronchiolitis. Environ Health Perspect. 2006 Feb;114(2):277-81. PMCID: PMC1367844
31. Ritz B, Zhao Y, Krishnadasan A, Kennedy N, Morgenstern H. Estimated Effects of Hydrazine Exposure on Cancer Incidence and Mortality in Aerospace Workers. Epidemiology. 2006 Mar;17(2):154-61.
32. Rull RP, Ritz B, Shaw GM. Neural Tube Defects And Maternal Residential Proximity To Agricultural Pesticide Applications. Am J Epidemiol. 2006 Apr 15; 163(8):743-53
33. Glatt CE, Wahner AD, White DJ, Ruiz-Linares A, Ritz B. Gain Of Function Haplotypes In The Vesicular Monoamine Transporter Promoter Are Protective For Parkinson Disease In Women. Hum Mol Genet. 2006 Jan 15;15(2):299-305. PMCID PMC3643966
34. Marusek JC, Cockburn MG, Mills PK, Ritz B. Control Selection And Pesticide Exposure Assessment Via GIS In Prostate Cancer Studies. Am J Prev Med. 2006 Feb;30(2 Suppl):S109-16.
35. Ritz B, Wilhelm M, Zhao Y. Air pollution and infant death in southern California, 1989-2000. Pediatrics 2006 Aug; 118(2);493-502. PMCID: PMC3636770
36. Schernhammer E, Chen H, Ritz B. Circulating Melatonin Levels: Possible Link Between Parkinson's Disease And Cancer Risk? 2006 May;17(4):577-82.
37. Karr C, Lumley T, Schreuder A, Davis R, Larson T, Ritz B, Kaufman J. Effect of Subchronic and Chronic Exposure to Ambient Air Pollutants on Infant Bronchiolitis. Am J Epidemiol. 2007 Mar 1;165(5):553-60.
38. Ritz B, Ascherio A, Checkoway H, Marder KS, Nelson LM, Rocca WA, Ross GW, Strickland D, Van Den Eeden SK, Gorell J. Pooled Analysis Of Tobacco Use And Risk Of Parkinson Disease. Arch Neurol. 2007 Jul;64(7):990-7.
39. Ritz B, Costello S. Geographic model and biomarker-derived measures of pesticide exposure and Parkinson's disease. Ann N Y Acad Sci. 2006 Sept;1076:378-87. PMCID: PMC3656600
40. Elbaz A, Nelson LM, Payami H, loannidis JPA, Fiske BK, Annesi G, Belin AC, Factor SA, Ferrarese C, Hadjigeorgiou GM, Higgins DS, Kawakami H, Krüger R, Marder KS, Mayeux RP, Mellick GD, Nutt JG, Ritz B, Samii A, Tanner CM, Van Broeckhoven C, Van Den Eeden SK, Wirdefeldt K, Zabetian CP, Dehem M, Montimurro JS, Myers RM, Southwick A, Trikalinos TA. Lack Of Replication Of Thirteen Single-Nucleotide Polymorphisms Implicated In Parkinson's Disease A Large-Scale International Study. Lancet Neurol. 2006 Nov; 5(11):917-23. PMCID: PMC3636768
41. Rempel DM, Wang PC, Janowitz I, Harrison RJ, Yu F, Ritz B. A Randomized Controlled Trial Evaluating the Effects of New Task Chairs on Shoulder and Neck Pain among Sewing Machine Operators: The Los Angeles Garment Study. 2007 Apr 20. Spine; 32(9): 931-938
42. Wahner AD, Sinsheimer JS, Bronstein JF, Ritz B. Inflammatory Cytokine Gene Polymorphisms And Increased Risk of Parkinson disease. Arch Neurol. 2007 Jun;64(6): 836-40.
43. Wahner AD, Glatt CE, Bronstein JM, Ritz B. Glutathione S-Transferase Mu, Omega, Pi, And Theta Class Variants And Smoking In Parkinson's Disease. Neurosci Left. 2007 Feb 21;413(3):274-8. PMCID: PMC1864949
44. Lewis C, Suffet HI, Hoggatt KJ, Ritz B. Estimated Effects of Disinfection By-products On Preterm Birth in a Population Served by a Single Water Utility. Environ Health Perspect. 2007 Feb;115(2):2905. PMCID: PMC1831522
45. Krishnadasan A, Kennedy N, Zhao Y, Morgenstern H, Ritz B. Nested Case-Control Study of Occupational Chemical Exposures and Prostate Cancer in Aerospace and Radiation Workers. Am J Ind Med. 2007 May; 50(5):383-90.
46. Meng YY, Wilhelm M, Rull R, English P, Ritz B. Traffic And Outdoor Air Pollution Levels Near Residences And Poorly-Controlled Asthma In Adults. Ann Asthma, Allergy, Immunol; 2007 May, 98(5), 455-63.
47. Wang PC, Rempel DM, Harrison RJ, Chan J, Ritz B. Work-Organizational And Personal Factors Associated With Upper Body Musculoskeletal Disorders Among Sewing Machine Operators. Occup Environ Med. 2007 Dec;64(12):806-13. Epub 2007 May 23 PMCID: PMC2095384
48. Ritz B, Wilhelm M, Hoggatt KJ, Ghosh JKC. Ambient Air Pollution And Preterm Birth In the Environment And Pregnancy Outcomes Study at the University of California, Los Angeles. Am J Epidemiol. 2007 Nov 1;166(9):1045-52.
49. Wahner AD, Bronstein JM, Bordelon YM, Ritz B. Nonsteroidal Anti-Inflammatory Drugs May Protect Against Parkinson Disease. Neurology. 2007 Nov 6;69(19):1836-42.
50. Wahner AD, Bronstein JM, Bordelon YM, Ritz B. Statin Use and the Risk of Parkinson's Disease. Neurology. 2008 Apr 15;70(16 Pt 2):1418-22. PMCID: PMC3690297
51. Krishnadasan A, Kennedy N, Zhao Y, Morgenstern H, Ritz B. Nested Case-control Study of Occupational Physical Activity and Prostate Cancer Among Workers Using a Job Exposure Matrix. Cancer Causes Control. 2008 Feb;19(1):107-14.
52. Ritz B, Wilhelm M. Ambient Air Pollution And Adverse Birth Outcomes: Methodologic Issues In An Emerging Field. Basic Clin Pharmacol Toxicol. 2008 Feb;102(2):182-90. PMCID: PMC3656653
53. Meng YY, Withelm M, Rull RP, English P, Nathan S, Ritz B. Are frequent asthma symptoms among low-income individuals related to heavy traffic near homes, vulnerabilities, or both? Ann Epidemiol. 2008 May; 18(5):343-50.
54. Wilhelm M, Qian L, Ritz B. Outdoor air pollution, family and neighborhood environment, and asthma in LA FANS children. Health Place. 2009 Mar;15(1):25-36. PMCID: PMC2658528
55. Heck JE, Ritz B, Hung R, Hashibe M, Boffetta P. The Epidemiology of Neuroblastoma: A Review. Paediatr Perinat Epidemiol. 2009 Mar;23(2):125-43
56. Wilhelm M, Meng YY, Rull RP, English P, Balmes J, Ritz B. Environmental public health tracking of childhood asthma using California health interview survey, traffic, and outdoor air pollution data. Environ Health Perspect 2008 Sep; 116(9):1254-60. PMCID: PMC2535631
57. Wang PC, Ritz, B, Janowitz I, Harrison RJ, Yu F, Chan J, Rempel DM. A Randomized Controlled Trial of Chair Interventions on Back and Hip Pain Among Sewing Machine Operators: The Los Angeles Garment Study. J Occup Environ Med. 2008 Mar;50:255-262
58. Wang PC, Rempel DM, Hurwitz EL, Harrison RJ, Janowitz I, Ritz B. Self-Reported Pain And Physical Signs For Musculoskeletal Disorders In The Upper Body Region Among Los Angeles Garment Workers. Work. 2009;34(1):79-87.
59. Rhodes SL, Ritz, B. Genetics of Iron Regulation and the Possible Role of Iron in Parkinson's Disease. In Neurobiol Dis. 2008 Nov, 32(2):183-95. PMCID: PMC3643980
60. Goldberg DW, Wilson JP, Knoblock CA, Ritz B, Cockburn MG. An effective and efficient approach for manually improving geocoded data. International Journal of Health Geographics 2008 Nov 26, 7:60. PMCID: PMC2612650.
61. Ritz B, Rull R. Assessment of Environmental Exposures from Agricultural Pesticides in Childhood Leukemia Studies: Challenges and Opportunities. Radiat Prot Dosimetry. 2008;132(2):148-55.
62. Rugbjerg K, Ritz B, Korbo L, Martinussen N, Olsen JH. Risk for Parkinson's disease after hospital contact for head injury: a population-based case-control study. BMJ. 2008 Dec 15;337. PMCID: PMC2603581
63. Costello S*, Cockburn M., Bronstein J, Zhang X, Ritz B. Parkinson's disease and residential exposure to Maneb and Paraquat from agricultural applications in the central valley of California. Am J Epidemiol. 2009 Apr 15;169(8):919-26. PMCID: PMC2727231.
64. Hoggatt KJ, Greenland S, Ritz B. Adjustment for response bias via two-phase analysis: an application. Epidemiology. 2009 Nov;20(6):872-9. PMCID: PMC3656648
65. Wang PC, Harrison RJ, Yu F, Rempel DM, Ritz B. Follow-up Of Neck And Shoulder Pain Among Sewing Machine Operators: the Los Angeles Garment Study. Am J Ind Med. 2010 Apr;53(4):352-60.
66. Ritz B, Manthripragada A, Costello S, Lincoln SJ, , Farrer M, Cockburn M, Bronstein J. Dopamine transporter genetic variants and pesticides in Parkinson's disease. Environ Health Perspect 2009 Jun;117(6):964-9 PMCID: PMC2702414.
67. Meng YY, Rull RP, Wilhelm M , Lombardi C,Balmes J, Ritz B. Outdoor air pollution and uncontrolled asthma in the San Joaquin Valley, California. J Epidemiol Community Health. 2010 Feb;64(2):142-7.
68. Manthripragada A, Cockburn M, Costello S, Bronstein J, Ritz B. Paraoxonase 1, agricultural organophosphate exposure, and Parkinson disease. Epidemiology. 2010 Jan;21(1):87-94. PMCID: PMC3117899
69. Su JS, Jerrett M, Beckerman B, Wilhelm M, Ghosh JK, Ritz B. Predicting traffic-related air pollution in Los Angeles using a distance decay regression selection strategy. Environ Res. 2009; Aug; 109(6):657-70. PMCID: PMC 3656661
70. Wu J, Ren C , Delfino R, Chung J, Wilhelm M, Ritz B. Association between local traffic-generated air pollution and preeclampsia and preterm delivery in the South Coast Air Basin of California. Environ Health Perspect. 2009 Nov;117(11):1773-9. PMCID: PMC2801174.
71. Gatto N, Cockburn M, Bronstein J, Manthripragada A, Ritz B. Well Water Consumption and Parkinson's Disease in Rural California. Environ Health Perspect 2009 Dec; 117: 1912-1918 PMCID: PMC2799466.
72. Rugbjerg K, Friis S, Ritz B, Schernhammer ES, Korbo L, Oisen JH. Autoimmune disease and risk for Parkinson's disease: a population based case-control study. Neurology. 2009 Nov 3;73(18):1462-8. PMCID: PMC2779008
73. Rod-Nielsen N, Schernhammer E, Hansen J, Ritz B. Major life events and risk of Parkinson's disease. Mov Disord. 2010 Aug 15;25(11):1639-45. PMCID: PMC2928859
74. Plaitakis A, Latsoudis H, Kanavouras K, Ritz B, Bronstein JM, Skoula I, Mastorodemos V, Papapetropoulos S, Borompokas N, Zaganas I, Xiromerisiou G, Hadjigeorgiou GM, Spanaki C._Gain-of-function variant in GLUD2 glutamate dehydrogenase modifies Parkinson's disease onset. Eur J Hum Genet. 2010 Mar;18(3):336-41. PMCID: PMC2987208
75. Ritz B, Rhodes SL, Qian L, Schernhammer E, Olsen J, Friis, S. L-type Calcium Channel blockers and Parkinson disease in Denmark. Ann Neurol. 2010 May;67(5):600-6. PMCID: PMC2917467
76. Gosh JKC, Wilhelm M, Dunkel-Shetter C, Lombardi C*, Ritz B. Paternal support and preterm birth, and the moderation of effects of chronic stress: a study in Los Angeles county mothers. Arch Womens Ment Health. 2010 Aug;13(4):327-38.PMCID: PMC2896639
77. Costello S, Bordelon Y, Bronstein J, Ritz B. Familial Associations of Alzheimer Disease and Essential Tremor with Parkinson Disease. Eur J Neurol. 2010 Jun 1;17(6):871-8. PMCID: PMC2895681
78. Wu J, Hou H, Ritz B, Chen Y Exposure to Polycyclic Aromatic Hydrocarbons and Missed Abortion in Early Pregnancy in a Chinese Population. Science of the Total Environment 2010 May 1;408(11):2312-8.
79. Ritz B, Mandripragada A, Qian L, Schernhammer E, Olsen J, Wermuth L, Friis S. Statin use and Parkinson's Disease in Denmark. Mov Disord. 2010 Jul 15;25(9):1210-6. PMCID: PMC2910157
80. Rugbjerg K, Friis S, Jorgensen T, Ritz B, Korbo L, Olsen JH. Risk of Parkinson disease among patients with osteoarthritis: a Danish cohort study. Mov Disord. 2010 Oct 30;25(14):2355-60 PMCID:PMC2992436
81. Gatto NM, Rhodes SL, Manthripragada AD, Bronstein J, Cockburn M, Farrer M, Ritz B. a-Synuclein Gene May Interact with Environmental Factors in Increasing Risk of Parkinson's Disease. Neuroepidemiology. 2010;35(3):191-5. PMCID: PMC2945263
82. Wu X, Bennett DH, Ritz B, Frost J, Cassady D, Lee K, Hertz-Picciotto I. Residential Insecticide Usage in Northern California Homes with Young Children. J Expo Sci Environ Epidemiol 2011 Jul-Aug;21(4):427-36
83. Jacob EL, Gatto NM, Thompson A, Bordelon Y, Ritz B. Occurrence of Depression and Anxiety prior to Parkinson's Disease. Parkinsonism Relat Disord. 2010 Nov; 16(9):576-81. PMCID: PMC2963655
84. Wu X, Bennett DH, Ritz B, Cassady DL, Lee K, Hertz-Picciotto I. Usage Pattern of Personal Care Products in California Households. Food Chem Toxicol. 2010 Nov; 48(11):3109-19.
85. Rhodes SL, Sinsheimer JS, Bordelon Y, Bronstein JM, Ritz B. Replication of GWAS associations for GAK and MAPT in Parkinson's disease. Annals of Human Genetics. Ann Hum Genet. 2011 Mar;75(2):195-200. PMCID PMC3074465
86. Kenborg L, Funch C, Ritz B, Schernhammer E, Hansen J, Gatto N, Olsen JH. Outdoor work and risk for Parkinson disease: a population-based case-control study. Occup Environ Med. 2011 Apr;68(4):273-8. PMCID: PMC3667158
87. Hertz-Picciotto I, Cassady D, Lee K, Bennett DH, Ritz B, Vogt R. Study of Use of Products and Exposure-Related Behaviors (SUPERB): study design, methods, and demographic characteristics of cohorts. Environ Health. 2010 Aug 29;9:54. PMCID: PMC2940867
88. Sapkota A, Chelikowski A, Nachman K, Cohen A, Ritz B. Exposure to Particulate Matter and Adverse Birth Outcomes: A Comprehensive Review and Meta Analysis. Air Quality, Atmosphere and Health; 2012, Vol 5, Issue 4; 369-381
89. Cockburn M, Mills P, Zhang X, Zadnick j, Goldberg D, Ritz B. Prostate cancer and ambient pesticide exposure in agriculturally intensive areas in California. Am J Epidemiol. 2011 Jun 1;173(11):1280-8 PMCID: PMC3121318
90. Popat R, Van Den Eeden SK, Tanner CM, Kamel F, Umbach D, Marder K, Mayeux R, Ritz B, Ross GW, Petrovitch H, Topol B, McGuire V, Costello S, Manthripragada AD, Southwick A, Myers RM, Nelson LM. Coffee, ADORA2A, and CYP1A2: the caffeine connection in Parkinson's disease. Eur J Neurol. 2011 May; 18(5):756-65. PMCID: PMC3556904
91. Lewis C, Hoggatt KJ, Ritz B. The Impact of Different Causal Models on Estimated Effects of Disinfection By-Products on Preterm Birth. Environ Res. 2011 Apr;111(3):371-6.
92. Lee PC, Talbott EO; Roberts JM, Catov JM, Sharma RK, Ritz B. Particulate Air Pollution Exposure and C-Reactive Protein during Early Pregnancy. Epidemiology. 2011 Jul;22(4):524-31
93. Schernhammer E, Hansen J, Rugbjerg K, Wermuth L, Ritz B. Diabetes and the risk of developing Parkinson's disease in Denmark. Diabetes care. 2011 May;34(5):1102-8. PMCID:PMC3114482
94. Wang A, Costello S, Cockburn M, Zhang X, Bronstein J, Ritz B. Parkinson's Disease risk from ambient exposure to pesticides. Eur J Epidemiol. 2011 Jul;26(7):547-55. Epub 2011 Apr 20. PMCID: PMC3643971
95. Manthripragada A, Schernhammer ES, Qiu J, Friis S, Wermuth L, Olsen J, Ritz B. Non-steroidal anti-inflammatory drug use and the risk of Parkinson's Disease. Neuroepidemiology. 2011;36(3):15561. PMCID PMC3095838
96. Wu X, Bennett DH, Lee K, Cassady DL, Ritz B, Hertz-Picciotto I. Feasibility of Using Web Surveys to Collect Time-Activity Data. Journal Of Exposure Science And Environmental Epidemiology. J Expo Sci Environ Epidemiol. 2012 Mar-Apr;22(2):116-25
97. Gatto NM, Bordelon Y, Gatz M, Ritz B. Personality Characteristics and Motor Skills Attributed to Occupations in Parkinson Disease. Cognitive and Behavioral Neurology. Cogn Behav Neurol. 2011 Mar; 24(1): 18-25.PMCID: PMC3656654
98. Wu J, Wilhelm M, Chung J, Ritz B. Comparing exposure assessment methods for traffic-related air pollution in an adverse pregnancy outcome study. Environ Res. 2011 Jul; 111(5):685-92. PMCID: PMC3114297
99. McGuire V, Van Den Eeden SK, Tanner CM, Kamel F, Umbach D, Marder K, Mayeux R, Ritz B, Ross GW, Petrovitch H, Topol B, Popat RA, Costello S, Manthripragada AD, Southwick A, Myers RM, Nelson LM, Association of DRD2 and DRD3 Polymorphisms with Parkinson's Disease in a Multiethnic Consortium. J Neurol Sci. 2011 Aug 15;307(1-2):22-9. PMCID: PMC3155471
100. Wilhelm M, Ghosh JK, Su J, Cockburn M, Jerrett M, Ritz B. Traffic-related air toxics and preterm birth: a population-based case-control study in Los Angeles County, California. Environmental Health. Environ Health. 2011 Oct 7;10:89. PMCID:PMC3204282

Hamza TH, Chen H, Hill-Burns EM, Rhodes SL, Montimurro J, Kay DM, Tenesa A, Kusel VI, Sheehan P, Eaaswarkhanth M, Yearout D, Samii A, Roberts JW, Agarwal P, Bordelon Y, Park Y, Wang L, Gao J, Vance JM, Kendler KS, Bacanu SA, Scott WK, Ritz B, Nutt J, Factor SA, Zabetian $C P$, Payami HGenome-Wide Gene-Environment Study Identifies Glutamate Receptor Gene GRIN2A as a Parkinson's Disease Modifier Gene via Interaction with Coffee. PLoS Genet. 2011 Aug;7(8):e1002237. PMCID: PMC3158052
102. Armes MN, Liew Z, Wang A, Wu X, Bennett DH, Hertz-Picciotto I, Ritz B. Residential Pesticide Usage in Older Adults Residing in Central California. International Journal of Environmental Research and Public Health. Int J Environ Res Public Health. 2011 Aug;8(8):3114-33. PMCID:PMC3166730.
103. Wilhelm M, Gosh J, Su J, Cockburn M, Jerret M, Ritz B. Traffic-Related Air Toxics and Term Low Birth Weight in Los Angeles County, California. Environ Health Perspect. 2012 Jan;120(1):132-8 PMCID:PMC3261935
104. Wu X, Bennett DH, Lee K, Cassady DL, Ritz B, Hertz-Picciotto I. Longitudinal variability of timelocation/activity patterns of population at different ages: a longitudinal study in California. Environmental Health 2011 Sep 20;10:80 PMCID: PMC3184256
105. Hoggatt KJ, Sharp M, Wilhelm M, Solorio R, Ritz B. The Latina Epidemiologic Paradox revisited: the role of birthplace and acculturation in predicting infant low birth weight for Latinas in Los Angeles, CA. Journal of Immigrant and Minority Health (JOIH). J Immigr Minor Health. 2012 Oct; 14(5):875-84. PMCID: PMC3643973
106. Gosh JK, Wilhelm M, Su J, Goldberg D, Cockburn M, Jerrett J, Ritz B. Assessing the influence of traffic-related air pollution on risk of term low birth weight on the basis of land-use-based regression models and measures of air toxics. Am J Epidemiol. 2012 Jun 15;175(12):1262-74. PMCID: PMC3372317
107. Nielsen HH, Qiu J, Friis S, Wermuth L, Ritz B. Treatment of Helicobacter Pylori infection and risk of Parkinson's disease in Denmark. Eur J Neurol, 2012 Jun;19(6):864-9. PMCID: PMC3330170
108. Wermuth L, Lassen CF, Himmerslev L, Olsen J, Ritz B. Validation of hospital register-based diagnosis of Parkinson's disease. Dan Med J. 2012 Mar;59(3):A4391. PMCID: PMC3643969
109. Rugbjerg K, Friis S, Lassen CF, Ritz B, Olsen J. Malignant melanoma, breast cancer and other cancers in patients with Parkinson's disease. 2012 Oct 15;131(8):1904-11. PMCID: PMC3636769
110. Heck JE, Lombardi CA, Cockburn M, Meyers TJ, Wilhelm M, Ritz B. Epidemiology of rhabdoid tumors of early childhood. Pediatr Blood Cancer. 2013 Jan;60(1):77-81. PMCID: PMC3399923
111. Li L, Wu J, Wilhelm M, Ritz B. Use of Generalized Additive Models and Cokriging of Spatial Residuals to Improve Land-Use Regression Estimates of Nitrogen Oxides in Southern California. Atmos Environ_2012 Aug 1;55:220-228. PMCID: PMC3579670
112. Lee PC, Roberts JM, Catov JM, Talbott EO, Ritz B. First trimester exposure to ambient air pollution, pregnancy complications and adverse birth outcomes in Allegheny County, PA. Matern Child Health J. 2013 Apr; 17(3):545-55. PMCID: PMC3636771
113. Bennett DH, Wu X, Teague C, Lee K, Cassady DL, Ritz B, Hertz-Picciotto I. Passive Sampling Methods to Determine Household and Personal Care Product Use. J Expo Sci Environ Epidemiol. 2012 Mar-Apr;22(2):148-60.
114. Ritz B. Rhodes SL, Bordelon Y, Bronstein J. α-Synuclein genetic variants predict faster motor symptom progression in idiopathic Parkinson disease. PLoS One. 2012;7(5):e36199. PMCID: PMC3352914
115. Lee PC, Talbott EO; Roberts JM; Catov JM Bilonick RA; Stone RA; Sharma RK; Ritz B. Ambient Air Pollution Exposure and Blood Pressure Changes during Pregnancy. Environ Res. 2012 Aug; 117:4653. PMCID: PMC3656658
116. Gosh JK, Wilhelm M, Ritz B. Effects of residential indoor air quality and household ventilation on preterm birth and term low birth weight in Los Angeles County, California. Am J Public Health. 2013 Apr;103(4):686-94. PMCID: PMC3643965
117. Heck JE, Lombardi CA, Meyers TJ, Cockburn M, Wilhelm M, Ritz B. Perinatal characteristics and retinoblastoma. 2012 Sep;23(9):1567-75. PMCID: PMC 3429932
118. Lee PC, Bordelon Y, Bronstein J, Ritz B. Traumatic Brain Injury, Paraquat Exposure, and their Relationship to Parkinson Disease. Neurology. 2012 Nov 13;79(20):2061-6. PMCID: PMC3511918
119. Mata IF, Checkoway H, Hutter CM, Samii A, Roberts JW, Kim HM, Agarwal P, Alvarez V, Ribacoba R, Pastor P, Lorenzo-Betancor O, Infante J, Sierra M, Gómez-Garre P, Mir P, Ritz B, Rhodes SL, Colcher A, Van Deerlin V, Chung KA, Quinn JF, Yearout D, Martinez E, Farin FM, Wan JY, Edwards KL, Zabetian CP.Common Variation in the LRRK2 Gene is a Risk Factor for Parkinson's Disease. Mov Disord. 2012 Dec;27(14):1822-5. PMCID: PMC3536918
120. Block ML, Elder A, Auten RL, Bilbo SD, Chen H, Chen JC, Cory-Slechta DA, Costa D, Diaz-Sanchez D, Dorman DC, Gold DR, Gray K, Jeng HA, Kaufman JD, Kleinman MT, Kirshner A, Lawler C, Miller DS, Nadadur SS, Ritz B, Semmens EO, Tonelli LH, Veronesi B, Wright RO, Wright RJ. The outdoor air pollution and brain health workshop. Neurotoxicology. 2012 Oct;33(5):972-84. PMCID: PMC3726250
121. Rod-Nielsen N, Bordelon Y, Thompson A, Marcotte E, Ritz B. Major life events and development of major depression in Parkinson's disease patients. Eur J Neurol. 2013;20(4):663-70. PMCID PMC3566278
122. Vogt R, Bennett D, Cassady D, Frost J, Ritz B, Hertz-Picciotto I. Cancer and non-cancer health effects from food contaminant exposures for children and adults in California: a risk assessment. Environ Health 2012 Nov $9 ; 11: 83$. PMCID: PMC3551655
123. Becerra T, Wilhelm W, Olsen J, Cockburn M, Ritz B. Ambient Air Pollution and Autism in Los Angeles County, California. Environ Health Perspect. 2013 Mar;121(3):380-6. PMCID: PMC3621187
124. Fitzmaurice AG, Rhodes SL, Lulla A, Murphy NP, Lam HA, O'Donnell KC, Barnhill L, Casida JE, Cockburn M, Sagasti A, Stahl MC, Maidment NT, Ritz B, Bronstein JM. Aldehyde dehydrogenase inhibition as a pathogenic mechanism in Parkinson disease. Proc Natl Acad Sci U S A. 2013 Jan 8;110(2):636-41. PMCID: PMC3545765
125. Lim SS, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012 Dec 15;380(9859):2224-60. PMCID: PMC4156511
126. Clark AJ, Ritz BR, Prescott E, Rod NH. Psychosocial risk factors, pre-motor symptoms, and first-time hospitalization with Parkinson's Disease: a prospective cohort study. Eur J Neurol 2013 Aug;20(8):1113-20. PMCID: PMC3664243
127. Shrestha A, Ritz B, Ognjanovic S, Lombardi CA, Wilhelm M, Heck JE. Early life factors and risk of childhood rhabdomyosarcoma. Front Public Health. 2013 May 31:1:17. PMCID: PMC3854857.
128. Li L, Wu J, Ghosh JK, Ritz B.Estimating Spatiotemporal Variability of Ambient Air Pollutant Concentrations with A Hierarchical Model. Atmospheric Environment 2013 Jun 1;71:54-63. PMCID: PMC3627373
129. Liew Z, Wang A, Bronstein B, Ritz B. Job Exposure Matrix (JEM) derived estimates of life-time occupational pesticide exposure and the risk of Parkinson's Disease. Arch Environ Occup Health. 2014;69(4):241-51. PMCID: PMC3916959
130 Lee PC Rhodes SL, Sinsheimer JS Bronstein J, Ritz B. Functional Paraoxonase 1 Variants Modify the Risk of Parkinson's Disease due to Organophosphate Exposure. Environ Int. 2013 Jun; 56:42-7. PMCID: PMC3690300
131. Schernhammer E, Qiu J, Wermuth L, Funch Lassen C, Friis S, Ritz B. Gout and the risk of Parkinson's disease in Denmark. European Journal of Epidemiology. 2013 Apr;28(4):359-60. PMCID:PMC3655156
132. Lombardi C, Heck JE, Cockburn M, Ritz B. Solar UV radiation and cancer in young children. Cancer Epidemiol Biomarkers Prev. 2013 Jun;22(6):1118-28 PMCID:PMC369030
133. von Ehrenstein OS, Wilhelm M, Ritz B. Maternal Occupation and Term Low Birth Weight in a Predominantly Latina Population in Los Angeles, California. J Occup Environ Med. 2013 Sep;55(9):104651
134. Gosh JK, Heck J, Cockburn M, Su J, Jerrett M, Ritz B. Prenatal exposure to traffic-related air pollution and risk of early childhood cancers. Am J Epidemiol. 2013 Oct 15;178(8):1233-9. PMCID:PMC3792733
135. von Ehrenstein OS, Wilhelm M, Ritz B. Preterm Birth and Prenatal Maternal Occupation: Preterm Birth and Prenatal Maternal Occupation: The Role of Hispanic Ethnicity and Nativity in a Population Based Sample in Los Angeles, California. Am J Public Health. 2014 Feb;104 Suppl 1:S65-72. PMCID: PMC4011103
136. Chen H, Burton EA, Ross GW, Huang X, Savica R, Abbott RD, Ascherio A, Caviness JN, Gao X, Gray KA, Hong JS, Kamel F, Jennings D, Kirshner A, Lawler C, Liu R, Miller GW, Nussbaum R, Peddada S, Rick AC, Ritz B, Siderowf AD, Tanner CM, Tröster AI, Zhang J. Research on the premotor symptoms of Parkinson's disease Clinical and etiological implications. Environ Health Perspect. 2013 Nov-Dec;121(11-12):1245-52. PMCID: PMC3855519
137. Rhodes SL, Fitzmaurice AG, Cockburn M, Bronstein JM, Sinsheimer JS, Ritz B. Pesticides that Inhibit the Ubiquitin-Proteasome System: Effect Measure Modification by Genetic Variation in SKP1 in Parkinson's Disease. Environ Res. 2013 Oct; 126:1-8. PMCID: PMC3832349
138. Narayan S, Liew Z, Paul K, Lee PC, Sinsheimer JS, Bronstein JM, Ritz B. Household Organophosphorus Pesticide Use and Parkinson's Disease. Int J Epidemiol. 2013 Oct;42(5):1476-85 PMCID:PMC3807617
139. Murray CJ et al. (125 US Burden of Disease Collaborators). The state of US health, 1990-2010 burden of diseases, injuries, and risk factors. JAMA. 2013 Aug 14;310(6):591-608.
140. Roede JR, Uppal K, Park YH, Lee K, Tran V, Strobel FH, Rhodes SL, Ritz B, Jones DP. Serum Metabolomics of Slow vs. Rapid Motor Progression Parkinson's Disease: a Pilot Study. PLoS One. 2013 Oct 22;8(10):e77629. PMCID:PMC3805572
141. Nielsen M, Hansen J, Ritz B, Nordahl H, Schernhammer E, Wermuth L, Rod NH. Cause-specific mortality among spouses of Parkinson disease patients. Epidemiology. 2014 Mar;25(2):225-32.
142. Heck JE, Wu J, Lombardi CA, Meyers TJ, Wilhelm M, Cockburn M, Ritz B. Childhood cancer and traffic-related air pollution exposure in pregnancy and early life. Environ Health Perspect. 2013 11-12;121(11-12):1385-1391. PMCID: PMC3855517
143. Heck JE, Park AS, Qiu J, Cockburn M, Ritz B. An exploratory study of ambient air toxics exposure in pregnancy and the risk of neuroblastoma in offspring. Environ Res. 2013 Nov;127:1-6. PMCID: PMC3960946
144. Rhodes SL, Buchanan D, Ahmed I, Taylor KD, Loriot MA, Sinsheimer JS, Bronstein J, Elbaz A, Mellick G, Rotter JI, Ritz B. Pooled Analysis of Iron-related Genes in Parkinson's Disease: Association with Transferrin. Neurobiol Dis. 2014 Feb;62:172-8. PMCID: PMC3968945
145. Wu XM, Bennett DH, Ritz B, Tancredi DJ, Hertz-Picciotto I. Temporal variation of residential pesticide use and comparison of two survey platforms: a longitudinal study among households with young children in Northern California. Environ Health. 2013 Aug 20;12(1):65. PMCID: PMC3765515
146. Heck JE, Cockburn M, Ritz B. Case-Control Study of Birth Characteristics and the Risk of Hepatoblastoma. Cancer Epidemiol. 2013 Aug;37(4):390-5. PMCID: PMC3679264
147. Heck JE, Park AS, Qiu J, Cockburn M, Ritz B. Retinoblastoma and ambient exposure to air toxics in the perinatal period. J Expo Sci Environ Epidemiol. 2013 Nov 27 PMCID: PMC4059784
148. Fitzmaurice AG, Rhodes SL, Cockburn M, Ritz B, Bronstein JM. Aldehyde dehydrogenase variation enhances effect of pesticides associated with Parkinson disease. Neurology. 2014 Feb 4;82(5):41926. PMCID: PMC3917685
149. Liew Z, Ritz B, Rebordosa C, Lee PC, Olsen J. Acetaminophen use during pregnancy, behavioral problems and Hyperkinetic disorders. JAMA Pediatr. 2014 Apr; 168(4):313-20.
150. Marcotte E, Ritz B. Cockburn M, Clarke CA, Heck JE. Birth Characteristics and Risk of Lymphoma in Young Children. Cancer Epidemiology PMCID: PMC4100477
151. Wang A, Cockburn M, Ly TT, Bronstein J, Ritz B. The Association Between Ambient Exposure to Organophosphates and Parkinson's Disease Risk. Occup Environ Med. 2014 Apr; 71(4):275-81. PMCID:PMC4351788
152. Heck JE, Park AS, Qiu J, Cockburn M, Ritz B. Risk of leukemia in relation to exposure to ambient air toxics in pregnancy and early childhood. Int J Hyg Environ Health. 2014 Jul;217(6):662-8. PMCID: PMC4071125
153. Shresta A, Ritz B, Wilhelm M, Qiu J, Cockburn M, Heck JE. Prenatal exposure to air toxics and risk of Wilms' tumor in 0-5 year old children. J Occup Environ Med. 2014 Jun;56(6):573-8 PMCID: PMC4204106
154. Ritz B, Qiu J, Lee PC, Lurmann F, Penfold B, Weiss RE, McConnell R, Arora C, Hobel C, Wilhelm M Prenatal Air Pollution Exposure and Ultrasound Measures of Fetal Growth in Los Angeles, California Environ Research. 2014 Apr; 130 7-13. PMCID: PMC4016959
155. Greene N, Lassen C, Rugbjerg K, Ritz B. Reproductive factors and Parkinson's disease risk in Danish women. Eur J Neurol. 2014 Sep;21(9):1168-77, e68.
156. Liew Z, Ritz B, Bonefeld EC, Henriksen TB, Nohr EA, Bech BH, Fei C, Bossi R, von Ehrenstein O, Streja E, Uldall P, Olsen J. Prenatal Exposure to Perfluoroalkyl Substances and Risk of Congenital Cerebral Palsy in Children. Am J Epidemiol. 2014 Sep 15;180(6):574-81.
157. Becerra T, von Ehrenstein O, Heck JE, Olsen J, Arah O, Jeste S, Rodriguez M, Ritz B. Autism and Maternal Race/Ethnicity and Nativity in Los Angeles. Pediatrics. 2014 Jul;134(1):e63-71.PMCID PMC4067639
158. Marcotte E, Heck J, Cockburn M, Yu F, Ritz B. Exposure to Infections and Risk of Leukemia in Young Children. Cancer Epidemiol Biomarkers Prev. 2014 Jul;23(7):1195-203 PMCID: PMC4100471
159. Burdick DJ, Watson GS, Siderowf A, Trojanowski JQ, Weintraub D, Ritz B, Rhodes S, Rausch HR, Factor SA, Wood-Siverio C, Quinn JF, Chung K, Cholerton B, Srivatsal S, Edwards KL, Montine TJ, Zabetian CP, Leverenz JB. People with Parkinson's disease and normal MMSE score have a broad range of cognitive performance. Mov Disord. 2014 Sep;29(10):1258-64. PMCID: PMC4162839
160. Mata IF, Leverenz JB, Weintraub D, Trojanowski JQ, Hurtig HI, Van Deerlin V, Ritz B, Rausch R, Rhodes SL, Factor SA, Wood-Siverio C, Quinn JF, Chung KA, Peterson AL, Espay AJ, Revilla FJ, Devoto J, Hu SC, Cholerton BA, Montine TJ, Edwards KL, Zabetian CP. APOE, MAPT, and SNCA Genes and Cognitive Performance in Parkinson Disease. JAMA Neurology. 2014 Nov;71(11):140512. PMCID: PMC4227942
161. Krøigård T, Christensen J, Wermuth L, Ritz B, Lassen CF. The use of antidepressant medication in Parkinson's disease patients is not affected by the type of anti-parkinson medication. J Parkinsons Dis. 2014;4(3):327-30.
162. Ritz B, Lee PC, Lassen FC, Arah O. Ease of quitting is an early sign of Parkinson's Disease: Parkinson's and smoking revisited. Neurology. 2014 Oct 14;83(16):1396-402. PMCID: PMC4206154
163. Shelton JF, Geraghty EM, Tancredi DJ, Delwiche LD, Schmidt RJ, Hansen R, Ritz B, Hertz-Picciotto 1. Neurodevelopmental Disorders and Prenatal Residential Proximity to Agricultural Pesticides: The CHARGE Study. Environ Health Perspect. 2014 Oct;122(10):1103-9. PMCID:PMC4181917
164. von Ehrenstein O, Aralis H, Cockburn M, B Ritz. In Utero Exposure to Toxic Air Pollutants and Risk of Childhood Autism. Epidemiology. 2014 Nov;25(6):851-8.PMCID: PMC4698150
165. Gatto N, Deapen D, Stoyonoff S; Pinder R, Narayan S, Bordelon Y, Ritz B. Lifetime Exposure to Estrogens and Parkinson's Disease in California Teachers. Parkinsonism Relat Disord. 2014 Nov:20(11):1149-56.
166. Ahmed I, Lee PC, Lill CN, Nielsen SS, Artaud F, Gallagher LG, Loriot MA, Mulot C, Nacfer M, Liu T, Biernacka JM, Armasu S, Anderson K, Farin FM, Lassen CF, Hansen J, Olsen JH, Bertram L, Maraganore DM, Checkoway H, Ritz B, Elbaz A. Lack of replication of the GRIN2A-by-coffee interaction in Parkinson's disease. PLoS Genet. 2014 Nov 20;10(11):e1004788. PMCID: PMC4238979
167. Lee PC, Bordelon Y, Bronstein J, Sinsheimer JS, Farrer M; Ritz B. Head injury, alpha-synuclein genetic variability and Parkinson's disease. Eur J Neurol. 2015 May;22(5):874-8. PMCID: PMC4390403
168. Kenborg L, Rugbjerg K; Lee PC; Ravnskjær L; Christensen J; Ritz B; Lassen CF. Head injury and risk for Parkinson disease: results from a Danish case-control study. Neurology. 2015 Mar 17;84(11):1098-103 PMCID:PMC4371406
169. Kenborg L, Lassen CF, Ritz B, Andersen KK, Christensen J, Schernhammer ES, Hansen J, Wermuth L, Rod NH, Olsen JH. Lifestyle, Family History, and Risk for Idiopathic Parkinson Disease: a Large Danish Case-Control Study. Am J Epidemiol. 2015 May 15;181(10):808-16 PMCID:PMC4423523
170. Liew Z, Ritz B, von Ehrenstein OS, Bech BH, Nohr E, Fei C, Bossi R, Henriksen TB, BonefeldJørgensen EC, Olsen J. Attention Deficit/Hyperactivity Disorder and Childhood Autism in Association with Prenatal Exposure to Perfluoroalkyl Substances: A Nested Case-Control Study in the Danish National Birth Cohort. Environ Health Perspect. 2015 Apr;123(4):367-73.
171. Liew Z, Olsen J, Cui X, Ritz B, Arah OA. Bias from conditioning on live birth in pregnancy cohorts: an illustration based on neurodevelopment in children after prenatal exposure to organic pollutants. Int J Epidemiol. 2015 Feb; 44(1):345-54.
172. Bandoli G, von Ehrenstein OS, Flores M, Ritz B. Breastfeeding and Asthmatic Symptoms in the offspring of Latinas - the role of maternal nativity. J Immigr Minor Health. 2015 Dec;17(6):1739-45. PMCID:PMC4499015
173. Lill CM, Rengmark A, Pihlstrøm L, Fogh I, Shatunov A, Sleiman PM, Wang LS, Liu T, Lassen CF, Meissner E, Alexopoulos P, Calvo A, Chio A, Dizdar N, Faltraco F, Forsgren L, Kirchheiner L, Kurz A, Larsen JP, Liebsch M, Linder J, Morrison KE, Nissbrandt H, Otto M, Pahnke J, Partch A, Restagno G, Rujescu D, Schnack C, Shaw CE, Shaw PJ, Tumani H, Tysnes OB, Valladares O, Silani V, van den Berg LH, van Rheenen W, Veldink JH, Lindenberger U, Steinhagen-Thiessen E, SLAGEN Consortium, Teipel S, Perneczky R, Hakonarson H. Hampel H, von Arnim CAF, Olsen JH, Van Deerlin VM, Al-Chalabi A, Toft M, Ritz B, Bertram L. The role of TREM2 R47H as a risk factor for Alzheimer's disease, frontotemporal lobar degeneration, amyotrophic lateral sclerosis, and Parkinson's disease. Alzheimers Dement. 2015 Apr 29. pii: S1552-5260(15)00122-3.
174. Lombardi C, Ganguly A, Bunin GR, Azary S, Alfonso V, Ritz B, Heck JE. Maternal Diet during Pregraancy and Unilateral Retinoblastoma: A Report from the Children's Oncology Group. Cancer Causes Control. 2015 Mar;26(3):387-97. PMCID: PMC4334703
175. Bronstein JM, Paul K, Yang L, Hass RH, Shults CW, Ritz B. Platelet Mitochondrial Activity and Pesticide Exposure in Early Parkinson's Disease. Mov Disord. 2015 May;30(6):862-6. PMCID: PMC4439327
176. Srivatsal S, Cholerton B, Leverenz JB, Wszolek ZK, Uitti RJ, Weintraub D, Trojanowski JQ, Van Deerlin VM, Quinn JF, Chung KA, Peterson AL, Factor SA, Wood-Siverio C, Goldman JG, Stebbins

GT, Bernard B, Ritz B, Rausch R, Espay AJ, Revilla FJ, Devoto J, Rosenthal LS, Dawson TM, Albert MS, Mata IF, Hu SC, Montine KS, Johnson C, Montine TJ, Edwards KL, Zabetian CP. Cognitive Profile of LRRK2-related Parkinson's Disease. Mov Disord. 2015 Apr 15;30(5):728-33. PMCID: PMC4397146
177. Su JG, Jerrett M, Meng YY, Pickett M, Ritz B. Integrating smart-phone based momentary location tracking with fixed site air quality monitoring for personal exposure assessment. Sci Total Environ. 2015 Feb 15; 506-507:518-26.
178. Ritz B, Lee PC, Hansen J, Lassen CF, Ketzel M, Sørensen M, Raaschou-Nielsen O. Traffic-Related Air Pollution is a Risk Factor for Parkinson's Disease in Denmark. Environ Health Perspect. 2016 Mar; 124(3):351-6.
179. Paul KC, Sinsheimer JS, Rhodes SL, Cockburn M, Bronstein JM, Ritz B. Organophosphate Pesticide Exposures, Nitric Oxide Synthase Gene Variants, and Gene-Pesticide Interactions in a Case-Control Study of Parkinson's Disease, California (USA). Environ Health Perspect. 2015 Sep 18. [Epub ahead of print]
180. Lill CM, Hansen J, Olsen JO, Binder H, Ritz B, Bertram L. Impact of Parkinson's disease risk loci on age at onset. Mov Disord. 2015 May; 30(6):847-50.
181. Gatto NM, Sinsheimer JS, Cockburn M, Escobedo LA, Bordelon Y, Ritz B. Vitamin D receptor gene polymorphisms and Parkinson's disease in a Population with High Ulitraviolet Radiation Exposure. J Neurol Sci. 2015 May 15;352(1-2):88-93
182. Kannarkat GT, Cook DA, Lee JK, Chang J, Chung V, Sandy E, Paul KC, Ritz B, Bronstein J, Factor SA, Boss JM, Tansey MG. Common Genetic Variant Association with Altered HLA Expression, Synergy with Pyrethroid Exposure, and Risk for Parkinson's Disease: An Observational and CaseControl Study. npj Parkinson's Disease (2015) 1, 15002; doi:10.1038/npjparkd.2015.2; published online 22 April 2015
183. Heck JE, Park AS, Cockburn M, Ritz B. Can the "Hispanic paradox" shed light on childhood cancer risk? Cancer Epidemiol Biomarkers Prev. 2015 Apr; 24(4):764-5.
184. Pearce NE, Blair A, Vineis P, Ahrens W, Andersen A, Anto JM, Armstrong BK, Baccarelli AA, Beland FA, Berrington A, Bertazzi PA, Birnbaum LS, Brownson RC, Bucher JR, Cantor KP, Cardis E, Cherrie JW, Christiani DC, Cocco P, Coggon D, Comba P, Demers PA, Dement JM, Douwes J, Eisen EA, Engel LS, Fenske RA, Fleming LE, Fletcher T, Fontham E, Forastiere F, Frentzel-Beyme R, Fritschi L, Gerin M, Goldberg M, Grandjean P, Grimsrud TK, Gustavsson P, Haines A, Hartge P, Hansen J, Hauptmann M, Heederik D, Hemminki K, Hemon D, Hertz-Picciotto I, Hoppin JA, Huff J, Jarvholm B, Kang D, Karagas MR, Kjaerheim K, Kjuus H, Kogevinas M, Kriebei D, Kristensen P, Kromhout H, Laden F, Lebailly P, LeMasters G, Lubin JH, Lynch CF, Lynge E, 't Mannetje A, McMichael AJ, McLaughlin JR, Marrett L, Martuzzi M, Merchant JA, Merler E, Merletti F, Miller A, Mirer FE, Monson R, Nordby KK, Olshan AF, Parent ME, Perera FP, Perry MJ, Pesatori AC, Pirastu R, Porta M, Pukkala E, Rice C, Richardson DB, Ritter L, Ritz B, Ronckers CM, Rushton L, Rusiecki JA, Rusyn I, Samet JM, Sandler DP, de Sanjose S, Schernhammer E, Seniori Constantini A, Seixas N, Shy C, Siemiatycki J, Silvermann DT, Simonato L, Smith AH, Smith MT, Spinelli JJ, Spitz MR, Stallones L, Stayner LT, Steenland K, Stenzel M, Stewart BW, Stewart PA, Symanski E, Terracini B, Tolbert PE, Vainio H, Vena J, Vermeulen R, Victora CG, Ward EM, Weinberg CR, Weisenburger D, Wesseling C, Weiderpass E, Zahm SH. IARC Moriographs: 40 Years of Evaluating Carcinogenic Hazards to Humans. Environ Health Perspect. 2015 Feb 24. [Epub ahead of print]
185. Schernhammer ES, Lassen CF, Kenborg L, Ritz B, Olsen JH, Hansen J. Night shift work and Parkinson's disease in Denmark. Scand J Work Environ Health. 2015 Jul 1;41(4):377-83.
186. Walker RF, Liu JS, Peters BA, Ritz BR, Ophoff R, Horvath S. Epigenetic age analysis of blood from "Peter Pan" children". Aging (Albany NY). 2015 May;7(5):334-9.
187. von Ehrenstein, Aralis H, Fiores MS, Ritz B. Fast Food Consumption in Pregnancy and Subsequent Asthma Symptoms in Young Children. Pediatr Allergy Immunol. 2015 Sep;26(6):571-7.
188. Coker ES, Beckerman B, Ghosh JC, Gomez-Rubio V, Jerrett M, Li A, Liverani S, Ritz B, Su J, Molitor J. Modeling spatial effects of PM2.5 on term low birth weight in Los Angeles County. Environ Res. 2015 Jul 17;142:354-364.
189. Narayan S, Sinsheimer JS, Paul KC, Liew Z, Cockburn M, Bronstein JM, Ritz B. Genetic Variability in ABCB1, Occupational Pesticide Exposure, and Parkinson's Disease. Environ Res. 2015 Nov; 143 (Pt A):98-106.
190. Mata IF, Leverenz JB, Weintraub D, Trojanowski JQ, Chen-Plotkir A, Van Deerlin VM, Ritz B, Rausch R, Factor SA, Wood-Siverio C, Quinn JF,Chung KA, Peterson-Hiller AL, Goldman JG, Stebbins GT, Bernard B, Espay AJ, Revilla FJ, Devoto J, Rosenthal LS, Dawson TM, Albert MS, Tsuang D, Huston H, Yearout D, Hu SC, Cholerton BA, Montine TJ, Edwards KL, Zabetian CP. GBA
variants are associated with a distinct pattern of cognitive deficits in Parkinson disease. Mov Disord 2016 Jan; 31(1):95-102
191. von Ehrenstein OS, Heck JE, Park A, Cockburn M, Escobedo L, Ritz B. In Utero and Early-Life Exposure to Ambient Air Toxics and Childhood Brain Tumors: A Population-Based Case-Control Study in California, USA. Environ Health Perspect. 2016 Jul; 124(7):1093-9. PMCID: PMC4937846
192. Virk J, Liew Z, Olsen J, Nohr E, Catov JM, Ritz B. Preconceptional and Prenatal Supplementary Folic Acid and Multivitamin Intake and Autism Spectrum Disorders. Autism. 2016 Aug;20(6):710-8.
193. Bandoli G, von Ehrenstein OS, Gosh JKC, Flores M, Dunkel-Schetter C, Ritz B. Prenatal maternal stress and the risk of lifetime wheeze in young offspring: An examination by stressor and maternal race/ethnicity. J Immigr Minor Health. 2016 Oct; 18(5):987-95.
194. Heck JE, Azary S, Ritz B, Bunin GR, Ganguly A. A case-control study of sporadic retinoblastoma in relation to maternal health conditions and reproductive factors. BMC Cancer. 2015 Oct 19;15:735 PMCID: PMC4615328
195. Virk J, Ritz B, Li J, Obel C, Olsen J. Childhood Bereavement and Type 1 Diabetes: A Danish National Register Study. Paediatr Perinat Epidemiol. 2016 Jan; 30(1):86-92.
196. Julvez J, Paus T, Bellinger D, Eskenazi B, Tiemeier H, Pearce N, Ritz B, White T, Ramchandani P, Gispert JD, Desrivières S, Brouwer R, Boucher O, Alemany S, López-Vicente M, Suades-González E, Forns J, Grandjean P, Sunyer J. Environment and Brain Development: Challenges in the Global Context. Neuroepidemiology. 2015 Dec 19;46(2):79-82.
197. Wermuth L, Cui X, Greene NH, Schernhammer ES, Ritz BR. Medical Record Review to Differentiate between Idiopathic Parkinson's Disease (IPD) and Parkinsonism: A Danish Record Linkage Study with 10 Years of Follow-up. Parkinsons Dis. 2015;2015:781479
198. Liew Z, Ritz B, Virk J, Olsen J. Maternal Use of Acetaminophen During Pregnancy and Risk of Autism Spectrum Disorders in Childhood: a Danish National Birth Cohort Study. Autism Res. 2016 Sep;9(9):951-8.
199. Horvath S, Ritz BR. Increased epigenetic age and granulocyte counts in the blood of Parkinson's disease patients. Aging (Albany NY). 2015 Dec; 7(12):1130-42
200. Liew Z, Ritz B, Virk J, Arah O, Olsen J Prenatal Use of Acetaminophen and Child IQ: a Danish Cohort Study. Epidemiology. 2016 Nov;27(6):912-8.
201. Heck JE, Park AS, Contreras ZA, Davidson TB, Hoggatt KJ, Cockburn M, Ritz B. Cancer in the Children of US and Foreign-born Hispanics: a test of the "Hispanic paradox" JAMA Pediatr. 2016 Jun 1:170(6):585-92.
202. Paul KC, Rausch R, Creek MM, Sinsheimer JS, Bronstein JM, Bordelon Y, Ritz B. APOE, MAPT, and COMT genetic variants and cognitive symptom progression in a Parkinson's disease patient cohort. J Parkinsons Dis. 2016 Apr 2;6(2):349-59.
203. Ritz B, Paul KC, Bronstein JM. Of Pesticides and Men: A California Story of Genes and Environment in Parkinson's Disease. Curr Environ Health Rep. 2016 Mar;3(1):40-52.
204. Coker E, Liverani S, Ghosh J, Jerrett M, Beckerman B, Su J, Li A, Ritz B, Molitor J. A. Multi-Pollutant Exposure Profiles Associated with Term Low Birth Weight in Los Angeles County. Environ Int. 2016 May;91:1-13.
205. Heck JE, Contreras ZE, Park AS, Cockburn M, Ritz B. Smoking in pregnancy and risk of cancer among young children: a population-based study. Int J Cancer. 2016 Aug 1;139(3):613-6.
206. Azary S, Ganguly A, Bunin GR, Lombardi C, Park AS, Ritz B, Heck JE. Sporadic Retinoblastoma and Parental Smoking and Alcohol Consumption before and after Conception: A Report from the Children's Oncology Group. PLoS One. 2016 Mar 18;11(3):e0151728
207. Alfonso VH, Bandoli G , von Ehrenstein O, Ritz B. The influence of pre-natal supplement initiation on preterm birth among majority Hispanic women in Los Angeles County: the role of nativity. Matern Child Health J. 2016 Sep;20(9):1861-8.
208. Bandoli G, Ghosh J, von Ehrenstein O, Ritz B. Psychosocial stressors and lung function in youth ages 10-17: an examination by stressor, age and gender. J Public Health (Oxf). 2016 May 8. pii: fdw035. [Epub ahead of print]
209. Bandoli G, Ghosh J, von Ehrenstein O, Ritz B. Synergistic effects of air pollution and psychosocial stressors on adolescent lung function. J Allergy Clin Immunol. 2016 Apr 30. pii: S0091-6749(16)30196-8. [Epub ahead of print]
210. Shih IF, Liew Z, Krause N, Ritz B. Lifetime Occupational and Leisure Time Physical Activity and Risk of Parkinson's Disease Parkinsonism \& Related Disorders. Parkinsonism Relat Disord. 2016 Jui;28:112-7
211. Contreras ZA, Ritz B, Virk J, Cockburn M, Heck JE. Maternal diabetes, obesity, weight gain in pregnancy, and risk of childhood cancer in offspring: a population-based study in California. Cancer Causes Control. 2016 Oct;27(10):1273-85.
212. Levine ME, Lu AT, Chen BH, Hernandez DG, Singleton AB, Ferrucci L, Bandineili S, Salfati E, Manson JE, Quach A, Kusters CDJ, Kuh D, Wong A, Teschendorff AE, Widschwendter M, Ritz BR, Absher D, Assimes T, Horvath S.. Menopause accelerates biological aging. Proc Natl Acad Sci U S A. 2016 Aug 16;113(33):9327-32.
213. Kettner LO, Kesmodel US, Ramlau-Hansen CH, Bay B, Ritz B, Matthiesen NB, Brink Henriksen T. Fertility Treatment and Childhood Epilepsy: a Nationwide Cohort Study of 565,166 Live Births Paediatr Perinat Epidemiol. 2016 Sep;30(5):488-95.
214. Hill-Burns EM, Ross OA, Wissemann WT, Ortolaza AI, Mellick GD, Scherzer CR, Ritz B, Marthi V, Zareparsi S, Zabetian CP, Factor SA, Payami H. Identification of genetic modifiers of age-atonset for familial Parkinson's disease. Hum Mol Genet. 2016 Jul 11. pii: ddw206.
215. Su J, Meng YY, Pickett M, Seto E, Ritz B, Jerrett M. Identification of the effects of regulatory actions on improvements in air quality in the goods movement corridors. Environ Sci Technol. 2016 Aug 16;50(16):8687-96.
216. Horvath S, Gurven M, Levine ME, Trumble BC, Kaplan B, Allayee H, Ritz BR, Chen B, Lu AT, Rickabaugh TM, Jamieson BD, Sun D, Li S, Chen W, Quintana-Murci L, Fagny M, Kobor MS, Tsao PS, Reiner AP, Edlefsen KL, Absher D. Assimes TL. An epigenetic clock analysis of race/ethnicity, sex, and coronary heart disease. Genome Biol. 2016 Aug 11;17(1):171.
217. Lee PC, Raaschou-Nielsen O, Lill CM, Bertram L, Sinsheimer JS, Hansen J, Ritz B. Geneenvironment interactions linking air pollution and inflammation in Parkinson's disease. Environ Res. 2016 Nov;151:713-720.
218. Contreras ZA, Ritz B, Virk J, Cockburn M, Heck JE. Maternal pre-pregnancy and gestational diabetes, obesity, gestational weight gain, and risk of cancer in young children: a population-based study in California. Cancer Causes Control. 2016 Oct;27(10):1273-85
219. A European Respiratory Society \& American Thoracic Society Policy Statement: What Constitutes an Adverse Health Effect of Air Pollution? An analytical framework Joint ERS/ATS statement ${ }^{\text {' }}$
220. Gatto NM, Paul K, Sinsheimer JS, Bronstein JM, Bordelon Y, Rausch R, Ritz B., Ritz B. Vitamin D receptor gene polymorphisms and cognitive decline in Parkinson's disease. J Neurol Sci. 2016 Nov 15;370:100-106.
221. Liew Z, Bach CC, Asarnow RF, Ritz B, Olsen J. Paracetamol use during pregnancy and attention and executive function in offspring at age 5. International Journal of Epidemiology 2016;
222. Chuang YH, Lill CM, Lee PC, Hansen J, Lassen CF, Bertram L, Greene N, Sinsheimer JS, Ritz B. Gene-environment interaction in Parkinson's disease: coffee, ADORA2A, and CYP1A2. Accepted in Neuroepidemiology.
223. Malmqvist E, Liew Z, Kallén K, Rignell-Hydbom A, Rittner R, Rylander L, Ritz B. Fetal growth and air pollution -A study on ultrasound and bith measures. Environ Res. 2016 Oct 11;152:73-80.
224. Hall C, Ritz B, Cockburn M, Davidson TB, Heck JE. Risk of malignant childhood germ cell tumors in relation to demographic, gestational, and perinatal characteristics. Accepted for publication in Cancer Epidemiology
225. Lee PC, Liu LL, Sun Y, Chen YA, Liu CC, Li CY, Yu HL, Ritz B. Traffic-related air pollution increased the risk of Parkinson's disease in Taiwan: A nationwide study. Environ Int. 2016 Nov;96:75-81
226. Chuang YH, Austin Quach A, Absher D, Assimes T, Horvath S, Ritz B. Coffee consumption is associated with DNA methylation levels of human blood. Accepted: European Journal of Human Genetics
227. Virk J, Liew Z, Olsen J, Nohr EA, Ritz B. Pre-conceptual and Prenatal Supplementary Folic Acid and Multivitamin Intake, Behavioral Problems and Hyperkinetic Disorders, A Study Based on the Danish National Birth Cohort (DNBC). Accepted in Nutritional Neuroscience
228. Xu X, Ritz B, Cockburn M, Lombardi C, Heck J. Maternal Preeclampsia and Odds of Childhood Cancers in Offspring - A California Statewide Case-Control Study. Paediatric and Perinatal Epidemiology
229. Omidakhsh N, Ganguly A, Bunin GR, Ritz B, Ehrenstein O, Heck JE.. Residential pesticide exposures in pregnancy and the risk of sporadic retinoblastoma: a report from the Children's Oncology Group. Journal of Ophthalmology
230. Quach A, Levine M, Tanaka T, Lu A, Chen B, Ferrucci L, Ritz B, Neuhouser M, Beasly J, Snetselaar L, Wallace R, Tsao P, Absher D, Assimes T, Stewart J, Li Y, Hou L, Baccarelli A, Whitsel E, Horvath S. Epigenetic clock analysis of diet, exercise, education, and lifestyle factors. Aging
231. Shih I, Starhof C, Lassen CF, Hansen J, Liew Z, Ritz, B. Occupational and Recreational Physical Activity and Parkinson's Disease in Denmark. In Press: Scand J Work Environ Health
232. McAllister K, Mechanic LE, Amos C, Aschard H, Blair I, Chatterjee N, Conti D, Gauderman WG, Hsu L, Hutter CM, Jankowska M, Kerr J, Kraft P, Montgomery SB, Mukherjee B, Papanicolaou GJ, Patel CJ, Ritchie MD, Ritz BR, Thomas DC, Wei P, Witte JS on behalf of GXE meeting participants. Current Challenges and New Opportunities for Gene-Environment Interaction Studies of Complex Diseases. Accepted: AJE
233. Ritz BR, Chatterjee N, Garcia-Closas M, Gauderman JW, Pierce BL, Kraft P, Tanner CM, Mechanic LE, McAllister K. Lessons Learned from Past Gene-Environment (GxE) Interaction Successes Accepted: AJE
234. Narayan S, Sinsheimer JS, Paul KC, Liew Z, Cockburn M, Bronstein JM, Ritz B. Occupational Pesticide Use and Parkinson's Disease in the Parkinson Environment Gene (PEG) Study. Accepted in: Environment International
235. Mata, Johnson, Leverenz, Weintraub, Trojanowski, Van Deerlin, Ritz, Rausch, Factor, Wood-Siverio, Quinn, Chung, Peterson-Hiller, Espay, Revilla, Devoto, Yearout, Hu, Cholerton, Montine, Edwards, Zabetian. Large-scale Exploratory Genetic Analysis of Cognitive Impairment in Parkinson's Disease Accepted: Neurobiology of Aging
236. Sanders LH, Paul KC, Howlett EH, Lawal H, Boppana S, Bronstein J, Ritz B, Greenamyre TJ. Base excision repair variants and pesticide exposure increase Parkinson's disease risk. Accepted: Toxicological Sciences

MANUSCRIPTS CURRENTLY UNDER REVIEW

1. Chuang YH, Paul K, Bronstein J, Horvath S, Ritz B. EWAS in Parkinson's disease. Movement Disorders.
2. Paul KC, Ling C, Haan M, Ritz B. Organophosphate pesticides exposure and cognitive decline in SALSA. EHP
3. Paul KC, Sinsheimer JS, Cockburn M, Bronstein JM, Bordelon Y, Ritz BR. Organophosphate pesticide exposure and PON1 L55M in Parkinson's disease progression. Environment International
4. Paul KC, Sinsheimer JS, Cockburn M, Bronstein JM, Bordelon Y, Ritz B. NFE2L2, PPARGC1a, and Oxidative Stress in Parkinson's disease susceptibility and progression. Environ Health
5. Reading SR, Arun S Karlamangla,; Tara L Gruenewald,; Natalie Slopen, David R Williams, Dallas T Swendeman, Beate R Ritz, Brandon Koretz; Teresa E Seeman. Relationship between Psychosocial Stressors and Allostatic Load: Findings from the MIDUS Study. Annals of Behavioral Medicine.
6. Alfonso, VH, Bandoli G, von Ehrenstein O, Ritz B. Early folic acid supplement initiation and risk of adverse early childhood respiratory health: A Los Angeles population-based study. Maternal and Child Health Journal
7. Contreras ZA, Hansen J, Ritz B, Olsen B, Yu F, Heck JE. Parental age and childhood cancer risk: A Danish population-based registry study. Cancer Causes Controls
8 Alfonso, VH, Wang MC, von Ehrenstein O, Bandoli G, Ritz B. Enrollment in the Special. Supplemental Program for Women, Infants and Children reduces risk of recurrent preterm birth among eligible California siblings. IJE
8. Lee PC, Nielsen S, Loriot MA, Hansen J, Lill C, Checkoway H, Elbaz A, Ritz B. Meta-analysis of head injuries and SNCA interactions in Parkinson Disease. Neurology
9. Lee PC, Ahmed I, Loriot MA, Mulot C, Lambert JC, Ritz B, Elbaz A. Smoking and Parkinson's disease: evidence for gene-by-smoking interactions. Neurology
10. Patel CJ, Kerr J, Thomas DC, Mukherjee B, Ritz BR, Chatterjee N, Jankowska M, Madan J, Karagas MR, McAllister K, Leah E. Mechanic10, M. Daniele Fallin11, Chris Ladd-Acosta11, Ian Blair12, Susan Teitelbaum13, Amos CI. Opportunities and Challenges for Environmental Exposure Assessment in Population-Based Studies. AJE
11. Wojcik KY, Escobedo LA, Wysong A, Heck JE, Ritz B, Cockburn M. High Birth Weight, Early UV exposure, and Melanoma Risk in Children, Adolescents and Young Adults. Pediatrics.
12. Park AS, B Ritz, C Ling, M Cockburn, JE Heck. Exposure to Ambient Dichloromethane in Pregnancy and Infancy from Industrial Sources and Childhood Cancers in California.
13. Omidakhsh N, Heck JE, Ritz B, Kennedy N, Ehrenstein OS, Krause N, Ganguly A, Bunin GR.. Parental occupational exposures and the risk of childhood sporadic retinoblastoma: a report from the Children's Oncology Group. Occupational and Environmental Medicine
14. Li L, Lurmann F, Habre R, Urman R, Rappaport E, Ritz B, Chen JC, Gilliland FD, Wu J. Constrained Mixed-Effect Models with Ensemble Learning for Prediction of Nitrogen Oxide Concentrations at a High

Spatiotemporal Resolution. Environmental Science \& Technology.

INVITED COMMENTARIES AND EDITORIAL (peer reviewed)

1. Ritz B. Environmental Toxins and Neurodegenerative Diseases: A Challenge for Epidemiologists. Epidemiology. 2006 Jan; 17(1):2-3.
2. Kheifets, L, Ritz B. Electromagnetic Fields, Science and Public Concern. Soz Praeventive Med 51 (2006): 1-2.
3. Ritz, B. Wahner A*, Bordelon Y, Bronstein J. Can Anti-Inflammatory Agents Protect Against Parkinson's Disease? Future Neurology 2008
4. Chesselet M-F, Ritz B. Transcriptional regulation of a-synuclein: insights from blood? Commentary on: GATA transcription factors directly regulate the Parkinson's disease-linked gene alpha-synuclein; Scherzer et al. Future Neurology, March 2009, Vol. 4, No. 2, Pages 145-147
5. Ritz, B. Birth defects and ambient air pollution, opportunities and challenges. Editorial; Occup Environ Med. 2010 Apr;67(4):221-2.
6. Ritz B, Rhodes SL. After half a century of research on smoking and PD, where do we go now? Neurology. 2010 Mar 16;74(11):870-1.
7. Bower J, Ritz B. Is the answer for Parkinson disease already in the medicine cabinet? Unfortunately not. Neurology. 2011 Mar 8;76(10):854-5.
8. Blair A, Ritz B, Wesseling C, Beane Freeman L. Pesticides and human health. Occup Environ Med. 2015 Feb;72(2):81-2.

BOOKS AND MONOGRAPHS

1. Karmaus W, Glaser-Möller N, Hullmann B, Ritz B, Schäfer K-H, Sonn E: Arbeitsbedingte rheumatische Erkrankungen, Büroarbeit und Bewältigung. Ergebnisse einer Längsschnittstudie von weiblichen Angestellten. ("Working Conditions, Health Behaviour and Rheumatic Disorders II; Results of a Longitudinal Study on Female Office Workers"' Forschungsbericht des BMFT, HDA 01 HA 033/4, 1987.
2. Hullmann B, Karmaus W, Osterholz U, Ritz B: Work-Related Musculo-Skeletal Disorders. Proceedings of an International Symposium. HDA, Tagungsbericht TB 48, Wirtschaftsverlag NW, Bremerhaven, 1987.
3. Osterholz U, Patjens S, Ritz B: Forschungsdokumentation "Rheuma und Arbeit" "Research Documenation on Working Conditions and Musculo-Skeletal Disorders"). Arbeitspapier Nr 10, Projektgruppe HdA des WSI, Eds.: Geschättsführung des WSI, Düsseldorf, 1987

PEER REVIEWED REPORTS

1. Morgenstern H, Froines J., Ritz B, Young B. Epidemiologic Study to Determine Possible Adverse Effects to Rocketdyne/Al Workers from Exposure to Selected Chemicals. July 1998
2. Morgenstern H, Froines J., Ritz B, Young B. Epidemiologic Study to Determine Possible Adverse Effects to Rocketdyne/AI Workers from Exposure to lonizing Radiation. June 1997.
3. Sloss E, Geschwind SA, McCaffrey DF, Ritz B. Groundwater Recharge with Reclaimed Water - An Epidemiologic Assessment in Los Angeles County, 1987-1991. Rand Technical Report DRR-1192WRDSC, 1995
4. Karmaus W, Glaser-Moeller N, Hullmann B, Ritz B, Schäfer K-H, Sonn E: Final Report of the project "Arbeitsbedingte rheumatische Erkrankungen in der Verwaltung" ("Work Related Rheumatic Disorders in Administrative Jobs") Schriftenreihe der Bundesanstalt fuer Arbeitsschutz, Forschung Fb 608, Bonn, 1990.
5. Sloss E, McCaffrey DF, Fricker RD, Geschwind, SA, Ritz B. Groundwater Recharge with Reclaimed Water - Birth Outcomes in Los Angeles County, 1982-1993. Rand Technical Report, 1999.
6. Ritz, B. X-\& Gamma Radiation and Neutrons. In: Report on Carcinogens, $11^{\text {th }}$ edition. Carcinogen Profiles U.S. Department of Health and Human Services, Public Health Service, National Toxicology Program. 2004.
7. Meng YY, Rull RP, Wilhelm M, Ritz B, English P, Yu H, Nathan S, Kuruvilla M, Brown ER. Living near heavy traffic increases asthma severity. Policy Brief UCLA Cent Health Policy Res. 2006 Aug:1-5.
8. Molitor J, Coker E, Jerrett M, Ritz B, Li A; Health Review Committee. Part 3. Modeling of Multipollutant Profiles and Spatially Varying Health Effects with Applications to Indicators of Adverse Birth Outcomes. Res Rep Health Eff Inst. 2016 Apr; (183 Pt 3):3-47

CHAPTERS OR SECTIONS IN BOOKS

1. Appelt H, Ritz B: Medikamentengebrauch und -abhängigkeit bei Frauen ("FemaleDrug Abuse and Dependency"). In: Medikamente und Sucht, Berichtsheft zur Arbeitstagung der Hamburgischen Landesstelle gegen die Suchtgefahren e.V.(Eds.) Hamburg 1984.
2. Ritz B, Karmaus W, Ellinger S: Schmerz-,Beruhigungs-und Schlafmittel - die verordnete Normalität ("Pain Killers, Sleeping Pills and Tranquilizers - Prescribed Norms"). In: Jahresheft 1984 Hamburgische Landesstelle gegen die Suchtgefahren e.V.(Eds.) Hamburg 1984.
3. Glaser N, Ritz B: Lungenkrebs, Rauchen und Schadstoffbelastung bei Hamburger Gaswerkern; Risikoabschätzung anhand der logistischen Regression ("Lung Cancer, Smoking and Air Pollutants of Workers Employed at the Hamburg Gas Company "). In: Muß Arbeit krank machen? Eds: G.Elsner, W.Karmaus, L.Lißner, VSA-Verlag, Hamburg 1986.
4. Ritz B: Zur Epidemiologie degenerativer rheumatischer Erkrankungen im Zusammenhang mit Arbeitsbedingungen: Halswirbelsäulenveränderungen bei weiblichen Verwaltungsangestellten ("The Epidemiology of Musculo-Skeletal Disorders and Working Conditions of Female Office Workers: Work-Related Neck Disorders"). In: Rheuma und Krebs; Beiträge zur wissenschaftlichen Jahrestagung der Deutschen Gesellschaft für Sozialmedizin Eds: E. O. Krasemann, U.Laaser, E.Schach, Springer Verlag, Heidelberg, München 1987.
5. Ritz B: Methodological Aspects in Studying Musculo- Skeletal Disorders and Working Conditions in Office Work Places. In: Work-related musculo-skeletal disorders. Proceedings of an International Symposium. HDA, Tagungsbericht TB 48, Wirtschaftsverlag NW, Bremerhaven, 1987.
6. Ritz B, Hullmann B: How Women Office Workers Deal with Stress In: Health Promotion in the Working World. Springer-Verlag Berlin Heidelberg 1989.
7. Ritz B: Chapter 3 - Health and Regulatory Considerations In: Using Reclaimed Water to Augment Potable Water Resources. Water Environment Federation, Virginia 1998.
8. Ritz B Karmaus W: Die Nutzung von Surveillance-programmen und Registern fuer umweltbezogene Fragestellungen (The use of surveillance programs and registries for environmental health research: a historical perspective). In Press: Buch zur Verabschiedung von Heidrun Kaupen-Haas, Mabuse Verlag 2002
9. Van Den Eeden S, Ritz B, Cobb K. Measurement and Analysis. In: Neuroepidemiology; From Principles to Practice. Eds: Nelson L, Tanner C, Van Den Eeden S, McGuire V. Oxford University Press 2004
10. Ritz B, and other Committee Members: Chapter 4 Cancer: Gulf War and Health volume 3, Fuels, Combustion products, and Propellants, The National Academies Press Washington, D.C., 2005
11. Ritz B, and other Committee Members: Amyotrophic Lateral Sclerosis in Veterans. Review of the scientific literature. IOM, NAS National Academy Press, Washington DC, 2006

LETTERS AND OTHER PUBLICATIONS

1. Morgenstern H, Ritz B. Workplace Radiation is Indeed Harmful (letter). Los Angeles Times, March 2, 1998, p S6.
2. Morgenstern H, Ritz B. Alarming But Neither Absurd nor Amusing (letter). Washington Post, Febuary 11, 1998, p S6.
3. Ritz B: Der Einfluß sozialer und struktureller Bedingungen an Büroarbeitsplätzen auf den Gebrauch psychotroper Medikamente; Ergebnisse einer epidemiologischen Untersuchung ("The Influence of Psycho-Social Factors and Job Latitudes on the Use of Psychotropic Medication"). Ph.D.Dissertation, Hamburg 1986.
4. Meng YY, Rull RP*, Wilhelm M, Ritz B, English P, Yu H, Nathan S, Kuruvilla M, Brown ER. Living near heavy traffic increases asthma severity. Policy Brief UCLA Cent Health Policy Res. 2006 Aug;15
5. Grandjean B, Bellinger D, Bergman A, Cordier S, Davey-Smith G, Eskenazi B, Gee D, Gray K, Hanson M, Van den Hazel P, Heindel JJ, Heinzow P, Hertz-Picciotto I, Hu H, Huang TK, Kold Jensen T, Landrigan PJ, McMillen IC, Murata K, Ritz B, Schoeters G, Skakkebæk NE, Skerfving S, Weihe P. The Faroes Statement: Human Health Effects of Developmental Exposure to Chemicals in Our Environment. Basic \& Clinical Pharmacology \& Toxicology, 2007
6. Slama R, Darrow L, Parker J, Woodruff TJ, Strickland M, Nieuwenhuijsen M, Glinianaia S, Hoggatt KJ*, Kannan S, Hurley F, Kalinka J, Srám R, Brauer M, Wilhelm M, Heinrich J, Ritz B. Meeting report: atmospheric pollution and human reproduction. Environ Health Perspect. 2008 Jun;116(6):791-8
7. Popat RA, Van Den Eeden SK, Tanner CM, Kamel F, Umbach DM, Marder K, Ritz B, Webster Ross G, Petrovitch H, Topol B, McGuire V, Nelson LM Response to Hill-Burns et al. letter: An attempt to replicate interaction between coffee and CYP1A2 gene in connection to Parkinson's disease. Eur J Neurol. 2011 Sep;18(9):e109.
8. Liew Z, Ritz B, Olsen J. Characteristics of acetaminophen users compared with nonusers during pregnancy, behavioral problems, and hyperkinetic disorders-reply. JAMA Pediatr. 2014 Sep;168(9):865-6.
9. Liew Z, Olsen J, Cui X, Ritz B, Arah OA. Response to Werler and Parker letter: Comment on livebirth bias in pregnancy cohorts. Int J Epidemiol. 2015 Jun;44(3):1080-1
10. Bennett D, Bellinger DC, Birnbaum LS, Bradman A, Chen A, Cory-Slechta DA, Engel SM, Fallin MD, Halladay A, Hauser R, Hertz-Picciotto I, Kwiatkowski CF, Lanphear BP, Marquez E, Marty M, McPartland J, Newschaffer CJ, Payne-Sturges D, Patisaul HB, Perera FP, Ritz B, Sass J, Schantz SL, Webster TF, Whyatt RM, Woodruff TJ, Zoeller RT, Anderko L, Campbell C, Conry JA, DeNicola N, Gould RM, Hirtz D, Huffling K, Landrigan PJ, Lavin A, Miller M, Mitchell MA, Rubin L, Schettler T, Tran HL, Acosta A, Brody C, Miller E, Miller P, Swanson M, Witherspoon NO. 2016. Project TENDR: Targeting Environmental Neuro-Developmental Risks. Project TENDR: Targeting Environmental Neuro-Developmental Risks The TENDR Consensus Statement. Environ Health Perspect. 2016 Jul 1;124(7):A118-22.
11. Thurston GD, Kipen H, Annesi-Maesano I, Balmes J, Brook RD, Cromar K, De Matteis S, Forastiere F, Forsberg B, Frampton MW, Grigg J, Heederik D, Kelly FJ, Kuenzli N, Laumbach R, Peters A, Rajagopalan ST, Rich D, Ritz B, Samet JM, Sandstrom T, Sigsgaard T, Sunyer J, Brunekreef B. A joint ERSIATS policy statement: what constitutes an adverse health effect of air pollution? An analytical framework. Eur Respir J 2017: 49 1600419.

EXHIBIT B

Studies excluded from the present review and the reasons for exclusion

Brown et al, "Pesticide exposures and multiple myeloma in Iowa men."	Only provided results for multiple myeloma.
Fritschi et al, "Occupational exposure to pesticides and risk of non-Hodgkin's lymphoma." ${ }^{2}$	This paper did not report an effect estimate specific to glyphosate
Flower et al, "Cancer risk and parental pesticide application in children of Agricultural health study participants."	Study took place in children; no specific glyphosate- lymphoma associations were reported.
Hoar et al, "Agricultural herbicide use and risk of lymphoma and self-tissue sarcoma."4	Results specific to glyphosate were not reported.
Kachuri et al, "Multiple pesticide exposures and the risk of multiple myeloma in Canadian men."5	Results only reported for multiple myeloma.
Landgren et al, "Pesticide exposure and risk of monoclonal gammopathy of undetermined significance in the Agricultural Health Study." ${ }^{6}$	Monoclonal gammopathy of undetermined Significance (MGUS) is a precursor condition to multiple myeloma.
Sorahan, "Multiple Myeloma and Glyphosate Use: A Re-Analysis of US Agricultural Health Study (AHS) Data." 7	Only provided results for multiple myeloma.
Waddell et al, "Agricultural use of organophosphate pesticides and the risk of non-Hodgkin's lymphoma among male farmers (United States)." 8	This study did not report on glyphosate.
Zhang et al, 2016, "Health effect of agricultural pesticide use in China: implications for the development of GM crops." ${ }^{9}$	This article examined blood chemistry measures in relation to glyphosate, (markers for renal and hepatic function such as electrolytes, B vitamins, serum glucose, Creactive protein, and peripheral nerve conduction). Not directly relevant for NHL

References

1. Brown LM, Burmeister LF, Everett GD, Blair A. Pesticide exposures and multiple myeloma in Iowa men. Cancer Causes Control. 1993;4(2):153-156.
2. Fritschi L, Benke G, Hughes AM, et al. Occupational exposure to pesticides and risk of non-Hodgkin's lymphoma. Am J Epidemiol. 2005;162(9):849-857.
3. Flower KB, Hoppin JA, Lynch CF, et al. Cancer risk and parental pesticide application in children of Agricultural Health Study participants. Environ Health Perspect. 2004;112(5):631-635.
4. Hoar SK, Blair A, Holmes FF, et al. Agricultural herbicide use and risk of lymphoma and soft-tissue sarcoma. JAMA. 1986;256(9):1141-1147.
5. Kachuri L, Demers PA, Blair A, et al. Multiple pesticide exposures and the risk of multiple myeloma in Canadian men. Int J Cancer. 2013;133(8):1846-1858.
6. Landgren O, Kyle RA, Hoppin JA, et al. Pesticide exposure and risk of monoclonal gammopathy of undetermined significance in the Agricultural Health Study. Blood. 2009;113(25):6386-6391.
7. Sorahan T. Multiple myeloma and glyphosate use: a re-analysis of US Agricultural Health Study (AHS) data. Int J Environ Res Public Health. 2015;12(2):1548-1559.
8. Waddell BL, Zahm SH, Baris D, et al. Agricultural use of organophosphate pesticides and the risk of non-Hodgkin's lymphoma among male farmers (United States). Cancer causes \& control : CCC. 2001;12(6):509-517.
9. Zhang C, Hu R, Huang J, et al. Health effect of agricultural pesticide use in China: implications for the development of GM crops. Sci Rep. 2016;6:34918.

Other Materials

1. Bolognesi C, Holland N. The use of lymphocyte cytokinesis-block micronucleus assay for monitoring pesticide-exposed populations. Mutation Research. 770 (2016) 183-203.
2. Deposition Transcripts and Exhibits of Dr. John Acquavelia, Ph.D., taken on April 7-8, 2017.
3. Deposition Transcript and Exhibits of Dr. Aaron Blair, Ph.D., taken on March 20, 2017.
4. Deposition Transcripts and Exhibits of Dr. Donna Farmer, Ph.D., taken on January 1112, 2017.
5. Deposition Transcript and Exhibits of Dr. Daniel Goldstein, M.D. taken on January 18, 2017.
6. Deposition Transcripts and Exhibits of Dr. William Heydens, Ph.D, taken on January 2324, 2017.
7. Deposition Transcript and Exhibits of Dr. Mark Martens, Ph.D., taken on April 7, 2017.
8. Deposition Transcripts and Exhibits of Dr. David Saltmiras, Ph.D., taken on January 31 and February 1, 2017.
9. EPA. (1980a). Glyphosate; Submission of rat teratology, rabbit teratology, dominant lethal mutagenicity assay in mice. Retrieved from Washington (DC):
http://www.epa.gov/pesticides/chemicalsearch/chemical/foia/cleared-reviews/reviews/103601/103601-090.pdf
10. EPA. (1985a). Glyphosate; EPA Reg.\#: 524-308; Mouse oncogenicity study. Document No. 004370 . Retrieved from Washington (DC):
http://www.epa.gov/pesticides/chemicalsearch/chemical/foia/clearedreviews/ reviews/103601/103601-183.pdf
11. EPA. (1985b). EPA Reg.\#: 524-308; Roundup; glyphosate; pathology report on additional kidney sections. Document No. 004855 . Retrieved from Washington (DC): http://www.epa.gov/pesticides/chemicalsearch/chemical/foia/clearedreviews/ reviews/103601/103601-183.pdf
12. EPA. (1986). Glyphosate; EPA Registration No. 524-308; Roundup; additional histopathological evaluations of kidneys in the chronic feeding study of glyphosate in mice. Document No. 005590. Retrieved from Washington (DC): http://www.epa.gov/pesticides/chemicalsearch/chemical/foia/clearedreviews/ reviews/103601/103601-211.pdf
13. EPA. (1991a). Second peer review of glyphosate. Retrieved from Washington (DC): http://www.epa.gov/pesticides/chemicalsearch/chemical/foia/clearedreviews/ reviews/103601/103601-265.pdf
14. EPA. (1991b). Glyphosate; 2-year combined chronic toxicity/carcinogenicity study in Sprague-Dawley rats - List A pesticide for reregistration. Document No. 008390. Retrieved from Washington (DC):
http://www.epa.gov/pesticides/chemicalsearch/chemical/foia/clearedreviews/ reviews/103601/103601-263.pdf
15. EPA. (1991c). Peer review on glyphosate. Document No. 008527.
16. EPA. (1991d). Glyphosate - EPA registration No. 524-308-2-year chronic feeding/oncogenicity study in rats with technical glyphosate. Document No. 008897. Retrieved from Washington (DC): http://www.epa.gov/pesticides/chemicalsearch/chemical/foia/clearedreviews/ reviews/103601/103601-268.pdf
17. EPA. (1993a). Reregistration Eligibility Decision (RED): Glyphosate. EPA 738-R-93-014. Washington (DC): Office of Prevention, Pesticides and Toxic Substances, Office of Pesticide Programs.
18. EPA. (1993b). RED facts: Glyphosate. EPA-738-F-93-011. Washington (DC): Office of Prevention, Pesticides, and Toxic Substances.
19. EPA. (1997). Pesticides industry sales and usage - 1994 and 1995 market estimates. Washington (DC): Biological and Economic Analysis Division, Office of Pesticide Programs, Office of Prevention, Pesticides And Toxic Substances.
20. EPA. (2011). Pesticides industry sales and usage - 2006 and 2007 market estimates. Washington (DC): Biological and Economic Analysis Division, Office of Pesticide Programs, Office of Prevention, Pesticides And Toxic Substances.
21. EPA. (2015) Glyphosate: Report of the Cancer Assessment Review Committee. EPA's Office of Pesticide Programs, Health Effects Division. October 1, 2015.
22. EPA. (2016) Glyphosate Issue Paper: Evaluation of Carcinogenic Potential. EPA's Office of Pesticide Programs. September 12, 2016.
23. European Food Safety Authority. Conclusion on the peer review of the pesticide risk assessment of the active substance glyphosate. EFSA J 2015;13:4302
24. JMPR. (2006). Glyphosate. In: Joint FAO/WHO Meeting on Pesticide Residues. Pesticide residues in food - 2004: toxicological evaluations. Report No.
WHO/PCS/o6.1.
25. Lan Q, Zheng T, Shen M, Zhang Y, Wang S, Zahm S, Holford T, Leaderer B, Boyle P, Chanock S. Genetic polymorphisms in the oxidative stress pathway and susceptibility to non-Hodgkin lymphoma. Hum Genet. 2017;121:161-168.
26. Lioi M, Scarfi M, Santoro A, Barbieri R, Zeni O, Salvemini F, Berardino D, Ursini M. Cytogenetic Damage and Induction of Pro-Oxidant State in Human Lymphocytes Exposed In Vitro to Gliphosate, Vinclozolin, Atrazine, and DPX-E9636. Environmental and Molecular Mutagenesis. 32:39-46 (1998).
27. Luo L, Wang F, Zeng M, Zhong C, Xiao F. In vitro cytotoxicity assessment of roundup (glyphosate) in L-o2 hepatocytes. Journal of Environmental Science and Health, Part B. 2017, Vol. o, No. o, 1-8.
28. Pahwa M, Spinelli J, Freeman L, Demers P, Blair A, Pahwa P, Dosman J, McLaughlin J, Zahm S, Cantor K, Weisenburger D, Harris S. An Evaluation of Glyphosate Use and the Risks of Non-Hodgkin Lymphoma Major Histological Subtypes in the North American Pooled Project (NAPP). $27^{\text {th }}$ Conference of the International Society for Environmental Epidemiology.
29. Townsend M, Peck C, Meng W, Heaton M, Robison R, O'Neill K. Evaluation of various glyphosate concentrations on DNA damage in human Raji cells and its impact on cytotoxicity. Regulatory Toxicology and Pharmacology (2017), doi:
10.1016/j.yrtph.2017.02.002
30. Wang S, David S, Cerhan J, Hartge P, Severson R, Cozen W, Lan Q, Welch R, Chanock S, Rothman N. Polymorphisms in oxidative stress genes and risk for non-Hodgkin lymphoma. Carcinogenesis. Vol. 27, No. 9, pp. 1828-1834, 2006.

Compensation

My rates for expert work are $\$ 550.00 /$ hour and $\$ 5,000.00 /$ day for deposition and trial testimony. Prior Testimony

I have not given a deposition or trial testimony in the last four years.

Low P-Values or Narrow Confidence Intervals: Which Are More Durable?

Charles Poole

What should the the role of P-values and confidence intervals in the interpretation of scientific results? This question is not new and our field of epidemiology is far from alone in struggling with it. I have four suggestions for authors and readers. The first is quite broad, so I offer that one hefore describing current practices. I then turn to the other three. My remarks are confined to settings in which P-values and confidence intersals accompany estimates of effect meanures, woch as the relative risk.

Briefly; here are my suggestions. One, we should work harder than ever to avoid strict or exact interpretations of P-values and confidence intervals in ohservational research, where these statistics lack a theoretical basis. Two, we should stop interpreting P-values and confidence intervals as though they measure the probahility of hyporheses. Three, when we want to know the prohability of hyporheses, we should use Bayesian methots, which are designed expressly for that purpose. Four, we should get serious about precivon and look for natrow confidence intervals instead of low P-values to identify resulte that are least influenced by randomerer.

Real Lite 1s Not Randomized

When treament or exposure is randomied, we have a wolid theoretical basis, temade in simulations, for the protability modeh from which P-values, confitence intervals, and likelihoods are deduced. In oherrational reseath, all we can do is hope that the social, helas. wata and phacical procome hy which people hecome exposed to risk factors in the unrandomied real world do not differ ton greatly from tandomization ${ }^{+}$Unfortanately, each time we find that risk factors are asociated with each other in ohervational sudics, we find evidence against that hepe. We cannet remind ourselse too often of this fundamental prohlem. At the wery least, in should cause us to avod haisplitting interpretations

[^4]of probahilistic statistics in ohecrational research. where they are intrinsically fuzzy.

Contemporary Uses of P-Values and Confidence Intervals

Significance testing unquestionably dominates cpidemiology teday. In attempting to refrain from this practice over the past 17 years, I have often been expected, asumed. encoutaged, and wometimes even fored to engage in it by chitors, reviewers, collcagues, professors, students, funding sources, regulators, attorners, and journalists. It is not easy to be a nom-tester in a testing world.

After Rorhman's highly influential 1978 essay, "A Show of Confidence,". an immense and casily documented shift in reporting style took place. Whereas P-values or "S" (significant) and "NS" (not significant) once were reported exclusively, the reporting of confidence intervals has now hecone accepted practice, with or without $P_{\text {-xalue }}$ acompaniment. Confidence interrals have a survital advantage for the riny non-testing minotity to which I helong. They enable un to gange the precison of entmates casily, hut withen depriving the

Epidemmogits who see no purpose to a confidence intersal other than its use in signiticance resting some times wonder why thi dift in reporting practice has occurred. The P-value provide the information the desire more efficiently and exactlo. Some are vaguels aware that confidence intervals smposodly convey informaton that P-values do not, hut are unsure what that excra infermation is and even less sure how it might be usctul. The word "precision" seems to be used with increasing regularity now adays, and confidence intervals are occasiomally described as "wide," hut "wide" and "imprecise" often seem nothing mose than code word for "includes the null value" and hence for "not statiotically significant."

Improbable Observations Do Not Imply Improbable Hypotheses

When we entimate a parameter such as the relative risk, each posible value of that parameter is the expected value under some hypotheris, and each hyporhcos har a P'value." What we call "the" P'walue is the P-value for the mull hypothens. Approximatels, wad P-alue is the probahility of ohtaining an cetimate at least as far from a pecificd value as the estimate we have
ohtained, if that pecified value were the true value. It follows that no P-ralue, for the null hepothesis or any other, is the probability that the specified hypothesis is trie. As an ohvious example, the hypothesis corresponding to the point estimate has a (two-sided) P-value of 1.0. However, we do bot treat our point estimates as aboolutely certain to be true. Neither is the point estimate, in general, the mont probable value.
For a given cotimate, the 95% confidence interval is the set of all parameter values for which $P \geq 0.05$. For the value at each limit of a 95% confidence interval, $P=0.05$ (two-sided). Thus, if either of the 95% confidence limits for a relative risk estimate equals 1.0 (the null value of this parameter), we can infer that the null P-value is 0.05 . From this link hetween confidence intervals and P-values, it follows that a 95% contidence interval is not a range of values within which the unknown true value lies with 95% prohability

The well-known "coverage probatility" of confidence intervals pertains to a parameter value that is known to be true and the probability that an as eet unknown confidence interval will contain it. Coverage probahility does not pertain to a known confidence interval and an unknown true value. To interper a given 95% confidence interval as having a 95% probability of including the unknown true value is to mistake a frequentiot confidence interval for a Bayesian probahility interval. This error is merely an extension of the logical fallacy of mistaking the null P-value for the probatility that the null hypothesis is true
Why do we cumprotability lagic on ite heat in this way? We very much want to know the prokhtite : bypotheses, which require Basesian methods to determine, hut our hiontatistical twacher give un the P - values and contidence interval of frequentiot statitios. We are thus ked into a basc fallacy, by which the probatilite of A given B in mitaken for the probatility of B given A. A P-value of 0.04 tells us that, if the null hypothero were true, an assectation ar leat as ateng as the one we ohserved would necur with a probatility of 4%. We find it quite natural to reverse the rems, and conclude mis. takenly that the probatility of the null hypothesis is $4^{\prime \prime}$. giten the asoclation we ohserved.

The null hypothexis or any other hypothese can bo highly probatle even though its P-value in less than 0.05 . The null hepothesis or any other hepothesis can have a low prohatility even thengh its P-value is greater than 0.05. A relative risk can tre highly probable even though it lies mitside a 95% confitence interval. A relative rive cin be highly improbatle even though it lies inside a 95\% contidence interval.

The imdispensalle fole of hyputhere in the computation of P-values and contidence interabs, with cach hepothess assigning a probability to cach estimate we might posihly ohtain, means that these measures are not the decoriptive eatiotios they are sometimes sald to bee P-ralues and confidence inremals are inferental tatition lut the flow of the inference is a deductive flow, in which hypothenes confer probability "down" to contimatos. "Inductice
statistical inference, in which the direction of the probability flow in from estimate back "up" to hypotheses, properly takes place only when prior prohabilitics ate updated with new data, by means of Bayes's theorem, to form posterior probabilitios.
The only way we can determine the probability of the null hypothesis, or a range of values within which the true value lies with a given level of probahility, is ly using Bayesian methods. Bayesian methods cannot be emplosed without the specification of prior probabilities for the hypothetical values of interest (eg, all possihle values of relative risk, from zero to infinity). Since we do not specify prior probability distributions when we compute conventional (frequentist) confidence intervals, those intervals have no gencolly valid interpretation as Bayesian probability intervals.

Many familiar expressions - sone employing probahilistic language, others avoiding it - have the effect of leading us into this misinterpretation. It has been said that being located inside a 95% confidence interval makes valueplamible, probatle, likely, reasonably included by the data, or even possible. Values exterior to 95% confidence intervals have leen said to be implausible, improbable, unlikels; reasonahly excluded hy the data, or even ruled out. None of these variations on a rhetorical theme can change a simple fact of statistical life: If we want to know which values are more and less likely, more and leon phausble, etc., we must specify prior probabilitics for thome values and use Bayose theorem to update those probatilitien when new datarare in hand.
 (hereatter called "the" P-value) does not do a very good foh of the task for which it wat originally intended: to quantify the satiotical evidence aganst the null hypothesis. The reasen is simple. The familar Type I and Tye If erros rate upon which Negman and Param taught us to focus heg vitally important yestions.

One minus the Type I error mate is the specificity of a significance test: the probability of not declaring "significance" when the null hypothesis is true. One minus the Type Il crror rate is the test's power or sensitivity: the probahility of declaring "significance" when the altemative hypothesis is true. No informed patient would be satistied with a diagnostic test result knowing only the test's pecificity and sensitivity. That patient modd wamt to haow the test: predictive value (positive or negative, depenting on the result).

Significance text are 1 ne different. In the same frequency terms that Nevman and Fearon ued, the resemcher who wishen to be fully informed hould to interented in queations such as the following: How often is the null hypothesis true when we tail to refect 11 ? When we hereject the null hypothesis, hew often is the ahernative hypothesis ruce? Thene are the probabilitice of ultimate concern in significance testing - the predictioc value of "xs" and "S." There io no way to determine them withour postulating (otated agam in fre quency terms) how ofter the null and alternative hypetheces are true.

The interest many epidemiologist express in how how the P-value is, if it is lower than 0.05 , ' rases still other questions. How much evidence against the null hypothesis do we have when $P=0.04$, or when $P=0.001$? To answer these questions, we need to consider the protahilities under the null and alternative hypotheres of whtaining these particular P-values, not just the probabilitics of ohtaining $P<0.05$.

Statistician: who have examined these questions in detall": कhave found, under widely ranging conditions. that P-ralues on the order of $0.05,0.01$, and even lower provide much lese evidence against the null hypotheris than they appear to provide at face value. As a general matter. P-values in the vicinity of 0.05 provide almest no eridence against the null hyporhesis at all. $P=0.04$. for instance, is typically found to be almost equally probable under the null and altemative hypotheses.

One upshot of this work has heen a statistical research program devoted to calibrating, standardizing, conditioning, of adjusting low P - values to make them higher. of that they reflect more realistically the limited statistical evidence they provide against the null hypothesis. $=$ Now that Bayesian methols are computationally feasible, one wonders whether these efforts to patch up P-values will ultimately be viewed a transitional stopgar.

Taking Precision Seriously

Transitional stopgaps should not he dismised lighty. especially when the transitions in question take decaden (o) entold Stepraps an te particularly valualle when it
 (int) widermenfor a (Bayesian) rewohtion. In cpidemiolog. the adent of confilence interval creates an opportunity to take another small step toward more wideaprad we of Bayestan methow, while at the ame time impresing ewcratl interpetation. Thi step is mercle to take precision weriously.

Epidemologist, have many reasons to emphaviec cortain resulte wer others. Some result- mas pertain to particularly topioal rewarch questions. Some may be more valid than others. And some may be lese influenced by random error. This last consideration ecems to be an impertant one to many epidemiolegists, who regubarly we P-values to deremine the degree to which chane influcnces their results. They belece that the lower the P-salues, the lese the influence of chance. Unfortunately, the extremely commen use of the P. shlue is a misue and an abowe of that atates. The ontimares least infleenced hy chance are not thone with low P-values, hut these with narrow confidence intervals.

Coneder the four hypothetical relative risk estimate in Tatle 1. The ratio of the upper to lower 95% confidence limit. (C:LR) is a bandy measure of confidencs interad width, and thes of precision. (For a difference measure such as the risk difference, the difference between the upper and lower confitence limitswould erve the same purpose.) The example was devised to dramatize four clearcout combinations of statistical "significance" ma precision.

TABLE 1. Results from a Hypothetical Study of a Single Binary Exposure and Four Diseases or of a Single Disease and Four Binary Exposures

Expumee or Dueame		1	$45^{\prime \prime}, \mathrm{ClR}$
A	$2.50 め \mathrm{CbO}$	$\therefore 1$	10
1	1.7(1.2-2.4)	$\therefore い$	-
\because	4.1 (1.2-14)	$\therefore 2$	12
1)	1.4 (0.802.4)	$\therefore 2$;

To the extent that the role of chance would be taken into account in deciding which of these results to emphasiee, the conventional choices would be the statistically "significant" estimates B and (.. These would be the "ansochations unlikely to be due to chance alone." But one of them, estimate $($, is very unstable. That estimate is influenced much more by random error, and from that standpoint is much less dependable, than estimate B.

Of equal importance, when (: is compared with D). estimate (C is influenced much more by chance and in that regard is much less trustworthy, even though estimate $(:$ is statistically "rignificant" and estimate D is not. Estimate, B and D - nor B and $(\because$ - are this study's most precise estimates. Estimates B and D stand the hest chance of holding up, conditional on their validity, in the context of existing and future rescarch. Estimates B and I) would weigh more heavily into mota-analyes and would exert stronger influences on prolability distrihutions in properly conducted Rayesian analves. Extimaten B and 1) are the
 statistically atalle renults this atuly has to offer.

It is sometimes aid that confidence interval are expecially waluation and that increase in sample siac and atatiotical efficiency are particularly needed, when statistical "significance" has not been attained. To the contrats an estimate that has a wide confidence intersal is impreciec and unstable no matter how how its P-aluc. Based wolely on the results in Tahle 1, batger ample vize special sudy populations and sativically more efficiont devigns would be particularly deseratle for A and (\therefore regartlese of the fact that one of these esrimates is statistically "significant" and the other is not.

Some epidemologists wonder what all the fuse orer P-values and confidence intervals is about. This hyor thencal example shows how an emphasts on precison rather than statistion "significmoe" oan affect which resulte we may choose to highlight. I invite the reader to examine putbished research reporse in which the estimates with the lowest P^{2}-values have heen singled out for emphasis, and wimage bow differenty thone paper would read if the entimater with the narrowe confidence intervals had feen highlighted instem.

CONCLUSION

Our rexult- that denerve the greater reliance are thene that are mose stahk and mostworthe. With regard to random ertor, a very porer was of identifing dependahle revelto io to edect asonciatione with impresonely fow

P－talues．Inference and decision－making would be far better served by choosing estimates with narrow confi－ dence intervals，which are least vulnerable to the play of chance．These are the results for which，hy virtue of intentional or accidental features of our research meth－ odt，our studies provide the most evidence（as distim－ guished from the most talid evidence）．

By taking precision seriously，we can casily identify those research questions on which our studies prowide the greatest quantity of statistical evidence，and thene questions for which larger and more statistically efficient studies are needed．In terms of resistance to random error，our most durable results are our most precise estimates－however unpectacular，unsentational，and ＂non－significant＂many of those estimates might be

References

 9⒊

 $1: 52$
 （o）

 20049：－33 35

 $\therefore 13914$

以 以
 190ッますご，3？

 j900：17． 160

 Prolamal foy 3：13：405 201

 111.

Review: Causal Inference in Epidemiology

Confounding

Beate Ritz, MD, Ph.D.
EPI 200B
Winter 2010
NOTE: Many of the following slides are based on the lectures notes provided by Dr. Hal Morgenstern (Epi Methods I and II)

Major Methodologic Concerns in Epidemiologic (Observational) Population

Research

Three biases we try to avoid or control for: Information Bias - measurement error of exposure or disease
Selection bias - does selection of the control/reference group depend on outcom and the exposure of interest
Confounding Bias - lack of comparability (lack of exchangeability) between exposed
 and unexposed populations
$>$ In addition, we try to assess differences of effect estimates in subgroups e.g. men vs. women (statistical interactions or effect measure modification)

Counterfactual causal thinking

- provides a useful concept of causation
- allows to draw probabilistic causal inferences in observational studies
provides framework for statistical procedures to estimate causal effects
demonstrates the limitations of observational data
See Hoefler. Causal inference based on counterfactuals BMC Med Research Meth. 5:28, 2005

Exploring Causes of Disease in Human Populations: Use of Counterfactual Causality

In counterfactual causal thinking we imagine the consequences of changing the value of a single factor in a comprehensive (complex) causal system

The counterfactual is by definition unobservable. Instead, we identify a valid comparison group, i.e. similar in every aspect except for exposure.

"Causal Models" (but NOT a causal pathway diagram (DAG)!):
From: Marbury MC, Maldonado G, Waller L. The indoor air and children's health study: methods and incidence rates Epidemiology. 1996 Mar;7(2):166-74.

FIGURE 1. Conceptual model of the relation between risk factors and outcomes.

Causal Inference: Rothman's sufficient-component-cause model of causation

Builds a conceptual model for inferential considerations as a bridge between meta-physics and epi studies

Similar to but finer than the counterfactual model

Entities in this model are not individuals but mechanisms of causation

A mechanism is defined as a combination of events/factors that are jointly sufficient to induce a binary outcome event (diseased / non-diseased)

Rothman's sufficient-component-cause model

A cause of a disease is an event, condition, or characteristic that plays an essential role in producing an occurrence of the disease

Sufficient and component causes

- A causal mechanism consists of a constellation of components that act in concert
- A "sufficient" cause may be defined as a set of minimal conditions and events that inevitably produce disease
- "Minimal" implies that none of the conditions or events are superfluous
- The completion of a sufficient cause may be considered equivalent to the onset of disease
- A factor present in every sufficient cause constellation/mechanism constitutes a necessary component cause

Rothman's model of causation

Fig. 2-1. Conceptual schematization of three sufficient causes for a disease [Rothman, 1976].

Causes of Complex Diseases in Populations Rothman's model of causation

Examples

1. Suppose component causes A, B, C, in sufficient causes I-III are all factors commonly present or experienced by people and E is rare. Although all factors are causes, E would appear to be a stronger determinant of disease because those with E differ greatly in risk from those without E. Thus, the strength of a cause is determined by the relative prevalence of component causes.
2. G is a substance created and confined to in a laboratory. Thus, any causal pie that includes G will not cause disease until G is released in the environment.
3. A is a necessary but not a sufficient cause. What proportion of disease is caused by A? Note:

- No disease is caused solely by A, since A is not a sufficient cause.
- A single cause or category of causes that is present in every sufficient cause will have an attributable fraction of 100\%
- What if component C in cause III was a B instead?

Rothman's sufficient-component-cause model

NOTE:

For biologic effects, most and sometimes all of the components of a sufficient cause are unknown

Generally, there is more than one sufficient cause for a disease

Example: Breast cancer causes

$B R C A I$ and BRCAII $=\mathrm{J}$
Early age at menarche $=\mathrm{E}$ Late age at first pregnancy etc.

Sufficient Cause Models

SUFFICIENT CAUSE
Several toxins and genes as
component causes

Point-Counterpoint Commentary: Positivized epidemiology and the model of sufficient and component causes

Charles Poole International Journal of Epidemiology 2001;30:707-709
The Rothman model of sufficient and component causes (SCC) gives epidemiologists engaged in etiological research on any disease a clear choice between two options at any point in time:

1. Consider all remaining variability in the disease's occurrence, conditional on its known determinants, to be due to chance or some other source of irreducible stochastic uncertainty, and close up shop (Peto)
2. Keep searching for additional determinants

One authority (Colditz) on cancer epidemiology very recently declared the search for cancer risk factors to be over.

For health outcome, a way of emphasizing a working agreement on option 2 is to include unlabelled slices in pie-chart depictions of sufficient causes.

1 Peto R. Cancer risk. New Scientist 1977;73:480-81.
2 Colditz G. Cancer culture: Epidemics, human behavior, and the dubious search for new risk factors. Am J Public Health 2001; 91:357-64

Figure 1. Modified pie-chart depiction of all hypothetically possible classes of sufficient causes (etiologic mechanisms) of an outcome with regard to a wellspecified index condition $(X=1)$ and reference condition $(X=0)$. Each label states the specific causal contrast postulated by the hypothetical class of sufficient causes. Unlabelled slices represent known or hypothesized component causes that are unspecified in this particular analysis, as well as unknown component causes that might be discovered in future research.

Example:

If $X=1$ is the presence of an air bag, $X=0$ is its absence, and the outcome is death in an automobile collision, the first pie chart represents mechanisms in which 'air bags kill', the second represents mechanisms in which 'air bags save lives', and the third represents fatal etiologies in which air bags, by their presence or absence, play no role

Bradford Hill. The environment and disease: association or causation?
 Proc R Soc Med 1965;58:295-300.

The seldom quoted bottom-line of the so-called "Hill criteria" (which he called 'viewpoints') and fundamental question is:
"Is there any other way of explaining the set of facts before us, is there any other answer equally, or more, likely than cause and effect?"

Confounding - definition

Confounding is bias in the estimation of the effect of exposure on disease occurrence, due to a lack of comparability (lack of exchangeability) between exposed and unexposed populations;
thus, disease risks would be different even if the exposure were absent in both populations.

Note: a confounded estimate of effect is not expected to equal the causal parameter of interest in the source population.

Confounding

To quantify the exposure effect, we compare
the \# of new cases occurring in the exposed population with
the \# cases that would have occurred in the absence of exposure (a causal parameter).

Thus, confounding occurs when the exchangeability assumption (= reference or unexposed population exhibits the risk the exposed population would have experienced, if exposure had been absent) is not met

Note: this counterfactual contrast can never be made directly i.e. the same population is never both exposed and unexposed at the same time

Confounding

In practice we compare a group of exposed subjects with another group of unexposed subjects.

Thus, the validity of this comparison depends on the assumption that the risk of disease in the unexposed group is equal to the risk that would have occurred in the exposed group in the absence of exposure.

When this assumption is not true, the observed comparison between exposure groups is confounded.

Confounding in experiments

Confounding may occur in any type of study, including experiments.

Randomized experiments:
Randomization tends to make assigned (treatment) groups exchangeable (comparable), thus confounding is usually not a major source of bias in well-conducted experiments, provided the sample size is not too small

Confounding in experiments

Furthermore, randomization yields known treatment probabilities, thus, confidence intervals (Cl) in randomized studies actually reflect possible confounding, which might have occurred in either direction;

Note: the amount of possible bias and the Cl width become smaller as the sample size increases.

Thus, the interpretation of Cls in observational studies requires the assumption of no bias, whereas in randomized studies, Cls reflect possible confounding (which in randomized studies becomes part of the random error), although they do not reflect other biases (such as measurement error or differential loss to follow up).

Causal types

We could determine whether confounding exists if we knew the counterfactual risk of disease in the exposed group in the absence of exposure $\left(\mathcal{R}_{\mathrm{t}}\right)$.

To determine the counterfactual risk, we need to know the distribution of 4 "causal types" (i.e. doomed, causative, preventive, immune).

Table 4-1 p 60 ME2 (Rothman and Greenland). An elementary model of causal types and their distribution in two distinct cohorts
$1=$ gets disease, $0=$ does not get disease

Causal Type	Response under		Cohort 1
	Exposure	Nonexposure	(Exposed)
1) Doomed	1	1	p1
2) Causative	1	0	p2
3) Preventive	0	1	p3
4) Immune	0	0	p4
Causal risk difference in cohort 1: $\quad(p 1+p 2)-(p 1+p 3)=p 2-p 3$ get disease among exposed get disease if unexposed			
Causal risk ratio in cohort 1: $\quad(\mathrm{p} 1+\mathrm{p} 2)$			
(p1+p3)			
Causal odds ratio in cohort 1: $(\mathrm{p} 1+\mathrm{p} 2) /(\mathrm{p} 3+\mathrm{p} 4)$			
$(\mathrm{p} 1+\mathrm{p} 3) /(\mathrm{p} 2+\mathrm{p} 4)$			

NOTE: if p2-p3 $=0$ then causal risk and odds ratio $=1$balance between causative and preventative effects

Table 4-1 p 60 ME2 (Rothman and Greenland). An elementary model of causal types and their distribution in two distinct cohorts
$1=$ gets disease, $0=$ does not get disease

NOTE: if $q 1+q 3 \neq p 1+p 3$ then $q 1+q 3$ cannot be exchanged or substituted for $p 1+p 3$
\longrightarrow the association measure (risk comparisons) are confounded by the

Causal types (example from Morgenstern)

Example: Frequency distribution (in \%) of 4 causal types, by exposure Status (E vs. Ē), in 3 closed cohorts; $\mathcal{R}_{0}=$ counterfactual risk in the unexposed group of everyone were exposed.						
Causal Type	Cohort 1		Cohort 2		Cohort 3	
	E	E	E	E	E	E
1) Doomed	20	10	20	20	10	20
2) Causative	0	0	20	0	30	20
3) Preventive	0	0	0	0	10	0
4) Immune	80	90	60	80	50	60
Expected Risk ($\mathrm{R}_{\mathrm{i}} ; \mathrm{R}_{\mathrm{o}}$)	0.2	0.1	0.4	0.2	0.4	0.2
Counterfactual Risk ($R_{R} ; \mathbb{R}_{\theta}$)	0.2	0.1	0.2	0.2	0.2	0.4
$\begin{gathered} \text { Expected RR } \\ \left(R_{1} / R_{0}=R R\right) \end{gathered}$						
$\begin{gathered} \text { Causal RR }\left(R R_{2}\right) \\ \left(R_{1} / R_{1} ; R_{0} / R_{0}\right) \end{gathered}$	1	1	2	1	2	2

Confounding

In all three cohorts, we would expect to observe a risk ratio (RR) of 2.

In Cohort 1, this expected RR is biased (confounded) because the exchangeability assumption is not met -
i.e., R_{0} does not equal \mathbb{R}_{1}. Thus, the expected $R R=2$
does not equal the causal risk ratio in the exposed
group ($\mathcal{R} \mathbb{R}_{1}=1$).

In Cohorts 2 and 3, however, the expected RRs are not biased because the exchangeability assumption is met - i.e., $R_{0}=R_{1}$. Thus, the expected $R R$ is equal to the causal risk ratio in the exposed group $\left(\mathbb{R} R_{1}=2\right)$.

Comments: When focusing on causal parameters in an exposed source population
(e.g., $R R_{1}=R_{1} / \mathcal{R}_{1}=a / a_{0}$), there is no confounding if the total proportion of Type 1 and Type 3 individuals is the same in exposed and unexposed groups.

In this situation, the risk of disease in the unexposed group $\left(R_{0}\right)$ is equal to what the risk would have been in the exposed group in the absence of exposure ($R_{\text {q }}$). \qquad NOTE: this condition is met in Cohorts 2 and 3, but not Cohort 1. This is the usual (often implied) meaning of confounding in epidemiology.

Causal	Cohort 1		Cohort 2		Cohort 3	
Type	E	$\overline{\mathrm{E}}$	E	$\overline{\mathrm{E}}$	E	$\overline{\mathrm{E}}$
1) Doomed	20	10	20	20	10	20
2) Causative	0	0	20	0	30	20
3) Preventive	0	0	0	0	10	0
4) Immune	80	90	60	80	50	60
$\begin{aligned} & \text { Expected Risk } \\ & \left(R_{1} ; R_{0}\right) \end{aligned}$	0.2	0.1	0.4	0.2	0.4	0.2
Counterfactual Risk ($\left.R_{1} ; R_{\theta}\right)$	0.2	0.1	0.2	0.2	0.2	0.4
$\begin{aligned} & \text { Expected RR } \\ & \left(R_{1} / R_{0}=R R\right) \end{aligned}$						
Causal RR (RR) $\left(R_{1} / R_{i} ; R_{\theta} / R_{0}\right)$		1		1	2	2

If we were interested in what the risk would have been in the unexposed source population had they been exposed (i.e., focusing on causal parameters in the unexposed source population, e.g., $\left.R R_{0}=R_{d} / R_{0}=c_{1} / \mathrm{c}\right)$, no confounding would mean that the total proportion of Type 1 and Type 2 individuals is the same in exposed and unexposed groups.
In this situation, the risk of disease in the exposed group $\left(R_{1}\right)$ is equal to what the risk would have been in the unexposed group in the presence of exposure (R_{0}).
This condition is met in Cohort 3, but not Cohorts 1 and 2. Note that the causal risk ratio in Cohort 2 is different in the exposed and unexposed groups.

Causal	Cohort 1		Cohort 2		Cohort 3	
	E	\bar{E}	E	E	E	\bar{E}
1) Doomed	20	10	20	20		20
2) Causative	0	0	20	0	30	(20)
3) Preventive	0	0	0	0	10	0
4) Immune	80	90	60	80	50	60
Expected Risk ($\mathrm{R}_{1} ; \mathrm{R}_{0}$)	0.2	0.1	0.4	0.2	0.4	0.2
Counterfactual Risk ($\left.\boldsymbol{R}_{1} ; \boldsymbol{R}_{\theta}\right)$	0.2	0.1	0.2	0.2	0.2	0.4
Expected RR $\left(R_{1} / R_{0}=R R\right)$						
Causal RR (RR) $\left(\mathrm{R}_{1} / \mathcal{R}_{1} ; \mathcal{R}_{0} / \mathrm{R}_{0}\right)$			2		2	2

Confounding

If we were interested in estimating causal parameters for the total source population, no confounding would mean that both conditions described above would hold.

That is, the two exposure groups would be completely exchangeable: The same exposure-risk relation would exist if the two exposure states were exchanged (i.e., if the exposed became unexposed and the unexposed become exposed).
Note that complete exchangeability does not necessarily require that the total distribution of causal types be the same in exposed and unexposed populations (e.g., see Cohort 3; if exposure groups were reversed, RR would still be 2).

Conclusion: In practice, we do not know the distribution of the 4 causal types. Thus, we cannot measure confounding without introducing untestable assumptions!

Confounders

In practice, there is no empirical method for directly examining the correctness of the comparability (exchangeability) assumption that defines "no confounding".
What we do instead is

- attempt to identify and control for empirical sources of confounding.
- search for differences between exposure groups in the distribution of extraneous risk factors for the disease.
- such differences could produce a violation of the exchangeability assumption, which would bias (confound) the exposure effect estimator

Extraneous risk factors responsible for confounding are called confounders or confounding variables, and they serve as a means for the identification and control of confounding.

Confounders - example

Suppose age is a risk factor for the disease in the source population.

If exposed persons are older than unexposed persons, how do we know whether the estimated exposure effect (e.g, RR >1) is actually due to the effect of the exposure or to being older?

Thus, age is a confounder in this population; the two exposure groups are probably not exchangeable because of the age difference.

Confounders

If we have adequately measured confounders in all subjects, we can control or adjust for their distorting effect in the analysis.

Analytic control is achieved by examining the desired association within categories (or strata) of the confounders (i.e, stratified analysis).

Within strata (defined by the cross-classification of a sufficient set of accurately measured confounders), the exposure groups are exchangeable, and our causal effect estimator is not confounded.

Confounders

Although we cannot observe what the frequency of disease would have been in the exposed group in the absence of exposure, we can identify predictors of the disease in the unexposed group.

When we adjust the effect estimate for differences in these predictors between exposure groups, we are attempting to remove that portion of confounding produced by these differences.

Thus, a confounder is defined as a variable that, when properly controlled, produces an expected estimate of effect that is closer to the unknown effect parameter in the source population than when it is not controlled-i.e., bias is reduced.

Properties of a confounder

In general, a necessary (but not sufficient) characteristic of a confounder is that it be associated with both exposure status and disease occurrence.

It is difficult to assess this criterion from data, however, because data associations are influenced:

1. by effects of other variables on the association between the suspected confounder, the exposure, and the disease in the source population;
2. the manner in which subjects are selected, e.g., via restrictions;
3. flaws in data collection, subject classification, and data analysis.

Properties of a confounder

Consequently, the assessment of confounding for a given effect in a particular study involves:

1. Prior (external) information of effects in the source population
2. evaluation of study design and conduct
3. statistical analysis of relevant associations in the data

Study-design issues relevant to the assessment of confounding include

- randomization
- various selection procedures (such as restriction and matching)
- identification of the source population

Properties of a confounder

The direction of the bias due to a particular confounder will be
> positive if the confounder-exposure (C-E) association and the confounder-disease (C-D) association are in the same direction
$>$ negative if the C-E and C-D associations are in opposite directions
NOTE: Confounding is defined in terms of the source population
Recall that in a follow-up design (cohort study or experiment, but not casecontrol study), the source population is the baseline study cohort (and not the person-time at risk).

Thus, we at least partially observe all members of the source population in a cohort study, whereas in a case-control study we do not.

This difference has important implications to the identification and control of confounders in observational studies.

Direction of Bias

θ is a difference or \log ratio effect measure in a source population and $E(\theta)$ is the expected value of the estimator of θ

Example 1: Positive bias away from the null

Example 2: Negative bias toward the null

Example 3: Negative bias beyond the null

Example 4: Positive bias toward the null

Confounding

Example 1: Oral contraceptive use, SES and Breast cancer

Hypothesis and design: Consider a case-control study designed to estimate the possible effect of oral contraceptive (OC) use on breast cancer.

Potential confounder: Since socioeconomic status (SES) is a known risk factor for the disease and since it is probably related to OC use, we will control for SES as a confounder, using stratified analysis.

Hypothetical results: Expected number of breast cancer cases (D) and controls ($\overline{\mathrm{D}}$) by OC use and SES.

Confounding

Example 1: Oral contraceptive use, SES and Breast cancer

SES	OC Users (E)		Nonusers (E ${ }^{\text {) }}$		
Stratum	D	D	D	D	OR
Low	25	50	75	150	1.00
Middle	50	50	50	50	1.00
High	120	40	30	10	1.00
Total	195	140	155	210	1.89

Conclusion: Because the crude (marginal or unadjusted) OR (1.89), ignoring SES, is larger than the stratum-specific ORs (1.00), SES appears to positively confound the estimated effect of OC use on breast cancer.

Thus, the crude (marginal) OR appears to be confounded by SES, and we would generally infer from the stratum-specific ORs that OC use does not appear to be a risk factor for this disease in this source population (Note: We should also consider other possible sources of bias and the precision of these estimates by estimating confidence intervals)

Confounding

Example 1: Oral contraceptive use, SES and Breast cancer

SES	OC Users (E)			Nonusers ($\overline{\mathrm{E}}$)		
Stratum	D	$\overline{\mathrm{D}}$	$\overline{\mathrm{D}}$	$\overline{\mathrm{D}}$	OR	
Low	25	50	75	150	1.00	
Middle	50	50	50	50	1.00	
High	120	40	30	10	1.00	
Total	195	140	155	210	1.89	

Comment: SES appears to be a confounder because SES is positively associated with

- exposure status (among noncases, who represent the source population):
[(50×150)/(50×50) $=3$ and $(40 \times 150) /(50 \times 10)=12]$
and
- disease status (among nonusers): [(50×150)/(75×50)=2 and $(30 \times 150) /(75 \times 10)=6]$ presumable because it affects both.
The fact that the direction of these two associations was the same made the bias is positive -i.e., the crude $\widehat{O R}$ is larger than the stratum-specific ORs.

Confounding

Example 2: Wood dust, respiratory disease and smoking
Hypothesis and design: Suppose that we conduct a fixed cohort study to estimate the effect of exposure to wood dust on the occurrence of chronic respiratory disease (CRD) in middle-aged, male furniture workers.

Potential confounder: Since cigarette smoking is a known cause of the disease, we will control for smoking as a confounder, using stratified analysis.

Hypothetical results: Expected numbers of subjects at risk (N), new CRD cases (D), and risk (R), by wood-dust exposure and smoking

Confounding

Example 2: Wood dust, respiratory disease and smoking

Smoking Status	Exposed			Unexposed			RR
	D	N	\hat{R}^{1}	D	N	$\hat{\mathrm{R}}$	
Smoker	168	400	0.420	152	600	0.253	1.66
Nonsmoker	57	600	0.095	23	400	0.058	1.65
Total	225	1000	0.225	175	1000	0.175	1.29

Conclusion: Crude (unadjusted) RR (1.29) is less than the stratum-specific estimates (1.65-1.66), thus smoking appears to negatively confound the estimated effect of wood-dust exposure on CRD.
Thus, the crude RR is biased for the effect, and we would infer from the stratumspecific RRs that exposed workers in this source population are about 65% more likely to develop the disease than are unexposed workers-assuming no further confounding or other bias is present.

Confounding

Example 2: Wood dust, respiratory disease and

 smoking| Smoking Status | Exposed | | | Unexposed | | | RR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | D | N | $\hat{\mathrm{R}}$, | D | N | $\hat{\mathbf{R}}$ | |
| Smoker | 168 | 400 | 0.420 | 152 | 600 | 0.253 | 1.66 |
| Nonsmoker | 57 | 600 | 0.095 | 23 | 400 | 0.058 | 1.65 |
| Total | 225 | 1000 | 0.225 | 175 | 1000 | 0.175 | 1.29 |

Comment: Confounding appears to have occurred in this study because smoking is positively associated with CRD risk (among the unexposed) and inversely associated with wood-dust exposure (in the source population).

The latter association may be due to the fact that smokers elect or are selected to work in dust-free jobs where they can more easily and safely smoke.

Confounding
 Example 3: Physical activity, coronary heart disease (CHD), and age and gender

Hypothesis and design: Suppose that we conduct a cohort study to estimate the effect of physical activity level on the occurrence of CHD in a population of adults, aged 50-69.

Potential confounders: Since age and sex are known risk factors for CHD, we will control for these variables as confounders, using stratified analysis. The different strata are formed from the cross-classification of both variables (covariates)-i.e., younger men, older men, younger women, and older women.

Hypothetical results: Expected number of new CHD cases (D) over 10 years, by sex, age, and physical activity level at baseline (active vs. sedentary), in the absence of loss-to-followup:

Confounding

Example 3: Physical activity, coronary heart disease (CHD), and age and gender

		Active (E)		Sedentary (E)		
Sex	Age	D	Persons	D	Persons	RR
Male	$50-59$	70	9,500	386	28,500	0.54
	$60-69$	66	6,000	364	18,000	0.54
Female	$50-59$	15	10,000	83	30,000	0.54
	$60-69$	41	7,500	226	22,500	0.54
Total		192	33,000	1059	99,000	0.54

Conclusion: Because the crude $R R(0.54)$ is equal to the stratum-specific estimates, age and sex do not appear to confound the estimated effect of physical activity level on CHD.
Thus, the crude RR would be unconfounded (but may be confounded by other factors) and we would infer that the rate in active adults is nearly half the rate in sedentary adults (assuming no other confounding occurred).

Confounding

Example 3: Physical activity, coronary heart disease (CHD), and age and gender

		Active (E)			Sedentary (E)	
Sex	Age	D	Persons	D	Persons	RR
Male	$50-59$	70	9,500	386	28,500	0.54
	$60-69$	66	6,000	364	18,000	0.54
Female	$50-59$	15	10,000	83	30,000	0.54
	$60-69$	41	7,500	226	22,500	0.54
Total		192	33,000	1059	99,000	0.54

Comment: Confounding did not appear to occur in this study because activity level was not associated with age and sex (in the source population)-even though both age and sex were predictors of CHD (in the sedentary group). Thus, the two exposure groups appear comparable-at least with respect to age and sex.
NOTE: it would be technically incorrect (although rarely an important error) to use person time and rates instead of persons to do this evaluation - if loss of follow-up occurred, one should estimate the risks using methods for censored data and base the evaluation on those risk ratio estimates.

Confounding
 Example 4: Social Support, hypertension, and race/ethnicity

Hypothesis and design: Suppose that we conduct a crosssectional study to estimate the effect of social-support level on the presence of hypertension (elevated BP and/or maintained on antihypertensive medication) in a rural adult population.

Potential confounder: Since race is a known risk factor for hypertension, we will control for race as a confounder, using stratified analysis.

Hypothetical results: Expected number of subjects, by disease status, social-support level, and race.

Confounding Example 4: Social Support, hypertension, and race/ethnicity

	Low support (E)	Adequate support (E)			
Race	D	$\overline{\mathrm{D}}$	D	$\overline{\mathrm{S}}$	O
White	73	270	167	690	1.12
Black	111	151	153	385	1.85
Total	184	421	320	1075	1.47

Conclusion: Although the crude OR (1.47) differs from both stratumspecific ORs(1.12 and 1.85), the latter two ORs differ from each other. In this situation, we assess possible confounding by comparing the crude (marginal) measure to a summary measure that has been properly adjusted (standardized) for the covariates. Since, in this example, that summary OR (not shown) is almost identical to the crude OR race does not appear to be a confounder.

Confounding
 Example 4: Social Support, hypertension, and race/ethnicity

	Low support (E)		Adequate support (E)		
Race	D	D	D	$\overline{\mathrm{D}}$	OR
White	73	270	167	690	1.12
Black	111	151	153	385	1.85
Total	184	421	320	1075	1.47

Comment: Confounding by race appears to be absent in these data because race was not associated with social-support level (among noncases [(270×385)/(690×151)=1].

It appears, however, that race modifies the effect of social support on hypertension-i.e., the magnitude of the estimated social-support OR is different for whites and blacks (effect measure modification).

Example 5: Confounding vs. Noncollapsibility

> To show one problem with the change-inestimate criterion for identifying confounders, consider the results of this hypothetical fixed cohort study in which the covariate is known to be a risk factor for the disease. The table below shows the number of subjects (N) at baseline, the estimated disease risk $\hat{\mathrm{R}}$ and 4 estimated measures of association, by covariate status (C vs. C).

Example 5: Confounding vs. Noncollapsibility

	Exposed		Unexposed		Measure of Association			
Status	N	R	N	R	RR	RD	IOR	corr
C	100	0.95	100	0.75	1.27	0.20	6.33	0.28
C	100	0.25	100	0.05	5.00	0.20	6.33	0.28
Total	200	0.60	200	0.40	1.50	0.20	2.25	0.20

Conclusion: Although C is a risk factor for D (reflected in the data), it is not associated with exposure status in the total sample (source population). Thus, C is not a confounder- a fact that is properly conveyed by comparing the crude and stratum-specific RD or RR estimates. (Since the RR estimates differ between strata, we must compare the crude (marginal) $R R$ with a properly standardized estimate; they are equal).

Example 5: Confounding vs. Noncollapsibility

On the other hand, the crude (marginal) and stratum-specific incidence odds ratios (IORs) and the correlation coefficients (corr) are not equal, incorrectly suggesting presence of confounding.

One reason is that the OR need not be collapsible across strata (stratum specific OR can differ from marginal OR) even when there is no confounding.

A correlation coefficient never reflects the exposure effects alone, since its value depends on non-causal parameters (the ratio of sample variances)
\{IOR does not approximate the RR (or RR) in a cohort study when the disease is not rare-even when exposure groups are comparable\}.

Example 6: Confounding and Random Error [1]

In a double-blind clinical trial involving about 10,000 subjects followed for three years, the efficacy of a certain drug was tested for its ability to prevent first occurrence of a disease (D). Subjects were randomized into treated and placebo groups so that each subject had a 50 percent chance of getting the test drug. The results showed that the drug substantially lowered the risk of the disease.

At the end of the trial, the investigators were told of a new hypothesis linking another exposure with the same disease. To examine this hypothesis in their population, the investigators conducted a nested case-control study, comparing all 66 observed cases of D with an equal number of noncases randomly sampled from the total cohort. Exposure histories were obtained from all 132 subjects, and the results of this study are given in the table below, stratified by assigned treatment group (the covariate, C).

Example 6: Confounding and Random Error [1]

Exposed						Unexposed			
Treatment				O					
Group (C)	D	D	D	D	O	$95 \% \mathrm{CL}$			
Test Drug	5	17	10	34	1.00	$(0.29,3.39)$			
Placebo	34	10	17	5	1.00	$(0.29,3.39)$			
Total	39	27	27	39	2.09	$(1.04,4.18)$			

Conclusion: Even though the crude (marginal) and stratum-specific estimates of effect differ substantially (i.e., there is a change in the estimate when stratifying), treatment group is not a confounder in this study since it is very unlikely to be associated with exposure status in the source population of 10,000 . We know this (a priori) because subjects were assigned randomly to two very large treatment groups. Thus, the marginal odds ratio (=2.09) will likely be closer to the true population odds ratio than would be the stratified.

Example 6: Confounding and Random Error [1]

Treatment Group (C)	Exposed		Unexposed		OR	95\% CL
	D	D	D	D		
Test Drug	5	17	10	34	1.00	(0.29, 3.39)
Placebo	34	10	17	5	1.00	(0.29, 3.39)
Total	39	27	27	39	2.09	(1.04, 4.18)

Comment: As illustrated in this example, the change-in-estimate criterion for identifying confounders (i.e., observing a change in effect estimate when stratifying on a covariate) may also go astray due to random error. In this example there is prior information to indicate that the C-E association observed in the data suffers from large random error.

Example 6: Confounding and Random Error [1]

In this example, we knew with very high probability (due to the randomization in a large cohort) that there was no association between exposure status and treatment group (C) in the source population of 10,000

But, we observed a strong association in the (small) control group of 66 subjects ($O R=0.25$), which was probably due to sampling error or unknown selection bias.

Prior knowledge
It was this observed $\mathrm{E}-\mathrm{C}$ association (along with the treatment effect on disease) that made the marginal estimate of effect ($O R=2.09$) different from the stratum-specific estimates $(O R=1)$.

Thus, because the observed exposure-treatment association does not represent the actual E-C association in the source population, the stratum-specific estimates of effect are almost certainly way off the truth.

Example 6: Confounding and Random Error [2]

Suppose that smoking (C) is known to be a risk factor for the disease and is associated with exposure status in the source population (via an unmeasured factor U). The results of a hypothetical case-control study of this possible exposure-disease relation are shown in the table below.

Prior knowledge:

Example 6: Confounding and Random Error [2]

Exposed Unexposed

Smoker?	D	$\overline{\mathrm{D}}$	D	$\overline{\mathrm{D}}$	OR	$(95 \% \mathrm{CL})$
Yes	20	10	1	2	4.00	$(0.32,49.6)$
\quad No	2	1	10	20	4.00	$(0.32,49.6)$
Total	22	11	11	22	4.00	$(1.44,11.1)$
Internally standardized for smoking (sÓR):						4.00

Conclusion: Although the crude (marginal) and stratum-specific point estimates of effect are equal, the 95% confidence intervals are very different. Note the discrepancy between our prior knowledge that smoking is a risk factor for the disease and our observation of no C-D association in the 33 unexposed subjects. We would probably conclude from our prior knowledge that the lack of smoking association with D in the data is due to random error or bias, and hence that smoking is a confounder, even though the crude (marginal) and stratum-specific point estimates of effect are the same. Therefore, we would infer that both the crude and stratumspecific estimates (4.00) are probably biased.

Example 6: Confounding and Random Error [2]

The less precise stratified result sOR provides a more accurate measure of uncertainty than does the marginal results, because it correctly reflects our inability to separate the two effects statistically.

That is, the study provides evidence that at least one of the factors, exposure and/or smoking has an effect on D, but we cannot rule out either possibility without additional information.

This problem is often called a collinearity problem because, the stronger the C-E association, the more difficult it is to separate their effects statistically (that is based on the data).

Confounders: C-D

To be a confounder for estimating the effect in the exposed,
a covariate (C) must be a risk factor for the disease (D) in the unexposed source population,
To be a proxy for a confounder it must be a marker (proxy) for another (usually unmeasured) risk factor.

Directed Acyclic Graph (DAG)

$X \rightarrow C \longrightarrow Y \quad$| causal fork $X \leftarrow C \rightarrow Y$ |
| :--- |
| inverted fork $X \rightarrow C \leftarrow Y$ (collider) |

Path = nodes (variables) connected by arrows
Causal path = directed path going along the arrow
Backdoor path = going against the arrow
X on C direct effect
X on Y indirect effect
Acyclic = no feedback loops
Collider $=$ variable in path that has arrowhead going into it in an inverted fork $\mathrm{X} \rightarrow \mathrm{C} \leftarrow \mathrm{Y}$ (if a path has one or more colliders it is blocked, otherwise unblocked, open)

Unassociated variables $=$ have no (unblocked) causal or backdoor path between them (AKA marginally independent)
Causal DAG = causal path with directed arrows from one variable to another (can be direct or indirect)

Simple Causal Diagrams: No Confounding

Selected relations among 3 or 4 variables: an exposure (E), a disease (D), and one or two covariates (C and C^{*}). Each arrow in the figures represents a direct causal effect in the source population

1) C affects E, but is not a risk factor for D in the unexposed source population

$E=$ lead exposure in children
$C=$ poverty
$D=$ neuropsychologic development

Again, there is no open backdoor paths from E to D, so C is not a confounder and should not be controlled for in the analysis.

Matching on C in a case-control study (but not in a cohort study) is likely to reduce statistically efficiency - due to overmatching.

Note: if there were a direct effect of E on D, then C affects D (indirectly through E) but is not a risk factor among the unexposed, thus C is still not a confounder.

Suppose, however, that poverty does affect neuropsychological impairment independent of lead exposure, then there would be an arrow from C to D and poverty would be a confounder.

Simple Causal Diagrams: No Confounding

Selected relations among 3 or 4 variables: an exposure (E), a disease (D), and one or two covariates (C and C^{*}). Each arrow in the figures represents a direct causal effect in the source population
2) C affects D, but is not associated with E in the source population

E

E =blood type O C=gender $D=$ coronary heart disease

There is no open backdoor paths from E to C, so C is not a confounder in this example. C need not be controlled for in the analysis (except perhaps in a cohort study to increase precision).

Note: the lack of an E-C association in the source population can be observed in a cohort study (cohort is the source population) but only estimated in a case control study.

If subjects were selected in a cohort study so as to create an E-C association, C would become a confounder.

Simple Causal Diagrams: Confounding

Selected relations among 3 or 4 variables: an exposure (E), a disease (D), and one or two covariates (C and C^{*}). Each arrow in the figures represents a direct causal effect in the source population
3) C is a risk factor for both E and D

$E=$ high blood pressure
$C=$ age
$D=$ breast cancer

There is an open backdoor paths from E to D (E-C-D),
Thus, C is a confounder and should be controlled for in the analysis and/or
by restriction of eligible subjects (complete restriction or matching)

By conditioning on C , we block the open backdoor path and, thus, control for confounding by C

Simple Causal Diagrams: Confounding (2 risk factors in path)

Selected relations among 3 or 4 variables: an exposure (E), a disease (D), and one or two covariates (C and C^{*}). Each arrow in the figures represents a direct causal effect in the source population
4) C is a risk factor for E in the source population, and C is affected by an unmeasured risk factor (C^{*}) for D

E =coffee consumption $\mathrm{C}=$ social stress,
C*=gastrointestinal symptoms
D= depression
Either C or C^{*} alone is sufficient for control of confounding via the backdoor path E-C-C*-D.
Because we need only control for C or C^{*}, if we can measure both without error, we should control for the covariate that can be measured with the lowest cost.
Otherwise we would also consider accuracy of measurement.

Simple Causal Diagrams: Confounding (proxy)

Selected relations among 3 or 4 variables: an exposure (E), a disease (D), and one or two covariates (C and C^{*}). Each arrow in the figures represents a direct causal effect in the source population
5) C* is a direct effect of an unmeasured confounder (C), but it is not in a causal pathway between C and either E or D

C $\mathrm{C}^{*} \quad$| $\mathrm{E}=$ peridontitis |
| :--- |
| $\mathrm{C}=$ genetic susceptibility to CHD |
| $\mathrm{C}^{*}=$ parental history of CHD |

C^{*} is a proxy for the confounder C .
Unless C and C* are perfectly correlated, controlling for C* will remove some, but not all of the confounding by C.

This is equivalent to measuring C with some error.

Causal and Proxy Confounders

Proxy confounder (C* proxy for U): U is a causal (but unknown unmeasured) confounder (open backdoor path), C^{*} is associated with U (open path between U and C) and not affected by E or D; but C^{*} is not on every open backdoor path that contains U. Therefore, U is still a confounder when controlling for C^{*}; after controlling for C^{*}, U is still on at least one backdoor path between E and D .

As shown in the above DAGs, controlling for U eliminates the bias, but controlling for C^{*} alone does not control for confounding due to U .
Thus, controlling for C^{*} is similar to controlling for a misclassified measure of U .

Causal and Proxy Confounders

Example 1:

> E=blue eye color, $C=$ family history of CHD U=genotype
> $D=$ Coronary Heart Disease

This illustrates that we cannot usually eliminate confounding due to genetic factors (genotype U) by controlling for family history of the disease (phenotype, C).

Causal and Proxy Confounders

Example 2:

Controlling U eliminates the confounding, but controlling C* alone would increase or decrease bias, depending on the direction of the direct and indirect effects of U on D. If the direct (U-D) and indirect ($U-C^{*}-D$) effects were in the same direction (both positive or inverse), controlling for C alone would decrease the bias (but not eliminate it, because U is still a confounder). On the other hand, if the direct and indirect effects of U on D were in the opposite directions, controlling for C could actually increase the bias

E=body mass index (obesity) C*=HDL cholesterol
U= physical activity
D=Coronary Heart Disease
Since the direct and the indirect effects of more physical activity on CHD risk are the same direction (to lower risk), controlling for C alone would reduce, but not eliminate, confounding by U

Simple Causal Diagrams: Intermediate

Selected relations among 3 or 4 variables: an exposure (E), a disease (D), and one or two covariates (C and C^{*}). Each arrow in the figures represents a direct causal effect in the source population
6) C is affected by E, and it is a direct cause of D

$E=$ physical activity
$C=$ high HDL level
$D=$ coronary heart disease

C is an intermediate variable; thus it should not be matched on or controlled for in the analysis. The bias produced by matching on an intermediate ordinarily cannot be eliminated in the analysis.

Note that E might also have a residual ("direct") effect on D that is independent on C, i.e. an effect not mediated by C but by another biological mechanism such as decrease in platelet aggregation - which would be represented by an arrow between E and D.
Unfortunately, we usually cannot estimate the direct effect by controlling for C using conventional methods

Simple Causal Diagrams: Confounder and Intermediate

 Selected relations among 3 or 4 variables: an exposure (E), a disease (D), and one or two covariates (C and C*). Each arrow in the figures represents a direct causal effect in the source population7) C is affected by E, and it is a risk factor for both E and D

C \quad| $\mathrm{E}=$ cumulative exposure to occ. Toxin |
| :--- |
| $\mathrm{C}=$ respiratory symptoms |
| $\mathrm{C}^{*}=$ early job termination |
| $\mathrm{D}=$ death from respiratory disease |

C is both a confounder and an intermediate; C^{*} is a proxy confounder and a proxy intermediate.
Thus, conventional methods for controlling for C and C^{*} will be biased.
To validly control for confounding by C , we must treat both E and C (or C^{*}) as time-dependent covariates and use a special type of analysis (stratify on time and the covariates; use structural nested models (using G-estimation) or marginal structural models (using inverse probability of treatment weighting).
NOTE: the diagram has a cycle (feedback loop, E-C-C*-E) and therefore is not a DAG

Confounders and Intermediates

When C is an intermediate variable, we would not control for C to reduce bias; in fact, conventional methods for controlling for an intermediate variable introduces bias in effect estimation.
Part of the exposure effect on D is due to the mediating effect of C i.e., the "indirect" effect of E (path 1 in the figure below); but there may also be a residual ("direct") effect due to other causal mechanisms (path 2).
Unfortunately, we often cannot separate these two components analytically because we may lack longitudinal data;
Even when we have those data, we usually cannot estimate the residual ("direct") effect simply by controlling for C in the same way we control for confounders.

Confounders and Intermediates

This is so, even in a randomized trial as the following diagram illustrates. Controlling for the intermediate C opens a back-door path (through U) and hence introduces confounding, even when there was no confounding to begin with

\qquad The identification of intermediates is important, i.e. to distinguish them from confounders and to explain hypothesized effects in terms of biological or behavioral mechanisms

Examples: Confounders and Intermediates

The effect of race (black vs. white) on infant mortality (IM) is probably mediated in part by low birth weight (LBW)

In this example, the indirect effect of being black (mediated by LBW) increases the risk of infant mortality, but the residual (direct) effect of being black decreases the risk (i.e., within birthweight strata). It is possible, therefore, that these two effects cancel each other, leading to approximately equal risks in blacks and whites. In most U.S.
populations, however, it appears that the indirect effect is greater than the residual effect; thus, the overall risk of death is higher in black than white infants.

Example 8:
 Confounders and Intermediates

Hypothesis and design: Consider again the fixed cohort study of behavior type (A vs. B) and CHD in white males.

Potential confounder: Since serum cholesterol level is a known risk factor for the disease, we will control for this variable, using stratified analysis.

Hypothetical results: Numbers of subjects at risk (N), new CHD cases (D), and risk (R), by behavior type and baseline cholesterol.

Example 8: Confounders and Intermediates

Cholesterol level	Type A				Type B			
	D	N	R	D	N	R	RR	
High	13	85	0.152	3	30	0.100	1.53	
Low	3	58	0.052	4	109	0.037	1.41	
Total	$\mathbf{1 6}$	$\mathbf{1 4 3}$	$\mathbf{0 . 1 1 2}$	$\mathbf{7}$	$\mathbf{1 3 9}$	$\mathbf{0 . 0 5 0}$	$\mathbf{2 . 2 2}$	

Conclusion: Even though the crude (marginal) RR (2.22) is larger than both stratum-specific (conditional) estimates (1.53 and 1.41) as well as the summary adjusted estimate (1.51), cholesterol level is probably not a confounder.

The reason, which cannot be inferred from the above results alone, is that elevated serum cholesterol is likely to be an intermediate variable in the hypothesized causal pathway between Type A behavior and CHD

Example 8: Confounders and Intermediates

From previous research, we would expect the effect of behavior type on CHD to be mediated in part via the behavior type's effect on serum cholesterol level, thus control for cholesterol would remove that part of the total effect.
Furthermore if Cholesterol level and CHD share a common, unmeasured cause [U], then conditioning on cholesterol level opens a backdoor path between Type A behavior and CHD.
Given these relations, we'd expect the marginal (crude) RR to be closer to the total effect of Type A behavior in this population than the cholesterol-adjusted RR.

Comment: On the basis of these results alone, there is no way to determine whether cholesterol level is a confounder or an intermediate variable. In both cases, the covariate will be associated with both exposure and disease occurrence in the population. If the E-C association is observed cross-sectionally, our conclusion would have been based on prior information about their causal relation (if such information exists).

Confounder vs. Intermediate

Thus, the distinction between a confounder and an intermediate may be difficult to make in practice because it requires prior information, which may be lacking or incomplete. Yet this distinction is critical to validity considerations in any type of study.

If C is an intermediate and not a confounder, controlling for C results in bias in the estimation of the E effect; this bias could be in any direction, depending on the directions of the E-C, C-D, and the residual E-D associations.

If C is a confounder and not an intermediate, controlling for C reduces confounding due to C or other causal confounders for which C is a proxy.

Confounder vs. Intermediate

Example: E = use of AZT among HIV positives, C = CD4+ lymphocyte count D = death from AIDS

Not a DAG!

In order to properly analyze this relation in which a time-dependent variable is both a confounder and an intermediate ($\mathrm{C}=\mathrm{CD} 4+$ lymphocyte count), you must use a technique for longitudinal data analysis. Here, 'GEE' would be an incorrect method of analysis , whereas G-estimation would be an appropriate analytic technique.

Confounder and Intermediate

The distinction between a confounder and intermediate gets more complicated when an intermediate (C) is also a proxy for an unmeasured confounder [U].
If C is an intermediate and U is a confounder, controlling for U eliminates confounding due to U . But, in the absence of data on U, C is also a proxy confounder (as well as an intermediate).
Using conventional statistical methods, we get a biased estimate of the E effect whether or not we control for C.

Confounder control is most problematic when the same time-dependent variable (C) is both a confounder and an intermediate of the same hypothesized relation.
In this situation, even with valid data on all variables, we would not, in general, get an unbiased estimate of the E effect by controlling or not controlling for C , using conventional statistical methods.

Simple Causal Diagrams: Selection Bias in Some Studies

Selected relations among 3 or 4 variables: an exposure (E), a disease (D), and one or two covariates (C and C^{*}). Each arrow in the figures represents a direct causal effect in the source population
8) C is affected by both E and D

$$
\begin{aligned}
& E=\text { active life style (frequent falls likely) } \\
& C=\text { hip fracture } \\
& D=\text { osteoporosis }
\end{aligned}
$$

Controlling for $\mathrm{C}-$ or excluding potential subjects with or without C is likely to introduce bias which is a form of selection bias (AKA Berksonian bias where $\mathrm{C}=$ hospitalization)

The causal diagram represent a general mechanism for selection bias in a case-control or cross sectional study, where C reflects any selection procedure that is influenced by both E and D

Simple Causal Diagrams: Neither confounder nor intermediate

Selected relations among 3 or 4 variables: an exposure (E), a disease (D), and one or two covariates (C and C^{*}). Each arrow in the figures represents a direct causal effect in the source population
9) C is affected by both E and by a risk factor (C^{*}) for D

$\mathrm{E}=$ history of head trauma
$\mathrm{C}=$ cognitive impairment
C*= high blood pressure
D = stroke
Neither C nor C^{*} is a confounder or an intermediate; thus, we would expect the marginal (crude) effect estimate to be unbiased (assuming no other sources of bias).
Restricting eligibility on C or controlling for C in the analysis, however, is likely to introduce bias unless we also control for C^{*}, because conditioning on C creates an $\mathrm{E}-\mathrm{C}^{*}$ association.
The bias applies to cohort studies even if C is measured at baseline. This diagram represents the general mechanism for selection bias in a cohort study, where C reflects or affects loss to follow-up (right censoring) and is influenced by both E and by an unmeasured risk factor for D .

Induced Confounders (by selection)

In a cohort, subjects might be selected (S represents selection) in such a way as to create an association between E and an extraneous factor (C) in the source population, making C a selection confounder even when E and C are not causally related. Subjects might also be selected to eliminate such a C-E association in the source population, preventing C from being a confounder.

Target population

Source population ($\mathrm{S}=1$)

In a case control study, matching controls to cases on a covariate (C) can make C a selection confounder, even if C is not a risk factor for the disease

Target population

Source population (S=1)

Induced Confounders (by selection)

Example

If race and sex are risk factors for the disease, we can prevent confounding by race and sex in a cohort study by restricting the entire study (source) population to black males.

On the other hand, we would probably induce confounding by selecting mostly black males as the exposed group and white females as the unexposed group.

Furthermore, if there is no overlap in the race-sex distribution between exposed and unexposed groups (if all exposed subjects = black males; all unexposed subjects = white females), we would not be able to identify or control for these confounders by stratification in the analyses, because every stratum would contain only exposed or unexposed subjects. This situation is an example of extreme collinearity.

Baseline values as confounders

When the exposure involves a change in a particular variable, it may be necessary to treat the baseline level of that variable (i.e., at the start of the period during which the change is observed) as a confounder.
Example: Suppose that we want to estimate the effect of weight gain between ages 30 and 40 on the risk of CHD. Since overweight 30 -year olds may be more (or less) likely to gain weight during their 30s than are non-overweight 30 -year olds and since relative weight is a risk factor for CHD, we would control for relative weight at age 30 as a confounder to isolate the effect of weight gain.

Relative
Weight at
Age 30

Baseline values as confounders
 (cont.)

Comment: When the outcome involves a change in a continuous variable (ΔY), the baseline level of that variable $\left(Y_{0}\right.$, at time $\left.t_{0}\right)$ in an observational study may be a proxy for another unmeasured, perhaps unknown, confounder (U); or Y_{0} may have been affected by previous levels of the exposure (E)-i.e., possibly acting as an intermediate variable).
Thus, controlling for Y_{0} in an observational study might still produce a biased estimate of the exposure effect because it involves overadjustment for an intermediate. Not controlling for Y_{0} however, might also results in bias due to confounding by U . In an experiment, however, Y_{0} cannot be an intermediate because it occurs before the intervention (exposure).

Interdependence of Confounders

Adjustment for a confounder C removes confounding only along the paths blocked by C, but may not reduce net confounding, and may even introduce confounding (if C is the sole collider on a backdoor path).
Such an example is demonstrated in the 'Bowtie diagram' where conditioning upon C opens a backdoor path through $\mathrm{A}-\mathrm{B}$. Thus, in order to obtain an unbiased estimate of the E-D relationship, one must control for both C and A or C and B since merely controlling for C introduces confounding.

See also: Greenland S. Quantifying Biases in Causal Models: Classical confounding vs. collider stratification bias. Epidemiology 2003; 14:300-6.

Interdependence of Confounders

Thus to ensure control of confounding we would have to adjust for all potential confounders simultaneously not one at a time.
This stipulation poses certain limitations in any nonexperimental study, because

1. we cannot generally identify and measure all confounders; and
2. analytic methods of control (e.g., stratified analysis) cannot handle an unlimited number of covariates or strata since we never have an unlimited number of subjects.

Interdependence of Confounders

Fortunately, in practice, it is not necessary to control for all confounders because bias due to different confounders:

- may be redundant since one (or each) confounder is a proxy for the other; or
- may cancel each other.

1) Redundant confounders

2) Biases cancel

——In the first situation, we would probably need to control for either C1 or C2-not both-to eliminate bias due to these potential confounders.
In the second situation, it might not be necessary to control for either covariate if the positive confounding due to C1 equals the negative confounding due to C2. In fact, controlling for only one covariate might increase bias (relative to no control).
Note that you must therefore control for neither C1 or C2 or both C1 and C2

Interdependence of Confounders

Comment: The implication of these issues is that the identification of confounders and their control is difficult because assessing confounding by each covariate depends on what other potential confounders are controlled.

Indeed, the identification and control of confounders is an imperfect, but necessary, method in nonexperimental studies to reduce confounding.

Identifying confounders

It is common, but erroneous, practice to identify confounders by estimating or testing several C-D or E-C associations in the data and selecting those covariates (C) for control that have the strongest or most "significant" associations with either variable. In general, this approach is inappropriate for several reasons:

1. It ignores prior (external) information. Associations observed in the data may conflict with our prior information of these associations or effects in the source population. Also, the approach ignores the important distinction between confounders and intermediates.
2. Identifying those covariates with the strongest associations with E or D cannot demonstrate that these covariates are confounders, because such covariates may not be associated with the other primary variable.

- A strong risk factor for D will not be a confounder if it is not associated with E in the source population;
- A strong correlate of E will not be a confounder if it is not a risk factor for D in either the exposed or unexposed source population.

Identifying confounders ${ }_{\text {(cont) }}$

3. Unfortunately, the magnitudes of the C-D and E-C associations relevant to confounding are not the crude associations, but the associations conditional on other covariate (C) being controlled. Since the relevance of each potential confounder depends on what other covariates are being controlled, there is no definitive statistical method for identifying confounders without prior knowledge of all relevant covariates and effects.
4. Statistical testing of the C-D or E-C associations in the data cannot demonstrate that a particular covariate is, or is not, a confounder, because testing does not indicate the magnitude of these associations and does not properly account for uncertainty about these magnitudes. E.g., C may be a strong confounder even if it is not "significantly" associated with D (e.g., if P >0.05). In fact, a small sample size is likely to produce large P values for both the E-C and C-D associations-even though there might be substantial confounding by C. Indeed, confounding is not less of a problem in small studies; the opposite is true because it is more difficult to control analytically for confounders in a small study.

Example 9: Confounders

The University Group Diabetes Program (randomized) Clinical Trial was done to estimate the possible effects of tolbutamide use (an oral hypoglycemic agent) on various health outcomes among diabetics. The table below shows the number of total deaths (D) between 1961 and 1969, the number of subjects (N), and the estimated risk R of total mortality, by treatment group and age at baseline.

Tolbutamide					Placebo				
Age		N	R	D	N	R	RD		
<55	8	106	0.075	5	120	0.042	0.034		
$>=55$	22	98	0.224	16	85	0.188	0.036		
Total	30	204	0.147	21	205	0.102	0.045		

Source: University Group Diabetes Program Research Group. A study of the effects of hypoglycemic agents on vascular complications in patients with adult-onset diabetes: II. Mortality results. Diabetes 1970; 19(Suppl 2):785830 (see Table 8).

Example 9: Confounders

It appears that tolbutamide increased the risk of dying among diabetics-an unexpected finding. Note the association between treatment status and age in the total sample (the source population):

$$
\begin{gathered}
\text { OR=(98*120)/(106*85) }=1.31(95 \% \mathrm{Cl}=0.88,1.93) \\
X_{\text {мH }}=1.34 ; \quad P=0.18
\end{gathered}
$$

As indicated by the RD estimates, age (a risk factor for total mortality) appears to confound the estimated effect of tolbutamide on total mortality.
Thus, despite randomization, it appears that (by chance) age is a confounder and probably should be controlled in the analysis.
Testing the null hypothesis of no crude age-treatment association (i.e., $P=0.18$ > 0.05) is not relevant to our determination of whether age is a confounder, because the association of concern is the one in the source population; not some larger population of which the cohort is a sample.
Note that in a randomized trial, a widened confidence interval may reflect the presence of residual confounding due to random covariate imbalances.
It is possible that there are other confounders as well, but if randomization was not violated within age strata, it is unlikely that the residual confounding is large.

Methods of controlling for confounders

Investigators have several options for reducing or eliminating confounding, which may be grouped into two general strategies:
Methods used in the design and conduct of a study to prevent confounding in the source population; and
Methods used in the analysis of data to adjust effect estimates.

Methods of controlling for confounders

Design and Conduct of a Study:
1) Randomization (in experiments):

Proper randomization implies that the only baseline difference between treatment and control groups will be random including differences in unmeasured or unrecognized factors.
Consequently, conventional confidence intervals and p values in randomized studies actually reflect possible confounding due to random covariate imbalance (in either direction) which will tend to be smaller as the sample size increases.
Because there is no guarantee that randomization has eliminated all confounding, especially with small sample sizes, other options are also used to control for confounding (e.g., analytic methods).
In fact, loss to follow-up ('drop-out' or censoring) and noncompliance may lead to confounding, sometimes called 'broken randomization in the context of a randomized trial'.
Intent-to treat analysis attempts to eliminate the latter confounding by redefining 'treatment' as 'intent to treat', but the latter is usually not the exposure of biologic interest.

Methods of controlling for confounders:

Design and Conduct of a Study:
2) and 3) not likely in observational studies
2. Select a reference population (without randomization) that is exchangeable to the index (exposed) population. Such natural experiments, however, may be difficult to achieve
3. Keeping the values of potential confounders the same and fixed for all subjects (in experimental or quasiexperimental studies):
This strategy is often used in laboratory studies where the investigator can control certain environmental factors (e.g., temperature) that are known to affect the outcome, but is not an option in observational studies.

Methods of controlling for confounders:

Design and conduct of a study:
4) Restriction and Matching
4. Restricting the eligibility of subjects according to values of potential confounders (in any type of study):
This strategy is the major design option used in observational studies to control for known risk factors (i.e. known, measurable, and not likely to reduce eligible N too much).

It could involve restricting the eligibility of all subjects (complete restriction) or comparison subjects only (partial restriction or matching).

Except in some natural experiments, however, restriction is rarely sufficient to eliminate confounding in observational studies.

Thus, we also use analytic methods.

Methods of controlling for confounders:

Analytic methods of adjustment

Analytic methods of adjustment: We estimate the E-D association conditional on levels of measured confounders (and proxies). There are two general methods for such analytic control or adjustment:
> Stratified analysis: We estimate the E-D association within categories or strata of the confounders (as in the examples given previously) or/and derive a summary estimate of this association across these strata (which often assumes that the association does not vary across strata)
> Model fitting: We "fit" to the data a mathematical model (e.g., linear or logistic) that includes both the exposure variable and potential confounders (covariates) as predictors of the outcome variable. The estimated model coefficient (slope) for the exposure variable reflects the E-D association conditional on other predictors in the model (a summary which assumes that the model adequately fits the data).

Methods of controlling for confounders

Comments: Strictly speaking, both stratified analysis and 'model fitting', assume a mathematical model for the data.

In stratified analysis all variables must be categorized, whereas in 'model fitting' one or more of the variables can be continuous.

The flexibility to model continuous covariates is usually accompanied by stronger modeling assumptions (e.g. model fit to continuous variables often makes assumptions about the functional dependence of the outcome on the covariate, e.g. linearity or log-linearity), although the assumptions may be weaker (e.g. when splines are used).

The net results of these differences is that model fitting techniques, such as regression, may produce more precise (adjusted) estimates of effect sometimes at a cost of stronger assumptions.

Conclusions and Summary: Confounding and Confounder (control)

Confounding is bias in the estimation of the exposure effect, due to a lack of comparability of potential outcomes (nonexchangeability) between exposed and unexposed groups in the source population.

When the exposed group is the target population, this means that the unexposed (reference) population does not have the same risk as the exposed (index) population would have had in the absence of exposure.

The concept of confounding is more fundamental than is the concept of confounder or confounder control.

Note that the definition of confounding does not depend on the designation of confounders. It follows, therefore, that the properties of a confounder do not define confounding but are derived from the non-exchangeability definition of confounding.

Conclusions and Summary: Confounding and Confounder (control)

A confounder can be defined as a variable that when controlled removes a source of confounding
I.e. at least partially blocks an open backdoor path between exposure and outcome variables, whether or not this removal reduces net bias.

Some necessary properties of a confounder are, it must be associated :

- with the disease in the reference subpopulation of the source population (the unexposed if our exposed group is the target population), but not caused by disease;
- with exposure status in the total source population; but not caused by exposure

The major basis for identifying confounders in a given study is prior information of relevant effects or associations in the source population-not just statistical associations observed in one's data.

In the absence of such prior information, therefore, causal inference is extremely limited; the less we know about the exposure and disease in a non-randomized study, the less sure we can be that our effect estimate is unbiased.

Conclusions and Summary Confounding and Confounder (control)

Attempts to assess confounders with data, ignoring or in the absence of prior information, can yield very misleading results.

For example, the change-in-estimate criterion for identifying confounders -i.e., comparing estimates adjusted and unadjusted for one or more covariates can be misleading when:

- the association measure does not reflect a causal parameter (e.g. correlations) or the association measure can be non-collapsible in the presence of confounding (e.g. odds ratios and rate ratios)
- there is a discrepancy between observed associations in the data and corresponding associations (or estimated effects) in the source population due to random error or biases; or
\square the covariate is affected by the exposure or disease.

Furthermore, testing or estimating associations between each covariate and disease or exposure status to identify confounders is often misleading as well as time consuming.

Conclusions and Summary Confounding and Confounder (control)

In nonrandomized studies, the major burden of controlling for confounders is in the analysis.

Although it is not necessary to adjust for all confounders, in the absence of information about sufficient sets of confounders and effects in the source population, there is no mathematical algorithm or strategy, such as a stepwise or backward procedure in model fitting, that can identify from one's data an optimal or even adequate set of covariates to eliminate confounding.

Conclusions and Summary Confounding and Confounder (control)

The reasons for this practical limitation are
> we cannot directly observe violations of the exchangeability assumption,
> the identification of confounders depends on prior information, which is usually incomplete

Furthermore, empirically assessing the confounding properties of each covariate depends on what other potential confounders are being controlled.

Consequently, control of confounding requires integration of prior information into the analysis; this demands contextual (subject matter) understanding as well as statistical expertise.

Stratified Analysis

One way to identify and control for confounders is to do a stratified analysis, which involves analyzing the data within categories (strata) of these covariates (potential confounders).

Specifically, we observe the association between exposure status and disease occurrence within each of several strata, where each stratum represents a category of one or more covariates.

Recall that we condition on a variable to block an open backdoor path between E and D (and we hope that in doing so we reduce the bias in the estimated E-D effect); performing a stratified analysis is one way of conditioning on a variable.

Stratified Analysis (omn)

The tables below represent our notation for the j-th stratum of pure count (D, D) data and case-person-time (D, PT) data, where j = 1...G. In the previous examples, the rows of each table represented different strata.

Where $R R_{j}=a_{i} / n_{1 j}$
$c_{j} / n_{0 j}$

Person-Time Data

and where $a=$ sum $a_{j} ; n_{1}=\operatorname{sum} n_{1 j} ;$ etc.

Stratified Analysis (comt)

Stratified analysis, however, involves doing more than just conducting a separate analysis within each stratum.

We would also like to combine results across strata to estimate the adjusted effect of the exposure-i.e., the overall effect, controlling for the effects of the covariates used to stratify the data.

One way to estimate such a summary measure is to compute a weighted average of the stratum-specific estimates.

Example: Weighted Averages

Suppose that we want to compute a final grade for each student in a course on the basis of two exam scores-each exam being analogous to one stratum.

Assume that both exam scores $\left(\mathrm{S}_{\mathrm{j}}\right)$ are graded on a scale of 0-100 and are weighted as follows: midterm (35%) and final (65%). Consider the following data for 3 students:

	Exam Score $\left(\mathrm{S}_{\mathrm{j}}\right)$			Arithmetic
Student	Midterm $\left(w_{1}=.35\right)$	Final $\left(w_{2}=.65\right)$	Mean $\left(w_{1}=w_{2}\right)$	Final Grade (weighted)
	60	100	80	86
A	100	60	80	74
B	80	80	80	80
C	60			

Sample calculation of final grade: Student A

$$
\frac{\sum w_{j} S_{j}}{\sum w_{i}}=\frac{0.35(60)+0.65(100)}{0.35+0.65}=\frac{21+65}{1}=86
$$

Example: Weighted Averages

	Exam Score $\left(\mathrm{S}_{\mathrm{j}}\right)$			
Student	Midterm $\left(w_{1}=.35\right)$	Final $\left(w_{2}=.65\right)$	Arithmetic Mean $\left(w_{1}=w_{2}\right)$	Final Grade
	60	100	80	86
A	100	60	80	74
B	80	80	80	80
C				

1) Use of the final grades to rank the overall performance of the three students is a fair comparison (analogous to valid estimates in epidemiology) because all three final grades were based on the same set of weights.
2) The weighted average depends on the relative sizes of the weights-i.e., their distribution -not on their absolute values, since we divide by the sum of the weights. Thus, for example, we could have used weights of 35 and 65 or 7 and 13, instead of 0.35 and 0.65 , in the above example.

Example: Weighted Averages (cont.)

	Exam Score $\left(\mathrm{S}_{\mathrm{j}}\right)$		Arithmetic Mean	Final Student
	Midterm $\left(w_{1}=.35\right)$	Final $\left(w_{2}=.65\right)$	$\left(w_{1}=w_{2}\right)$	Grade
A	60	100	80	86
B	100	60	80	74
C	80	80	80	80

3) The value of a weighted average must lie between the highest and lowest stratum-specific estimates. Thus, for example, the final grade for student C must be 80, regardless of the weights, because both exam scores are 80.
4) If all weights are equal, the weighted average or adjusted estimate is equal to the simple arithmetic mean of the stratum-specific estimates-i.e., the mean is a special type of weighted average.

Adjusted measures as weighted averages

In general two approaches can be taken to summarize rates (or risks) across strata of confounders (e.g. strata of different age groups)

1. standardizing
2. pooling

Note: a standardized rate (or risk) is a weighted average of stratum specific rates (or risks):

$$
\mathrm{R}_{\mathrm{s}}=\frac{\sum_{\mathrm{i}} \mathrm{~W}_{\mathrm{i}} \mathrm{II}_{\mathrm{i}}}{\sum_{\mathrm{i}} \mathrm{~W}_{\mathrm{i}}}
$$

i = index for strata
$\mathrm{W}_{\mathrm{i}}=$ stratum specific weight
$\mathrm{I}_{\mathrm{i}}=$ stratum specific incidence or mortality rates (such as $\mathrm{A}_{\mathrm{i}} / \mathrm{N}_{\mathrm{i}}$)

Standardization

Used for averaging means or frequencies, the weights represent the distribution of the stratifying variables in a target or 'standard' population (possibly hypothetical or counterfactual).

The averages under the different patterns are then contrasted (e.g. by taking the ratios or differences) to create standardized effect measures.

Thus the method can be summarized as "first average the frequencies, then compare (calculate (rate) differences or ratios)."

Standardization

Two myths about standardization are pervasive:

- That there must be no effect-measure modification across strata
- And there must be no variation in the weights used across exposure patterns.
Both are wrong in principle
- We can always average over heterogeneity. E.g. when we talk of average income, and we can always compare these averages
- To produce valid effect measures, the weights should vary across exposure patterns if (and only if) the exposure patterns affect the distribution across strata (e.g. smokers die earlier, thus, age distribution is different for smokers and non-smokers); they should only vary to reflect those exposure effects, no more. (Note: Standardization of person-time rates that force the weights to be the same across strata will be biased when exposure affects the weights (see Ch 4 ME2)

population	exposed	unexposed	Total
Cases	A	B	M
Persons (or persontime)	N_{1}	$\mathrm{~N}_{0}$	T

ideally
we want the most precise estimate of effect note
when comparing rates (or risks) from two different populations (e.g. when calculating the ratio of rates (or risks) from an exposed and an unexposed population) we need to use the same weights when averaging the rates (or risks) over strata

$$
\mathrm{RR}_{\mathrm{s}}=\frac{\sum_{\mathrm{i}} \mathrm{~W}_{\mathrm{i}}\left(\mathrm{~A}_{\mathrm{i}} / \mathrm{N}_{1 \mathrm{i}}\right)}{\sum_{\mathrm{i}} \mathrm{~W}_{\mathrm{i}}\left(\mathrm{~B}_{\mathrm{i}} / \mathrm{N}_{0 \mathrm{i}}\right)}
$$

SRR (SMR)			
population	exposed	unexposed	Total
Cases	A	B	M
Persons (or persontime)	N1	N0	T

Rates (or risks) are standardized to the confounder distribution of the study population (which in general represents an exposed population), i.e. $\mathrm{W}_{\mathrm{i}}=\mathrm{N}_{1 \mathrm{i}}$

$$
\operatorname{sRR}=\frac{\sum_{i} N_{1 i}\left(A_{i} / N_{1 i}\right)}{\sum_{i} N_{1 i}\left(B_{i} / N_{0 i}\right)}=\frac{\sum_{i} A_{i}}{\sum_{i} N_{1 i}\left(B_{i} / N_{0 i}\right)}
$$

This estimator is sometimes called the internally standardized risk ratio (sRR or SMR). Assuming no residual confounding or other bias, it estimates the causal RR in the exposed group ($R R_{A}$) --I.e.
the probability of disease in the exposed (standard population) divided by the probability of disease in the absence of exposure.
The latter probability is counterfactual and is estimated by assuming that the exposed group ($\mathrm{N}_{1 \mathrm{i}}$) would experience in the absence of exposure the same stratum-specific risks $\left(\mathrm{B} / \mathrm{N}_{0 \mathrm{i}}\right)$ experienced by the unexposed group; this is the exchangeability assumption applied to each stratum of the source population

I. sRR (or SMR)

$\operatorname{sRR}=\frac{\sum_{i} N_{1 i}\left(A_{i} / N_{1 i}\right)}{\sum_{i} N_{1 i}\left(B_{i} / N_{0 i}\right)}=\frac{\sum_{i} A_{i}}{\sum_{i} N_{1 i}\left(B_{i} / N_{0 i}\right)} \quad \frac{\text { observed \# cases }}{\text { expected \#cases }}$
Using this weight minimizes the variance of the weighted average, therefore - given that the true rate ratios are constant - the sRR (or SMR) is the minimum variance estimate of the common rate ratio. It is much less affected by instabilities of the age-specific rates than the SRR (see below)
a major disadvantage is the non-comparability of sRRs (SMRs) if the confounder distributions in two cohorts for which sRRs are compared for are not the same (i.e. while the unexposed referent group from which the rates are taken is the same, the weights $\left(\mathrm{N}_{1 i}\right)$ come from the exposed populations and may not be the same)

I. SRR | population | exposed | unexposed | Total |
| :--- | :--- | :--- | :--- |
| Cases | A | B | M |
| Persons (or persontime) | N 1 | N 0 | T |

Rates are standardized to the confounder distribution of the reference population (which in general represents the unexposed population), i.e. $\mathrm{W}_{\mathrm{i}}=\mathrm{N}_{0 \mathrm{i}}$

$$
\operatorname{SRR}=\frac{\sum_{i} N_{0 i}\left(A_{i} / N_{1 i}\right)}{\sum_{i} N_{0 i}\left(B_{i} / N_{0 i}\right)}=\frac{\sum_{i} N_{0 i}\left(A_{i} / N_{1 i}\right)}{\sum_{i} B_{i}}
$$

If we want to estimate $R R_{\rho}$, the $R R$ for the risk (rate) increase that would have occurred in the unexposed group if they has been exposed, we would choose the unexposed group as the standard.
This measure is an example of what is sometimes called an " externally standardized RR" (jargon that only means that the exposed source is not the target, rather the unexposed is the target of our inference).
Note: it makes more sense if you think about "referent" group rather than "standard" group

$$
\text { 11. SRR } \quad \operatorname{SRR}=\frac{\sum_{i} N_{0 i}\left(A_{i} / N_{1 i}\right)}{\sum_{i} N_{0 i}\left(B_{i} / N_{0 i}\right)}=\frac{\sum_{i} N_{0 i}\left(A_{i} / N_{1 i}\right)}{\sum_{i} B_{i}}
$$

Note:
best suited for 'internal reference' group comparisons (e.g. choose the lowest exposure as the reference, then one can compare moderately and highly exposed to the lowest exposed group, i.e. the same reference group, thus, the weights are the same)
major disadvantage is the instability when the component rates (risks) are based on small numbers of diseased or deaths

Note: For the calculation of confidence intervals for standardized measures see ME 2 pages 262-265

Example calculations SRR\&sRR

Table 2.9 Fictitious data used to illustrate the instability of the SRR

Age stratum (vears)	Cohort		Standard population	
	Deaths (d)	Person-years (n)	Deaths (d)	Person-years (n)
45-64	10	10000	140	150000
65-84	9	3000	290	70000
85+	1	1	30	210
Totals	20	13001	460	220210

${ }^{3}$ Adapted from Mosteller and Tukey (1977)

|1.SRR $\operatorname{SRR}=\frac{\sum_{i} N_{0 i}\left(A_{i} / N_{1 i}\right)}{\sum_{i} N_{0 i}\left(B_{i} / N_{0 i}\right)}=\frac{\sum_{i} N_{0 i}\left(A_{i} / N_{1 i}\right)}{\sum_{i} B_{i}}$

150 000(10/10 000)+70 000(9/3000)+210(1/1)
SRR= $=1.24$
460

Now drop the oldest case
$150000(10 / 10000)+70000(9 / 3000)+210(0 / 1)$
$\mathrm{SRR}=\square 460 \quad=0.78$

1.SRR(ORSMR) sRR $=\frac{\sum_{i} N_{1 i}\left(A_{i} / N_{1 i}\right)}{\sum_{i} N_{1 i}\left(B_{i} / N_{0 i}\right)}=\frac{\sum_{i} A_{i}}{\sum_{i} N_{1 i}\left(B_{i} / N_{0 i}\right)}$

sRR $=\frac{20}{10000(140 / 150000)+3000(290 / 70000)+1(30 / 210)}=\frac{20}{21.9}=0.91$

Now drop the oldest case
19
$=0.78$
21.9

Adjustment of Epidemiologic Measures: Pooling

Estimation of common measures. Another adjustment method is to estimate the common value of the desired parameter in the index group-i.e., the value of the parameter that is assumed to be constant (homogeneous) across all strata.

The weights in this approach are not selected from a single population, but are chosen to enhance the precision of the adjusted or pooled estimate.

Thus, estimates of a common measure are generally more precise than standardized measures, especially when the cell sizes within strata are small, but they are appropriate only under the assumed condition of homogeneity of the desired parameter across strata.

Standardization, on the other hand, may be appropriate even when the desired parameter is heterogeneous across strata. (Note that homogeneity of a parameter does not necessarily mean that estimates of that parameter are constant across strata.)

III. Pooled RR (or $\mathrm{RR}_{\mathrm{MH}}$)
 population
 Cases
 Persons (or persontime)
 exposed A
 unexposed
 B
 N_{0}
 0

Weighted average of stratum-specific rate ratios (rather than the ratio of weighted averages of stratum-specific rates)

$$
\mathrm{RR}_{s}=\frac{\sum_{\mathrm{i}} \mathrm{~W}_{\mathrm{i}}\left(\mathrm{~A}_{\mathrm{i}} / \mathrm{N}_{1 \mathrm{i}}\right) /\left(\mathrm{B}_{\mathrm{i}} / \mathrm{N}_{0 \mathrm{i}}\right)}{\sum_{\mathrm{i}} \mathrm{~W}_{\mathrm{i}}}
$$

i.e. if $W_{i}=B_{i} N_{1} / T_{i}$ also known as the Mantel-Haenszel method

$$
\operatorname{RR}_{\mathrm{M}-\mathrm{H}}=\frac{\sum_{\mathrm{i}} \mathrm{~A}_{\mathrm{i}} \mathrm{~N}_{0 \mathrm{i}} / \mathrm{T}_{\mathrm{i}}}{\sum_{\mathrm{i}} \mathrm{BiN}_{\mathrm{i}} / \mathrm{T}_{\mathrm{i}}}
$$

NOTE: Given that the rate ratio is constant across all strata of the confounders all three estimators give the same result e.g. $A_{i} / N_{1 i}=M\left(B_{i} / N_{0 i}\right)$
substitute in each formula and you get R Rs $=M$ each time
For Cl calculations see ME2 pages 269-272

Charles Poole. Low P-Values or Narrow Confidence Intervals: Which Are More Durable? Epidemiology Vol 12; No3, 2001

TABLE 1. Results from a Hypothetical Study of a Single Binary Exposure and Four Diseases or of a Single Disease and Four Binary Exposures

Exposure or Disease
$\mathrm{RR}(95 \% \mathrm{Cl})$
A
B

Charles Poole. Low P-Values or Narrow Confidence Intervals: Which Are More Durable? Epidemiology Vol 12; No3, 2001

Estimates B and D - not B and C - are this study's most precise estimates.

Estimates B and D stand the best chance of holding up, conditional on their validity, in the context of existing and future research.

Estimates B and D would weigh more heavily into meta-analyses and would exert stronger influences on probability distributions in properly conducted Bayesian analyses.

Estimates B and D are the results that should be put forth for emphasis as the most statistically stable results this study has to offer

Meta-analysis:
 NOTE the largest RR is the least precise....and most different from the summary RR = 1.03

Source: Dennis LK, et al.

Problems with the assessment of dietary fat in prostate cancer studies. AJE. 2004 Sep 1;160(5):436-44.

FIGURE 1. Relative risk (RR) estimate and 95\% confidence interval for advanced prostate cancer and specific fatty acids sorted by first year of data collection, along with the pooled estimates based on a random-effects dose-response model from a meta-analysis of five of 29 studies.
*Studies that adjusted for energy intake.

De Stefinil ot aln, 2000 (85) Schuurman of al., 1999 (59)* Glovannubcel et al., 1998 (53)" Anderssion at al., 1996 (66) Whitemore et al., 1995 (48) -Pooled lotal fat (5 sturfies, 45 g)De Stutand en al., 2000 (65)* Schuurman ol al., 1899 (59) Andersson of 3l., 1996 (66)* Whitemore et al., 1995 (48) Giovannucci et al., 1993 (54) -Pooled saturalod fat (5 studien, 25 g)De Stefanil of al., 2000 (65) Schuluman of al, 1999 (59) Anderscon et mil., 1996 (66)* Glovannuced of al., 1993 (54)" -Pooled monounsaturated lat (4 studies, 20 g)Schuurman et al., 1999 (59)* Andersson et al., 1996 (66) -Poolad polyunsenturated fat (2 sturles, 20 g)De Stefani et al., 2000 (65)* Schuruman of all., 1899 (59)" Andersson at al., 1896 (66) Giovannucel et al., 1993 (5i) - Poolod linovelc acid (4 studies, 10 g) De Stefani et al., 2000 (65) Schurman ef al, 1999 (59)* Anderscon ef all, 1996 (66) ${ }^{2}$ Giovannucel et al., 1993 (54) ${ }^{\wedge}$ - Pooled alpha-linolenic acid (4 studies, 1.5 g)--Pooted elcosapentaenole ackd (istucy, 0.05 g)Schuurman et al., 1999 (59)* Glovannucel et al., 1993 (54)*

- Pooled docosahexaenote acid (2 studies 0.05 g)-

RESEARCH REPORT

Unemployment and suicide. Evidence for a causal association?

T A Blakely, S C D Collings, J Atkinson

> Objectives: To delermine the independent associatlons of lobour foree stalus and socioeconomic possifion with death by suicide.
> Design: Cohort study assembled by anonymous and probobilistic record linkage of census and morralily records
> Participants: 2.04 million respondents to the New Zealand 1991 census oged 18-64 years.
> Main outcome measure: Suicide in the thee years afier census night

Conclusions: Being unemployed was associoted with a Iwofold to threefold increased relative risk of deoth by suicide compared with being employed. About half of this association might be attributable lo confounding by mential illness

Table 3 Age only ond multivariable odjusied odds ratios (95% confidence intervals) of suicide among 1.27 million 25-64 year olds with complete dato

	Women		Man	
	Aob only	Multivarioble	Ape only	Aulinarichla
Maritel shoius				
Alar rised	1	1	1	1
Not manled	1.81 (1.22, 2.69	1.60 11.02, 2.50]	2.08 [1.66, 2.61]	1.84 [1.45, 2.34)
Highest quellification				
Tentiory	1.23 40.74, 2.07	1.65 [0.95, 2.86)	0.54 10.38, 0.77	0.70 [0.49, 1.01]
Trode	$0,8610.43,1,72)$	1.04 10.52, 2.101	0.88 10.67, 1,15	$1.05[0.80,1.39]$
Eshool	1.33 (0.81, 2.18)	1.57 [0.05, 2.61]	$0.920 .69,1.25$	$1.06[0.78,1.44]$
Nil	1	1	1	1 ,
Labous force status				
Employed	1	1	1	1.
Unemployed	2.46 (1. 10, 5.49)	2.34 (1.01, 5.42]	$2.6311 .87,3.709$	2.26 [1.56, 3.28]
Non-active	2.57 (1.68, 3.04)	2.63 (1.03, 4.25	3.16[2.40, 4.17]	2.59 (1.89, 3.55)
Houselhold car access				
Two or more	1	1	1	
Onis	1.13 (0.73, 1.74)	1.01 10.63, 1.62)	1.43 (1.14, 1.79]	$1.18[0.93,1.50]$
Nil	3,31 (1.91, 5.74	$2.3711 .17,4,791$	1.94 $11.27,2.961$	$1.01[0.63$, 1.62]
Equivalisad household incomp				
2 $\$ 50000$	0.61 10.35, 1.05)	1.20 $10.61,2.331$	0.49 10.36, 0.67	$0.87[0.60,1.27]$
\$30-\$49009	0.67 (0.40, 1.11)	1.2610.70, 2.26	$0.6010 .45,0.801$	$0.98[0.71,1.361$
\$20-\$20009	$0.620 .34,1.10)$	$0.9710 .52,1.791$	$0.6910 .51,0.95$	$0.06[0.60,1.33]$
+\$20000	1	,	1	

Row numbers ore random roundad to the nearest mulliple of three as per Stoti stics Newn Zealiand protocol

 non Amosil and household tenue lowner cocupied, privole tmancy, and public fenoncyl.

This study of the ontire Now Zeoland adult population finds that not being employed is strongly associaled with suliele, that this assoclation is not due ter confounding by sociosconomic statur, and is probably not due to either health selection or confounding by mental iliness. Conversely, here is littile suggestion of an independent association of socioeconomic stathes with sulcide death aftor controlling for lobour force status.

	Frution of suicide degths Hallad to conturn necord [rui]	RE of linkope for most compariad to loon deprived"
10-24 ytar olds		
Werser	$27 / 51$ [53]	
Athan	120/273 [44]	$1.13[0.82,1.54)$
$25-44$ year olds		
Werer	89,111 [62)	$0.03[0.64,1.06)$
Atan	261/450 [56]	0.97 [0.82, 1.13)
45-54 ymar elds		
Womem	$49093 \mathrm{C} 4]$	$1.15[0.90,1.48)$
Men	150/222 [72]	0.85 [0.72, 1.00$]$
25-44 yuars combined (bath semer)	555/073 (64)	$0.93[0.84,1.02]$

Row numbers qef randorn rouvded to the nearest mutiple of hree as per Stetistics New Zealand protoon
 colculard by a loghink ragressioe of tha probubity of o wicide being linked, controlling for oge. The

Sensitivity Analysis

Table 5 Sensitivity analysis ostimates of the relative risk of sulcide among the unemployed compared with the employed controlling for mental illness, using the crude relotive risk estimate of 2.59 for $25-64$ year old men as the storting point

Prevalence of mental illness in the tofal population	10\%			20%			30\%		
RR of suicide for mantall Y III compored with nom-Ill	5	20	30	5	20	30	5	30	50
解 of mentol illens unamployed conpored with employed $=1.25$	2.43	224	2.15	2.5	2.17	2.12	229	2.14	1.06
RR of mentol illuess for unamployed conparsed with mploynd $=1.5$	2.13	1.98	1.85	2.16	1.88	1.79	2.07	1.83	1.77
RR of muntol Ithess for unitimployd covipond with employed $=2.0$	1.85	1.64	1.45	1.89	1.49	1.38	1.76	1.43	1.35
RR, relative risk Modelling was bosed an the pohort of 25-64 yeor old men with canplete dato (that is, those represented in toble 3). Of his colort, 519195 were enployed (168 suicide dechs during tollow up), 39312 wers unenploped [33], and 90243 werm not in the bbour force [84].									

Screening/Misclassification of Disease or Exposure

Information Bias

B. Ritz
EPI 200B, 2017

Note: some slides/examples are based on
Drs. Morgenstern's and Olsen's materials

Types of Prevention- Time of Intervention

Types of Prevention

\square Primary: prevent disease from starting/causal pie from completing

- including healthy diet, regular exercise, avoidance of smoking, safe home and work environments, clean water and air, etc.
\square Secondary: delaying onset of symptomatic or clinical disease.
- identify asymptomatic individuals during the window between pathological onset/disease detectable by screening methods and the occurrence of clinical symptoms.
- E.g. screening for HIV infection combined with the early use of highly active antiretrovirals to delay the onset of clinical symptoms, immune dysfunction, and mortality associated with AIDS.

Types of Prevention

\square Tertiary: efforts after clinical diagnosis to slow or block the progression of disease, thereby reducing impairments and disabilities, and improving the quality of life and survival among diseased individuals.

- E.g use of medications to prevent opportunistic infections among HIV-infected individuals.

Diseases appropriate for screening

\square serious, progressive diseases
\square treatment is more effective at an earlier stage.
\square disease has a detectable preclinical phase.
\square the detectable preclinical phase is fairly long and prevalent in the target population.

- E.g. breast cancer, HIV infection, hypertension.

Note: some diseases may not be appropriate for screening e.g. some cancers, if early detection and treatment doesn't change mortality or morbidity.

Disease Screening Goals

\square Screening requires a screening test
\square Screening is not about diagnosing patients
\square The aim is to identify people at high risk of having the disease
\square The screening test is not a diagnostic test

Justification for screening: Early treatment improves prognosis at reasonable cost

Screening Tests

\square We talk about a test's sensitivity, specificity and predictive value
\square What characterizes a good screening test?

Binary classification:

Sensitivity and Specificity

\square True negatives (TN)

- True positive (TP)
\square False positive (FP)
\square False negative(FN)
\square Sensitivity or true positive rate (TPR)
\square False positive rate (FPR)
\square Specificity or true negative rate

\square Pred. value pos (PPV)
\square Pred value neq (NPV)

Binary classification:

Sensitivity and Specificity

Example: Common vs. Rare disease

Test	True DISEASE		Total
+	-		
+	$\mathbf{1 8 0}$	22	202
-	20	$\mathbf{2 2 8}$	248
total	200	250	450
	(45%)	(55%)	

Test	True Disease		Total
	+	-	
+	$\mathbf{2 1}$	26	47
-	2	$\mathbf{4 0 1}$	403
total	23	427	450
	(5%)	(95%)	

$$
\begin{array}{llll}
\text { Sensitivity }=180 / 200= & 90 \% & \text { Sensitivity }=21 / 23= & 91 \% \\
\text { Specificity }=228 / 250= & 91 \% & \text { Specificity }=401 / 427= & 94 \% \\
\text { Pred value pos }=180 / 202=89 \% & \text { Pred value pos }=21 / 47= & 45 \% \\
\text { Pred value neg= }=228 / 248=92 \% & \text { Pred value neg }=401 / 403=99.5 \% \\
& \\
\begin{array}{l}
\text { Note: predictive values depend strongly on the prevalence of } \\
\text { disease, sensitivity and specificity do } \underline{\text { not }}
\end{array}
\end{array}
$$

Bayes' formula

\square Bayes' formula - predictive value depends upon sens, spec and PP (the prevalence proportion). From prior probability (PP) to a posterior probability P(D test ${ }_{+}$)

- Prior probability = probability of a condition prior to data collection/testing
- Posterior probability= probability of a condition combining data and the prior probability 1763 Richard Price presented a paper by Thomas Bayes "An essay toward solving a problem in the doctrine of chances".

Test	D	D
+	$\mathrm{PP} \times$ sens	$(1-\mathrm{PP})(1-\mathrm{spec})$
-	$\mathrm{PP} \times(1-$ sens $)$	$(1-\mathrm{PP})$ spec
	PP	$(1-\mathrm{PP})$

$\mathrm{PP}=$ prior probability (or prevalence proportion)

Predictive value of pos test
$P(D \mid$ test +$)=\frac{P P \times \text { sens }}{P P \times \text { sens }+(1-P P)(1-s p e c)}$
Predictive value of a negative test
$P(\bar{D} \mid$ test -$)=\frac{(1-P P) \text { spec }}{P P \times(1-\text { sens })+(1-P P) \text { spec }}$

Test	D	$\overline{\mathrm{D}}$
+	$P P \times$ sens	$(1-\mathrm{PP})(1-\mathrm{spec})$
-	$P P \times$ (1-sens)	$(1-\mathrm{PP})$ spec
	$P P$	$(1-\mathrm{PP})$

Predictive value of pos test
$P(D \mid$ test +$)=\frac{P P \times \text { sens }}{P P \times \text { sens }+(1-P P)(1-\text { spec })}$

Test				pp	$\begin{aligned} & \text { 1-pp } \\ & 0.95 \end{aligned}$	$\begin{aligned} & \text { sens } \\ & 0.91 \end{aligned}$	$\begin{aligned} & \text { spec } \\ & 0.94 \end{aligned}$
	True Disease		Total	ppv	npv	pp*sens	1-spec
				0.45	1.00	0.05	0.06
+	21	26	47	P(D/tes		0.45	
-	2	401	403				
total	23	427	450	0.05×0.91			
	(5\%)	(95\%)		05×0	$1+$. 95×0	0.06

Likelihood ratios (LR)
 see also ME3 pp227-230

$L R_{+}=\frac{P(\text { test }+D D)}{P(\text { test }+D)}=\frac{\text { Sens }}{1-s p e c}$
LR. $=\frac{P(\text { test }-D)}{P(\text { test }-D)}=\frac{1-\text { sens }}{\text { spec }}$
An easy way to use Bayes' theorem
Prior odds $=\frac{\text { Prior probability }}{1-\text { prior probability }}$
Posterior odds $=$ prior odds \times LR
Posterior probability $=\frac{\text { Posterior odds }}{1+\text { posterior odds }}$

Example: Screening for alcoholism

test sens $=0.90$, spec $=0.60$
Assume prior probability of alcoholism is 0.30 , then
Prior odds $=\frac{0.30}{0.70}=0.43$
$L R_{+}=\frac{0.90}{0.40}=2.25$
Posterior odds $=0.43 \times 2.25=0.97$
Posterior probability $=\frac{0.97}{1+0.97}=0.49$
of alcoholism

Note: You have increased your probability from 0.30_{15} to 0.49 given the test was positive.

Assessing carcinogens

Is epoxy carcinogenic?

> Among 283 compounds tested, Epoxy tested positive in the Ames's test for carcinogenicity

Ames's test for carcinogens	Truly Carcinogenic compounds	Truly Non- carcinogenic compounds
Positive	157	14
Negative	18	94
	175	108

Assessing carcinogens

$>$ Sens. $157 / 18+157=0.90$
$>$ Spec. $94 / 108=0.87$
> Are we now 90\% sure Epoxy is carcinogenic?
> Depends upon the prior probability
$>$ Assume our prior probability is 1%, i.e. 1% of all chemicals ever screened are carcinogenic

Assessing carcinogens

Test	C	C	
+	900	12870	13770
-	100	86130	86230
	1000	99000	100,000

Predictive value of pos test $900 / 13770=6.5 \%$
$>$ increases probability from 1% to 6.5%
Predictive value of negative test 86130/86230=99.9\%
> increases probability from 99% to 99.9%

Test values for HEME Select Test for Colorectal Cancer in a symptomless general population

Sens $=22 / 32=0.688$
Spec $=7043 / 7461=0.944$
Predictive value of post test $=22 / 440=0.050$

Test values for HEME Select in a clinical setting (patients come with complaints)

test	D	D	
+	688	56	744
-	312	944	1256
	1000	1000	2000

Sens $=688 / 1000=0.688$
Spec $=944 / 1000=0.944$
Predictive value of post test $=688 / 744=0.925$

Test performance PPV depends on PP in population

>Sensitivity will often depend on the stage of the disease and may well be lower for early stages of the disease.
$>$ The predictive value of the test is closely dependent on the prevalence proportion of the disease.
>For this HEME test, predictive value of pos test is 0.11 if colon cancer has a prevalence proportion of 0.01 and 0.01 if PP is 0.001 in a population

Benefits and side effects of screening

test	D	$\overline{\mathrm{D}}$
+	a	b
-	c	d

a: True positives detected at screening - would benefit if detected before critical point
c: False negatives diseased but not detected at screening. Screening may delay their diagnosing
b: False positives are called in for diagnostic work up - are worried and diagnostic tests may carry risks
d: True negatives are happy and like the program

Main design issue: screening may have positive as well as negative effects. The sensitivity and specificity of the tests are key parameters together with the nature of the test, the diseasse and its treatment.

Screening may have negative as well as positive effects; thus, a screening program should be evaluated. It is not enough to show that those who were detected in a screening program had a longer survival than those not screened.

For this patient, the clinical survival time is $t_{d}-t_{c}$ and the screening survival time is $\mathrm{t}_{\mathrm{d}}-\mathrm{t}_{s} ; \mathrm{t}_{\mathrm{c}}-\mathrm{t}_{\mathrm{s}}$ longer. This time interval produces "lead time bias".

Lead Time Bias

\square Lead time is the amount of time that the disease diagnosis is advanced by screening

- length of time from disease detection by screening to the time that the diagnosis would have been made on the basis of symptoms.
\square Because we can never know when disease would have been diagnosed due to symptoms, it is impossible to determine the actual lead time in a screened individual.
\square However, we can estimate the distribution of lead times in a screening program by comparing the rate of clinical disease over time in the screened and a comparable unscreened group.

Lead Time Bias

- Usually we evaluate the success of a screening program by comparing the survival experience of a screened population to that of a similar unscreened population
\square Survival is assessed as \% patients alive in an interval after diagnosis (e.g., \% surviving 5 years after diagnosis or average \# of years a patient survives after diagnosis).
- Note: survival is measured from the time of diagnosis to the time of death, thus diagnosis time is - by definition different for screened individuals (shortly after screening) and unscreened individuals (onset of symptoms).
- Thus, survival may appear longer among screened individuals because their diagnoses were made earlier, not because they lived longer. This phenomenon, known as lead time bias, will overestimate the benefit of screening and needs to be taken into account when evaluating a screening program.

Evaluating Screening Programs

\square Screening programs can have both positive and negative effects
\square All classical designs have been used for evaluation
Main concerns:
RCT: need to be large, may be out of date when finished, unbiased cause specific mortality may be difficult to obtain, difficult to randomize at individual level. Does not address normal practice. No "confounding by indication" argument for doing a RCT.

Follow-up: who complies to the program, high risk/low risk?
Case-control: not possible to evaluate all effects of interest
Ecological: ecological fallacy, but may be the best evidence after all

Additional design issues

\square Screening may address an early predisease lesion (adenoma) or cancer at an early stage.

- In the first situation, screening may reduce incidence but may have little impact on case fatality.
- In the second situation, screening should reduce incidence (and case fatality?).
- In both situations, cause specific mortality should be reduced (and total mortality?).

Additional design issues

\square A case-control study addressing the first issue includes incident cases. For the second issue, cases are cause specific deaths.
\square The source population are those who are invited to be screened and belong to the population at risk.

Additional design issues

\square Incidence density sampling of controls is usually the only option.
\qquad
\square Exposure is 'being screened' in a given time interval up to case selection.

Receiver Operator Curve (ROC)

\square ROC analysis is done to select the optimal cut point when dichotomizing a continuous scale.
\square When separating respondents into 'normal' and 'abnormal' any cut point chosen will result in 2 types of errors:

- false negatives
- false positives
\square Changing the cut point alters the numbers of erroneous judgments but will not eliminate the general problem

ROC: choice of cut-point

\square Usually the 'optimal' cut points should minimizes the overall number of false positive and false negative errors
\square The 'optimal' cut point shifts if the cost of FPs is higher than that of FNs, or vice versa
\square Changing the purpose of the test (for example, from diagnosis to screening) requires a shift in cut points.
\square A cut point that is ideal for one group may be less than ideal for another
\square The accuracy of ROC analysis depends on the quality of the gold standard, which may not be golden i.e. may be far from perfect

Distributions of SPNP scores for individuals with and without phobia, with different cut scores

Streiner DL, Cairney J, What's Under the ROC? An Introduction to Receiver Operating haracteristics Curves. Can J Psychiatry 2007;52:121-128

Generating the ROC curve

Table 1 The number of individuals in each group receiving a given score			
	Group		
SPNP Score	With phobie	Without phobia	Total
1	1	20	21
2	2	9	11
3	1	3	4
4	1	1	2
5	1	3	4
6	1	1	2
7	3	7	10
8	7	3	10
9	13	2	15
10	20	1	21
Total	50		100

Table 3 Sensitivity and (1 - Specificity) for each cut point of the SPNP		
Cut point	Sensitivity	1 -Specificity
<1	1.00	1.00
$1 / 2$	0.98	0.60
$2 / 3$	0.94	0.42
$3 / 4$	0.92	0.36
$4 / 5$	0.90	0.34
$5 / 6$	0.88	0.28
$6 / 7$	0.86	0.26
$7 / 8$	0.80	0.12
$8 / 9$	0.66	0.06
$9 / 10$	0.40	0.02
>10	0.00	0.00

Streiner DL, Cairney J, What's Under the ROC? An Introduction to Receiver Operaţing haracteristics Curves. Can J Psychiatry 2007;52:121-128

The ROC curve and the AUC

based on the data in Streiner and Cairney 2007

Streiner DL, Cairney J, What's Under the ROC? An Introduction to Receiver Operating haracteristics Curves. Can J Psychiatry 2007;52:121-128

Example of 2 different ROC curves with similar AUCs

Streiner DL, Cairney J, What's Under the ROC? An Introduction to Receiver Operating haracteristics Curves. Can J Psychiatry 2007;52:121-128

Conclusion on ROC curves

\square the trade-off between being right or wrong and the costs of making mistakes in either direction.
\square Statistics cannot substitute for thinking (what we sometimes refer to as clinical judgment), but they do provide a systematic approach to dealing with this problem.
\square ROC curves allows determining the ability of a test to discriminate between groups, to choose the optimal cut point, and to compare the performance of 2 or more tests.

Information Bias

\square Information:

- exposures, end points, confounders, effect measure modifiers
\square For discrete variables: classification error/ misclassification
- Differential
vS.
- Non-differential misclassification: does not depend upon the value of other variables:
- same error in diagnosis (sensitivity and specificity) among exposed and non-exposed;
$\square \quad$ or, error in exposure measurement is the same in cases and controls

Misclassification of the endpoint:
sometimes a problem in follow-up studies
\square Is this follow-up study vulnerable to differential misclassification of diagnosis?

Exposure	D	Obs time
+	a	$t+$
-	c	$t-$

\square Follow-up studies are usually less vulnerable to recall bias but knowing the hypothesis may introduce bias, or if the exposure is a suspected cause of the disease under study

Non-differential misclassification

It is often stated that non-differential misclassification - not the same as random misclassification (random is only nondifferential in the long term) - leads to bias towards no association ($\mathrm{RR}=\mathrm{IRR}=\mathrm{OR}=1$, $R D=I R D=0)$

First argument for that was provided by Bross in the 1950's.

Differential misclassification

	Recorded smoker	True smoker	
	+	-	
Lung cancer(L)	+	TPL	FPL
	-		
ref. (r)	+	FNL	TNL
	-	TPr	FPr
		FNr	TNr

$\mathrm{P}=$ proportion of smokers; PL and Pr
(or prevalence of smoking among lung cases and referent population)

Test	D	$\overline{\mathrm{D}}$
+	$\mathrm{P} \times$ sens	$(1-\mathrm{P})(1-$ spec $)$
-	$\mathrm{P} \times$ (1-sens)	$(1-\mathrm{P})$ spec
	P	$(1-\mathrm{P})$

$$
\mathrm{TP}=\mathrm{P} \times \text { sens }
$$

$\mathrm{FN}=\mathrm{P} \times$ (1-sens)

$$
\mathrm{FP}=(1-\mathrm{P})(1-\mathrm{spec})
$$

TN = (1-P) spec

If we take interest in the difference between P_{L} and $\operatorname{Pr}, \mathrm{D}=\mathrm{P}_{\mathrm{L}}-\mathrm{Pr}$
We are only able to estimate PL and Pr , and then

$$
\begin{aligned}
& \hat{\mathrm{D}}=\hat{\mathrm{P}}_{\mathrm{L}}-\hat{\mathrm{Pr}} \\
& \hat{\mathrm{P}}_{\mathrm{L}}=\mathrm{P}_{\mathrm{L}} \times \mathrm{TP}_{\mathrm{L}}+\left(1-\mathrm{P}_{\mathrm{L}}\right) \mathrm{FP}_{\mathrm{L}} \\
& \hat{\mathrm{Pr}}^{2}=\operatorname{Pr} \times \operatorname{TPr}+(1-\operatorname{Pr}) \mathrm{FPr}
\end{aligned}
$$

Include $D=P L-P r$
and in case of non-differential misclassification
$F P_{L}=F P r=F P \quad F N_{L}=F N r=F N$

Then

$\hat{D}=\mathrm{D}(1-(\mathrm{FN}+\mathrm{FP}))$

Meaning
$\hat{D} \neq \mathrm{D}$ if FN and FP $\neq 0$ (sens + spec <2)
$F N+F P<1.0 \quad \hat{D}<D$ (but same sign)
$F P+F N=1.0 \quad \hat{D}=0$
$F N+F P=2 \quad \hat{D}=-D$ (coding!)

Also true for ORs

Disease Misclassification

- When estimating relative effect measures a high specificity is wanted

True cohort data

Exp	N	D	D	RR
+	20,000	400	19,600	
-	10,000	100	9900	2.0

If sensitivity is 0.8 but specificity is 1

Exp	N	D	RR
+	20,000	$400 \times 0.8=320$	
-	10,000	$100 \times 0.8=80$	2.0

If sensitivity is 1 but specificity is 0.80

Exp	N	D	RR
+	20,000	$400+3920=4320$	
-	10,000	$100+1980=2080$	1.04

If sensitivity is 0.8 and specificity is 0.9

Exp	N	D	RR
+	20,000	$400 \times 0.8+19600 \times 0.10=2280$	
-	10,000	$100 \times 0.8+9900 \times 0.10=1070$	1.07

The corresponding case-cohort studies would produce the following (similar) results

True data	Exp	Cases	Controls	OR
	+	400	333.33	
	-	100	166.66	
	All	500	500	2.0

If sensitivity is 0.8 but specificity is 1

Exp	Cases	Controls	OR
+	320	266.66	
-	80	133.33	
All	400	400	2.0

If sensitivity is 1 but specificity is 0.80

Exp	Cases	Controls	OR
+	4320	4266.66	
-	2080	2133.33	
All	6400	6400	1.04

If sensitivity is 0.8 and specificity is 0.9

Exp	Cases	Controls	OR
+	2280	2233	
-	1070	1117	
All	3350	3350	1.07

If we get a reference pathologist to eliminate all FP cases, we would get (for the last table)

Exp	Cases		Controls	OR
+	$2280-1960=$	320	266.66 or 266	
-	$1070-990=$	80	133.33 or 134	
		400	400	2.0 or 2.02

Adjusting for misclassification is possible if sens and spec are known

Diagnosis	$\mathrm{D}+$	$\mathrm{D}-$	All
+	$\mathrm{P} \times$ sens	$(1-\mathrm{P})(1-$ spec $)$	$\hat{\mathrm{P}}$
-	$\mathrm{P}(1-$ sens $)$	$(1-\mathrm{P})$ spec	$1-\hat{\mathrm{P}}$
All	P	$1-\mathrm{P}$	
$\hat{\mathrm{P}}=\mathrm{P} \times$ sens $+(1-\mathrm{P})(1-$ spec $)$			
$\hat{\mathrm{P}}=\mathrm{P} \times$ sens $+1-$ spec $-\mathrm{P}+\mathrm{P} \times$ spec			
$\hat{\mathrm{P}}+\operatorname{spec}-1=\mathrm{P}($ sens + spec -1$)$			
$\mathrm{P}=(\hat{\mathrm{P}}+$ spec -1$) /($ sens + spec -1$)$			

Example

Sex	Questionnaire - bronchitis		
	+	-	All
M	350	1427	1777
F	277	1787	2064
$R P=(350 / 1777) /(277 / 2064)=1.47$			
sens $=0.44 \quad$ spec $=0.94$; based upon comparison with "Golden			

```
        Sex Questionnaire - bronchitis
\begin{tabular}{lllll} 
& + & - & All & \begin{tabular}{l} 
Assume: \\
M
\end{tabular} \\
\cline { 1 - 3 } & 350 & 1427 & 1777 & \begin{tabular}{l} 
sens \(=0.44\) \\
F
\end{tabular} \\
& 277 & 1787 & 2064 & spec \(=0.94 ;\)
\end{tabular}
\(\operatorname{Exp} P(M)=\)
\((350 / 1777+0.94-1) /(0.44+0.94-1)\)
\(=0.360\) (640 with the disease)
\(\operatorname{Exp} P(F)=\)
\((277 / 2064+0.94-1) /(0.44+0.94-1)\)
\(=0.195\) (403 with the disease)
\(R P=\frac{640 / 1777}{403 / 2064}=1.85\)
In case of differential misclassification, use sex specific sens and spec
```


Nondifferential Disease Misclassification in a (fixed) cohort study

- 50\% are exposed and 50\% unexposed, risk of 30% in the exposed and 5% in the unexposed; thus correct risk ratio is 6
- Figure shows observed Risk ratio (RR) expected for various combinations of sens and spec for disease detection (assumed equal for exposed and unexposed
\square Note: bias is affected more by same reduction in Spec than Sens because there are more noncases than cases
- If spec $=1$ the risk ratio is correct even if sens is low (regardless of sens) but this does not apply to the RD or the rate ratio or odds ratio

Nondifferential Disease Misclassification in a case control study

\square Compare a large number of cases with an equal number of noncases.
\square Assume exposure prev. is 40\% among true cases and 10% among true nor cases; thus correct risk ratio is 6
\square Figure shows observed O expected for various combinations of sens and spec for disease misclassification (assume equal for exposed and unexposed

Nondifferential Disease Misclassification in a (fixed) case control study

\square Note: classification probabilities of disease status in a casecontrol study are in general not equivalent to the classification probabilities in the source population since cases and controls are selected in an arbitrary ratio from the misclassified base population, thus sens has more influence in this design

Nondifferential Disease Misclassification in a case control study

Non-differential disease misclassification: 90\% sens , 90\% spec
Source population

	correctly classified		2050
	cases	controls	
exposed	50	2000	
unexposed	50	8000	8050
	100	10000	10100
		R=4.0	

misclassified

cases	controls	
245	1805	2050
845	7205	8050
1090	9010	10100
OR $=1.16$		

Case control study

Misclassified when selected from misclassified source pop

	cases	controls	
exposed	245	218.4	463.4
unexposed	845	871.6	1716.6
	1090		
	1090.0	2180	
	OR $=1.16$		

Diagnoses in cases only corrected after selection from miscl. source
\(\left.$$
\begin{array}{ccc}{\left[\begin{array}{cc}\text { cases } & \text { controls } \\
45 & 218.4 \\
45\end{array}
$$\right.} \& \&

\hline 971.6\end{array}\right]\)| 263.4 | |
| :--- | :--- |
| 90 | 1090.0 |$\quad 1180$

Misclassification of a Confounder

'May bias a result in any direction'
(Greenland \& Robins. Am J Epidemiol 1985:122;495-506)

Let this be the true data:

E	C	Cases	Controls	OR
+	+	100	200	
	-	25	100	2.0
-	+	20	40	
	-	100	400	2.0

The confounder has an effect ($O R=2$)
The exposure has no effect ($\mathrm{OR}=1$); note the crude OR is confounded !!

E	C	Cases	Controls	OR
+	+	100	200	
	-	25	100	2.0
-	+	20	40	
	-	100	400	2.0

When stratifying on the confounder True data

C	E	Cases	Controls	OR
+	+	100	200	
	-	20	40	1.0
-	+	25	100	
	-	100	400	1.0

E	C	Cases	Controls	OR
+	+	100	200	
	-	25	100	2.0
-	+	20	40	
	-	100	400	2.0

Now assume exposure and disease status is recorded without error.
Only the confounder is non-differential misclassified (sens=0.8 and spec=0.9), we thus get misclassified data:

E	C	Cases	Controls	OR
+	+	82.5	170	
	-	42.5	130	1.48
-	+	26	72	
	-	94	368	1.41

E	C	Cases	Controls	OR
+	+	100	200	
	-	25	100	2.0
-	+	20	40	
	-	100	400	2.0

Misclassified data

C	E	Cases	Controls	OR
+	+	82.5	170	
	-	26	72	1.2
-	+	42.5	130	
	-	94	368	1.5

Misclassification is likely if

- we ask for sensitive data (alcohol intake),
- the relevant time window is short (teratology),
- we give little attention to the data collection or too much 60 attention to the data collection.

Recall Bias

$\square \quad$ a form of differential misclassification bias of particular concern in interview-based case-control studies,

1. Cases who are diseased may ruminate about prior exposure and report it more completely than controls,(cases might exaggerate exposure while subjects without the disease under investigation)
2. Controls might not recall exposures, since they do not have an incentive to do so

Factors impacting recall (Coughlin, 1990)

1. the time interval since exposure and the degree of detail required, with less time having passed and less detail required leading to more reliable results,
2. personal factors of the study subjects such as age, educational attainment, and socioeconomic status
3. the significance, duration, frequency, and meaningfulness of the event asked to be recalled,
4. social desirability of the reported behavior and
5. interviewing techniques, design of questionnaires, and the motivation of the respondent.

Recall bias: Correction by restricting controls?

Reduce Recall bias?

- Select controls not just randomly from the base population:
- restrict them in a way that the selected control informants have the same motivation to report events and exposures as case informants,
- e.g. selecting as controls for veterans suffering from lung cancers other veterans suffering from types of cancer not under investigation.

Recall Bias:
 Correction by restricting controls?

Pearce and Checkoway (1988) warned:

- Restricting controls may produce selection bias if the exposure under study also determines whether or not a subject is included in the restricted control group:
- e.g. if we choose bladder cancer patients as the control group for the index cases with lung cancer and the carcinogen under investigation also causes bladder cancer we would expect more exposed subjects among the bladder cancer controls than among non-diseased controls.
- Also, selecting controls with other conditions does not guarantee the elimination of case-control differences in recall (Brown et al. 1978).

Recall bias: correction efforts may not be useful!

- Drews and Greenland (1993):
\square even when recall bias exists, the observed association can be closer to the true association in a populationbased control series compared with using a restricted control group:
- even relatively large differences in recall accuracy failed to bias the association away from the null
- restricting control-series does not eliminate nondifferential misclassification.
- the effects of recall bias and nondifferential misclassification may cancel each other out under many circumstances, resulting in relatively little bias in population-control based results
see also Drews and Greenland 1990

Recall Bias: Recommendations

Drews and Greenland (1993): the use of restricted controls may create more bias than it prevents

Recommendation

- evaluate the influence of misclassification and selection bias in a study through sensitivity analysis
\square since the impact of differential recall depends on a fair number of ancillary parameters such as sensitivity, specificity and prevalence of exposure
- Might want to do a validation sub-study.
\square Yet, Greenland (1988) argued that one rather should opt to conduct a smaller study which applies the criterion measure to all subjects - possibly even at lower costs i.e. this may give higher cost efficiency instead of conducting a validation sub-study

Self-report $=$ Recall Bias?

\square Recall bias is considered a serious problem in case control studies that are based upon subject's recall of exposures
\square However, recall is sometimes the best method for assessing exposures....

Recall or Recording Bias?

- Hungarian case-control surveillance of congenital
 Recall bias in a case-control surveillance system on the use of medicine during pregnancy. Epidemiology. 2001 Jul;12(4):461-6)
Drug use $=$ self-reported data (interview, memory aids)[=gold standard/why?]
= log-book: medicine prescribed by doctors Self-reported drug use

Log-book drugs	Yes	No	
Yes	a	b	Sensitivity a/(a+c) [TP] No
c	d	Specificity $d /(b+d) ~[T 8]$	

Short-term drugs

Case status Sensitivity Specificity

All cases	0.16	0.98
Severe	0.21	0.98
Visible	0.18	0.98
Controls	0.28	0.98

Note: If recall bias is present sensitivity in cases should be lower than in controls (more entries in c-cell i.e. women report more than the logbook shows), with largest differences in visible and severe malformations (net seen)

Long-term drugs

Case status	Sensitivity	Specificity
All	0.25	0.97
Severe	0.16	0.95
Visible	0.29	0.97
Controls	0.46	0.97

What to do to reduce this recall information bias?

\square Use of hospital controls may, in some cases, help to reduce information bias.
\square The disease used as comparison condition must NOT be associated with the exposure under study (must not be a cause or a preventive factor). Catchment population!
\square Use blinding if possible to reduce differential misclassification

Conclusions

$>$ Misclassification has an impact on estimates of effect sizes and study power
>A smaller study with better quality data may be preferable than a large study with poor quality data
> Collect data as accurate as possible - also true for confounders.
> Avoid differential misclassification (blinding)
> If possible estimate sens and spec of key variables, estimate/reduce misclassification in nested study
$>$ Avoid low specificity when measuring ratios (RR, ${ }^{72}$ IRR, OR)

Misclassification vs. dependence in error (me3 page 138)

\square Differential misclassification (measurement error in discrete variables) depends on the actual value of other variables

- Non-differential misclassification does not depend on the actual value of other variables
\square Dependent (or classification) error depends on the error in measuring /classifying other variables
\square Independent/non-dependent error does not depend on the error in measuring /classifying other variables
\square Correlated error is a dependent error with a non-zero correlation coefficient
\square Note: dependent error is likely to happen when disease and exposure are measured/determined in the same (error prone) way e.g. via interview/self-report

Measurement Bias in DAGs

from: Hernan and Robbins

Note: the term "misclassification" is synonymous for "measurement error" for discrete variables.

Figure 9.1

Measurement Bias

from: Hernan and Robbins
two properties: independence and nondifferentiality.

Independent and nondifferential

Non-differential measurement error:

- Errors for treatment/exposure UA is independent of the true value of the outcome
- Error for the outcome $U Y$ is independent of the true value of treatment/exposure

The structure of measurement error two properties: independence and nondifferentiality. from: Hernan and Robbins

Figure 9.4

Figure 9.5

Independent but differential:
True value of outcome affects measurement error of treatment or vice versa

Examples:

Recall bias
Reverse causation when using a biomarker
Heightened vigilance increasing disease detection in exposed

The structure of measurement error two properties: independence and nondiferentiality. from: Hernan and Robbins

Figure 9.6

Figure 9.7

Dependent and differential:
True value of outcome affects measurement of treatment or vice versa; and measurement errors are not independent

Mis-measured confounders

Figure 9.8

Can the backdoor path from Y to A through U be blocked by conditioning on L^{*} ?

Figure 9.9

Mismeasured Collider
 - selection bias

Figure 9.10

Effects of Agricultural Work and Other Proxy-derived Case-Control Data on Parkinson's Disease Risk Estimates. Am J Epidemiology 1995, Vol. 141(8).
 Karen IM. Sematuk ${ }^{1+4}$ and Edpar J. Lowe ${ }^{4}$

 and leriby history of Parkinson's desese or essemtide trevior. The data were collected in 1898 as part of a

 one proxy respondent (spouse or offspingi) lor wach index reapondent wert intaviswed using a structured quastionalre. The data were anaifad using conditiongl lopistic regression. Incoppration of prixy-derived

 141:747. -5.

Example: Measurement error in proxy-derived exposure data

TABLE 2. index-proxy pairs and sensitivity and specificity of the proxy-derived data, by exposure variable and study group: Calgary, Canada, 1989

Variable	Case pairs*				Sensitivity of the proxy responses	```Specificity of the proxy responses```	Control pairs*				Sensitivity of the proxy responses	Specificity of the proxy responses
	++	--	+-	-+			++	--	+	-+		
Environmental variables												
Rural living	14	20	4	2	0.78	0.91	24	43	7	3	0.77	0.94
Farm living	13	21	4	2	0.77	0.91	23	44	6	4	0.79	0.92
Well water	12	11	4	1	0.75	0.92	27	21	9	2	0.75	0.91
Agricultural variables												
Agricultural work	9	23	5	3	0.64	0.89	12	54	6	5	0.67	0.92
Crop farming	9	24	5	2	0.64	0.92	11	56	6	4	0.65	0.93
Grain farming	5	27	6	2	0.46	0.93	7	59	7	4	0.50	0.94
Herbicide use	4	27	4	3	0.50	0.90	1	65	3	4	0.25	0.94
Insecticide use	1	31	3	3	0.25	0.91	2	62	7	4	0.22	0.94
Fungicide use	1	25	5	1	0.17	0.96	3	64	2	2	0.60	0.97
Other variables												
Family history of Parkinson's disease	4	30	5	1	0.44	0.97	4	69	1	0		
Head trauma	4	24	4	4	0.50	0.86	4	60	2	4	0.67	0.94
Family history of essential tremor	5	28	6	1	0.46	0.97	2	64	3	4	0.67 0.40	0.94 0.90
Smoking	20	17	2	1	0.91	0.94	56	17	1	3	0.40 0.98	0.90 0.85

exposure and a " - " denoting a negative exposure.
Source: Semchuk KM and Love EJ. Effects of Agricultural Work and Other Proxy-derived CaseControl Data on Parkinson's Disease Risk Estimates. Am J Epidemiology 1995, Vol. 141(8).

Example: Measurement error in proxy-derived exposure data

TABLE 3. Crude odds ratios for Parkinson's disease,* 95% confidence intervals, and ratios of odds ratios, by exposure variable and analysis design: Calgary, Canada, 1989

Variable	Design	Casel control sets	Crude odds ratio	$\begin{gathered} 95 \% \\ \text { confidence } \\ \text { interval } \\ \hline \end{gathered}$	Ratio of odds ratios \dagger
Herbicide use	A	127	3.06	1.34-7.00	
	B	127	2.69	1.20-6.03	0.9
	C	127	2.52	1.19-5.34	0.8
	D	127	2.36	1.10-5.04	0.8
Family history of Parkinson's disease	A	128	5.76	2.60-12.77	
	B	128	4.12	1.95-8.68	0.7
	C	128	7.64	3.14-18.63	1.3
	D	128	5.12	2.28-11.50	0.9
Head trauma	A	130	3.10	1.67-5.75	
	B	126	3.10	1.67-5.77	1.0
	C	130	2.68	1.50-4.80	0.9
	D	126	2.80	1.54-5.08	0.9
Family history of essential tremor	A	125	2.37	1.20-4.69	
	B	125	1.68	0.82-3.45	0.7
	C	125	1.95	1.00-3.81	0.8
	D	125	1.37	0.67-2.80	0.6
Smoking	A	130	0.48	0.29-0.80	
	B	130	0.46	0.28-0.77	1.0
	C	130	0.47	0.29-0.78	1.0
	D	130	0.45	0.27-0.75	0.9

Source: Semchuk KM and Love EJ. Effects of Agricultural Work and Other Proxy-derived CaseControl Data on Parkinson's Disease Risk Estimates. Am J Epidemiology 1995, Vol. 141(8).

Assess Performance of a job-exposure matrix (JEM) vs. expert assessment

- Show overall agreement between JEM and experts graphically, or statistically using e.g.
- a Kappa value (categorical exposure)
- measures inter-rater agreement for qualitative items
- sensitivity or specificity (dichotomous exposure)

Job-exposure matrix (JEM) based exposure assessment

\square JEMs are created when it is not possible to obtain individual level exposure data

- As a proxy for exposure measurements per individual worker:
- e.g. measurements taken for current workers or samples collected at current workplaces and extrapolated to past conditions in company
- expert ratings of job titles by agents or base it on a literature review
- JEM information has to be linked to study subjects by some known group characteristics like job titles, location, calendar time, task etc.
- We loose statistical power and introduce potential misclassification bias since subjects are grouped by jobs/tasks etc ('average exposure' in the group of workers with same job or 'ecologic measure of exposure')

Intematuonal Journai of Epidemicion

Retrospective Assessment of
 Occupational Exposure to Chemicals
 in Community-Based Studies:
 Validity and Repeatability of Industrial Hygiene Panel Ratings

GEZA BENKE, MALCOLM SIM, ANDREW FORBES AND MICHAEL SALZBERG

Background. Occupational hygiene panels are increasingly being used to rate retrospective occupational exposures to chemicals in community-based studies. This study aimed to assess the validity, reliability and feasibility of using such an expert panel in a brain tumour case-control study.
Methods. A panel of five experts was recruited to rate exposure to 21 chemicals for 298 job descriptions to investigate the level of agreement. Validity was assessed by comparing the ratings of the experts for 49 of the jobs with objective quantitative exposure data which existed for these jobs. Repeatability was assessed by comparing the results for 50 resubmissions.
Results. Specificity was high for reporting that exposure occurred (all above 90%), but sensitivity was variable with values between 48% and 79%. Weaker validity was found for rating exposure level and exposure frequency. The raters showed the greatest inter-rater agreement for exposure to three of the 21 chemicals considered ($\kappa=0.64$ for cutting fluids, $\kappa=0.57$ for welding fumes and $\kappa=0.42$ for lubricating oils). Intra-rater reliability, based on the 50 resubmitted jobs, was fair to good ($\kappa=0.46,0.73$).
Conclusions. The potential effect of exposure misclassification from using expert panels was quantified and found to be a significant source of bias. The optimum situation occurred where three of the five raters concurred, where an odds ratio of 2.2 was observed for a true odds ratio of 4.0 . Future studies which plan to use expert panels should screen the experts for their suitability by validating their performance against jobs with known exposure data.
Keywords: epidemiology, exposure assessment. reliability, validation

JEM Expert Assessment Validity and Reliability

Table 1 Pairwise agreement statistics between raters assessing 199 jobs for exposures to 21 chemicals

Exposure	\% prevalence ${ }^{\text {a }}$	(Range)	Pairwise agreement (\%)	$\kappa^{\text {br }}$	(Range)
Other organic solvents	29.0	(8.0.54.3)	71.0	0.31	(0.14,0.54)
Lubricating oils and greases	17.5	(8.0.33.2)	83.1	0.42	(0.27,0.62)
Soldering fumes	9.0	(2.5.15.6)	90.1	0.38	(0.17,0.56)
Welding furnes	8.3	(4.0.13.6)	93.4	0.57	(0.42,0.74)
Curting fluids	8.1	(5.5,13.1)	94.5	0.64	(0.44,0.81)
PAHs ${ }^{\text {c }}$	7.4	(0.5, 17.1)	89.4	0.22	(0.05,0.38)
Lead	6.9	(0.5, 15.1)	90.1	0.23	(0.06,0.36)
Toluene	6.2	(1.5,17.1)	90.2	0.19	(0.08,0.56)
Benzene	4.7	(0.0.13.1)	93.0	0.19	(0.0,0.49)
Chromates	3.9	(0.5.8.5)	94.0	0.12	(-0.01.0.27)
Formaldehyde	3.3	(1.0.7.0)	94.7	0.16	(-0.03,0.32)
Organochlorine pesticides	3.2	(1.5.6.0)	95.9	0.34	(0.18,0.50)
Arsenic	1.5	(0.0.4.5)	97.1	0.02	$(-0.02,0.13)$
Mercury	1.3	(0.0,3.0)	97.6	0.03	$(-0.01,0.39)$
Ethylene oxide	0.9	(0.0, 1.5)	98.5	0.13	(-0.02,0.80)
N -nitroso compounds	0.9	(0.0,2.0)	98.4	0.05	(-0.01,0.56)
Jet-fuel	0.7	(0.5, 1.5)	99.0	0.30	$(-0.01,1.0)$
Phenol	0.4	(0.0.1.0)	99.2	-0.003	$(-0.01,0.0)$
Vinyl chioride	0.4	(0.0.1.0)	99.2	-0.003	$(-0.01,0.0)$
Acrylonitrile	0.2	(0.0.0.5)	99.6	-0.001	$(-0.01,0.0)$
TDI ${ }^{\text {J }}$	0.2	(0.0,0.5)	99.6	-0.001	(-0.01,0.0)

${ }^{2}$ Th prevalence. is the mean prevalence across the five raters per chemical exposure
${ }^{\text {b }}$ Summary kappa statistic (see text).
${ }^{\text {© Polycyclic aromatic hydrocarbons. }}$
${ }^{\mathrm{d}}$ Toluene di-isocyanate.
Source: Benke G et al. Retrospective Assessment of Occupational Exposure to Chemicals in Community-Based Studies: Validity and Repeatability of Industrial Hygiene Panel Ratings. Int/ J of Epidemiology, 1997, 26(3):636-642.

JEM expert Assessment

Rater	Prevalence ${ }^{\text {a }}$	$\kappa^{\text {b }}$	$95 \% \mathrm{Cl}^{\text {c }}$
1 (Physician)	2.7\%	0.46	(0.31,0.61)
2 (Physician)	7.8\%	0.64	(0.53,0.75)
3 (Hygienist)	3.4\%	0.60	(0.48,0.72)
4 (Hygienist)	5.9\%	0.73	(0.65,0.81)
5 (Hygienist)	6.7\%	0.54	(0.42,0.66)

${ }^{\text {a }}$ Prevalence, total exposures identified across all chemicals for the 50 resubmission jobs by the particular rater.
${ }^{\mathrm{b}}$ kappa statistic.
${ }^{\text {c }}$ Confidence interval.
Source: Retrospective Assessment of Occupational Exposure to Chemicals in CommunityBased Studies: Validity and Repeatability of Industrial Hygiene Panel Ratings. International J
Fnideminlnmv 1997 V/nl 76 (3)

JEM expert Assessment

Table 3 Validity of exposure identification by raters for all 21 chemicals (listed in Table 1) for the 49 dummy jobs

Rater	Prevalence	Sensitivity	Specificity
1 (Physician)	4.2%	48.1%	97.9%
2 (Physician)	9.3%	69.2%	93.9%
3 (Hygienist)	7.6%	57.7%	94.9%
4 (Hygienist)	13.0%	78.9%	90.9%
5 (Hygienist)	9.5%	65.4%	93.3%

${ }^{\text {a }}$ Prevalence, total exposures identified across all chemicals for the 49 dummy jobs by the particular rater.

Source: Benke G et al. Retrospective Assessment of Occupational Exposure to Chemicals in CommunityBased Studies: Validity and Repeatability of Industrial Hygiene Panel Ratings. Intl J of Epidemiology, 1997, 26(3):636-642.

JEM expert Assessment

TABLE 4
the five raters for

Source: Benke G et al. Retrospective Assessment of Occupational Exposure to Chemicals in CommunityBased Studies; Validity and Repeatability of Industrial Hygiene Panel Ratings. Intl J of Epidemiology, 1997, 26(3):636-642.

JEM expert Assessment

Table 5 Exposure misclassification matrix for frequency ratings. by the five raters for the 49 dummy jobs

Rater frequency levels	True frequency levels		
	No exposure $(\mathrm{n}=4885)$	Low and medium frequency $(n=90)$	High frequency $(\mathrm{n}=170)$
\% no exposure (range)	$\begin{gathered} 94.1 \\ (90.7 .97 .7) \end{gathered}$	$\begin{gathered} 43.3 \\ (16.7,61.1) \end{gathered}$	$\begin{gathered} 32.4 \\ (23.5,47.0) \end{gathered}$
\% low and medium frequency (range)	$\begin{gathered} 5.5 \\ \\ \\ \text { (1.7.9.3) } \end{gathered}$	$\begin{gathered} 47.8 \\ (22.2,83.3) \end{gathered}$	$\begin{gathered} 50.0 \\ (26.5,76.5) \end{gathered}$
\% high frequency (range)	$\begin{gathered} 0.4 \\ (0.0,1.0) \end{gathered}$	$\begin{gathered} 8.9 \\ (0.0,22.2) \end{gathered}$	$\begin{gathered} 17.6 \\ (0.0,29.4) \end{gathered}$
TOTAL	100\%	100\%	100\%

Source: Benke G et al. Retrospective Assessment of Occupational Exposure to Chemicals in CommunityBased Studies: Validity and Repeatability of Industrial Hygiene Panel Ratings. Intl J of Epidemiology, 1997, 26(3):636-642.

TABLE 6 Validity of panel using different combinations of raters assessing job exposure for the 49 dummy jobs

No. of raters ${ }^{\text {a }}$ Sensitivity Specificity PPV $^{b} \quad$ NPV c

All 5	28.8%	99.3%	68.2%	96.3%
$\geqslant 4$	42.3%	98.6%	73.3%	97.0%
$\geqslant 3$	67.3%	98.5%	70%	98.3%
$\geqslant 2$	82.7%	96.7%	57.3%	99.1%

${ }^{a}$ Number of raters correctly assessing an exposure.
${ }^{\mathrm{b}}$ Positive predictive value.
${ }^{\text {c }}$ Negative predictive value.

Source: Benke G et al. Retrospective Assessment of Occupational Exposure to Chemicals in Community$\frac{\text { Based Studies: Validity and Repeatability of Industrial Hygiene Panel Ratings. Intl J of Epidemiology, 1997, }}{26(3): 636-642}$ 26(3):636-642.

JEM Expert Assessment

TAbLE 7 Effects on odds ratio of rating misclassification for different combinations of raters for the 49 dummy jobs

Rater	Sensitivity	Specificity	Prevalence of exposure in cases	$\begin{gathered} { }^{\mathrm{a}} \mathrm{OR}_{\mathrm{T}}=2 \\ { }^{\mathrm{b}} \mathrm{OR}_{\mathrm{O}} \end{gathered}$	$\begin{gathered} \mathrm{OR}_{\mathrm{T}}=3 \\ \mathrm{OR}_{\mathrm{O}} \end{gathered}$	$\begin{gathered} \mathrm{OR}_{\mathrm{T}}=4 \\ \mathrm{OR}_{\mathrm{O}} \end{gathered}$
1	48.1	97.9	0.01	1.10	1.14	1.16
			0.05	1.39	1.60	1.72
4	78.9	90.9	0.01	1.04	1.06	1.06
			0.05	1.19	1.27	1.32
All 5 correct	28.8	99.3	0.01	1.17	1.24	1.28
			0.05	1.55	1.89	2.12
$\geqslant 4$ correct	42.3	98.6	0.01	1.13	1.18	1.21
			0.05	1.47	1.73	1.90
$\geqslant 3$ correct	67.3	98.5	0.01	1.19	1.26	1.31
			0.05	1.59	1.96	2.22
$\geqslant 2$ correct	82.7	96.7	0.01	1.11	1.16	1.18
			0.05	1.43	1.66	1.80

${ }^{a}$ True odds ratio.
${ }^{6}$ Observed odds ratio.

Source: Benke G et al. Retrospective Assessment of Occupational Exposure to Chemicals in CommunityBased Studies: Validity and Repeatability of Industrial Hygiene Panel Ratings. Int/ J of Epidemiology, 1997, 26(3):636-642.

Blair, Aaron Earl Ph.D. (In Re Roundup Prods. Liability Lit.) 3/20/2017 12:00:00 PM

```
        UNITED STATES DISTRICT COURT
        NORTHERN DISTRICT OF CALIFORNIA
IN RE: ROUNDUP PRODUCTS , MDL NO. 2741
LIABILITY LITIGATION )
                                Case No.
```



```
THIS DOCUMENT RELATES TO ALL )
CASES
        ,
        CONFIDENTIAL - SUBJECT TO PROTECTIVE ORDER
    VIDEOTAPED DEPOSITION OF AARON EARL BLAIR, Ph.D.
        WASHINGTON, D.C.
        MONDAY, MARCH 20, 2017
        8:59 A.M.
```

 2
 Deposition of AARON EARL BLAIR, Ph.D., held at the
 offices of:
HOLLINGSWORTH, LLP
1350 I Street, N.W.
Suite 1000
Washington, DC 20005
(202) 898-5800
Pursuant to notice, before Leslie Anne Todd, Court
Reporter and Notary Public in and for the District of
Columbia, who officiated in administering the oath to
the witness.
1

Monsanto - IARC / Glyphosate
Page 1-4
EXHIBIT 19-6
RITZ
Date: 9/18/2017
Reporter Lisa Moskowitz
CSR 10816. RPR. CRR CLP

Blair, Aaron Earl Ph.D. (In Re Roundup Prods. Liability Lit.) 3/20/2017 12:00:00 PM

6
EXHIBITSCONTINUED
(Attached to transcript)
BLAIR DEPOSITION EXHIBIT
PAGE
No. 7 NAPP Poster Presentation, Bates
MONGLY00340901 to MONGLYO0340902
No. 8 E-mail string re IARC - NAPP
Epidemiology Study Abstract re:
Glyphosate and NHL, Bates
MONGLY02365099 to MONGLY02365101
Environmental Health Perspectives.
IARC Monographs: 40 Years of
Evaluating Carcinogenic Hazards to
Humans, Bates MoNGLYO1154782 to MONGLYO1154819
No. 10 E-mail re Monograph Meeting
No. 11 E-mail string re Monograph Meeting
No. 12 Volume 112 - Overview of assignments
No. 13 Handwritten notes
No. 14 E-maii string re Minutes from NAPP
Meeting on October 20
No. 15 E-mail re Proposal to analyze
Glyphosate exposure and NHL risk in
NAPP

EXHIBITSCONTINUED
(Attached to transcript)
BLAIR DEPOSITION EXHIBIT
No. 16 OCRC: An Detailed Evaluation of Glyphosate Use and the Risk of Non Hodgkin Lymphoma in the North American Pooled Project (NAPP)
No. 17 Article entitled "Cancer Incidence Among Glyphosate-Exposed Festicide Applicators in the Agricultural Health Study"
No. 18 Article entitled "Differences in the Carcinogenic Evaluation of Glyphosate Between the International Agency for Research on Cancer and the European Food Safety Authority"
No. 19a DRAFT - Risk of total and cell Specific non-Hodgkin Lymphoma and pesticide use in the Agricultural Health Study
No. 19b DRAFT - Lymphoma risk and pesticide use in the Agricultural Health Study

EXHIBITSCONTINUED
(Attached to transcript)

```
BLAIR DEPOSITION EXHIEIT

No. 20 Article entitled "Non-Hodgkin
Lymphoma and occupational Exposure to
Agricultural Pesticide Chemical Groups
and Active Ingredients: A Systematic
Review and Meta-Analysis"
No. 21 E-mail re: A second thought about the
Rejection of the NHL manuscript 200
No. 22 E-mail string dated September 16. 2016210
No. 23 E-mail string re Interview with Betty
Jibber and the Farm Journal
217
No. 24 E-mail string re Quick question Erom
Carey Gillam
No. 25 E-mail string From Marie-Monique
Robin/On behalf of kathleen Guyton
No. 26 E-mail string re IARC
No. 27 WHO Q\&A on Glyphosate, 1 March 2016228
No. 28 E-mail string re Meeting on Giyphosate
\(05 / 16 / 16\) at 10AM
230
No. 29 E-mail string re Pesticide Exposure
and Cancer
232
No. 30 E-mail string \(r e\) EFA and glyphosate
235

\title{
Blair, Aaron Earl Ph.D. (In Re Roundup Prods. Liability Lit.) 3/20/2017 12:00:00 PM
}

```

2
3 BLAIR DEPOSITION EXHIBIT FAGE
No. 31 E-mail string re Glyphosate and NHL
Presentation (ISEE Conference)
No. 32 E-mail string re Glyphosate and NHL
Presentation (ISEE Conference)
No. 33 E-mail string re Your Departure
6ZHHOW: IAD-LHR I Mar 2015 18:30
No. 34 OCRC: A Detailed assessment of
glyphosate use and the risks of non-
Hodgkin lymphoma overall and by
major histological sub-types:
Findings from the North American
Pooled Project, June 10, 2016
No. 35 E-mail string re EU glyphosate review
No. 36 Article entitled "Increased Cancer
Burden Among Pesticide Applicators and
Others Due to Pesticide Exposure" 266
No. 37 EHP ISEE - Conference Abstracts,
2015 Conference
274
EXHIBITS CONTINUED (Attached to transcript)
BLAIR DEPOSITION EXHIBIT FAGE
No. 31 E-mail string re Glyphosate and NHL Presentation (ISEE Conference)
No. 33 E-mail string re Your Departure
No. 34 OCRC: A Detailed assessment of
glyphosate use and the risks of non-
Hodgkin lymphoma overall and by
Findings from the North American Pooled Project, June 10, 2016
No. 36 Article entitled "Increased Cancer Burden Among Pesticide Applicators and
Others Due to Pesticide Exposure"
EHP ISEE - Conference Abstracts,
2015 Conference

10

PROCEEDINGS

THE VIDEOGRAPHER: we are now on the
record. My name is Daniel Holmstock. I'm the videographer for Golkow Technologies. Today's date is March 20th, 2017, and the time is 8:59 a.m.

This deposition is being held at the law offices of Hollingsworth, LLP, at 1350 I Street, Northwest, in washington, D.C., in the matter of In Re Roundup Products Ifiability Litigation, MDL No. 2741. The case is pending before the United States District Court of the Northerm District of Califormia.

Our deponent today is Dr. Aaron Blair.
Counsel, would you please identify
yourselves and whom you represent.
MR. MILLER: Yes, good morming. I'm Michael Miller, and I represent the plaintiffs, together with my law partner Nancy Miller, law partner Jeff Travers, and an attorney from Denver Kathryn Eorgie.

MS. FORGIE: With Andrus wagstaff.
MR. LASKER: David?
MR. GREENE: I'm sorry. David Greene. I
represent Dr. Blair.
1

9

1
2
3 subpoenaed and -- subpoenaed by plaintiffs, it is our understanding that Dr. Blair has been produced solely as a fact witness to provide testimony about his factual knowledge and his experiences in connection
with issues for which he will be questioned, and not factual knowledge and his experiences in connection
with issues for which he will be questioned, and not to offer any expert opinions in this litigation. Anâ we have prepared for the deposition accordingly.

MR. MILLER: Well, and we agree to the extent that we -- we have not retained Dr. Blair as an expert. I don't believe Monsanto has retained Dr. Biair as an expert, but as we get into the deposition, and we both know Dr. Blair was part of a committee that formulated opinions, and we'll only ask about opinions that were formulated within that process and not for expert opinion as he sits here today. We certainly are not asking that.

So let's get going and see if we can compiete our day.

MR. LASKER: As questions are asked, we will object or not according to our understanding.

MR. MILLER: As the rules allow.
BY MR. MILLER:
Q All right. Good morming, Dr. Blair.
Based upon discussions we had with
. Blair's counsel when this deposition was

MR. MILLER: Well, and we agree to the
we - we have not retained Dr. Blair as

```
    MR. HOLLINGSWORTH: Joe Hollingsworth. I
represent Monsanto,
    MS. SHIMADA: Elyse Shimada. I represent
Monsanto.
            MR. LASKER: Eric Lasker for Monsanto.
    THE VIDEOGRAPHER: Anybody via telephone,
please identify.
    MS. WAGSTAFF: Good morning, everyone.
This is Aimee Wagstaff from Andrus Wagstaff, and I
represent the plaintiffs in this matter.
    THE VIDEOGRAPHER: Anybody else via
telephone?
    Okay. Our reporter is Leslie A. Todd,
who will now administer the oath.
WHEREUPON,
            AARON EARL BLAIR, Ph.D.,
cailed as a witness, and having been first duly sworn,
was examined and testified as follows:
            DIRECT EXAMINATION
BY MR. MILIER:
    Q Good morning, Dr. Blair.
    A And good morning.
    MR. LASKER: Mike, as you said, just
before we get started, a statement on the record.
This is Eric Lasker for Monsanto.
```

12

```
    A Good morning.
    Q How are you, sir?
    A Okay.
    Q Good. What -- would you please state
your name on the record
    A Aaron Earl Blair.
    Q All right, sir. And Aaron Earl Blair,
and you're a doctor?
            Ph.D.
    Q Ph.D. You've got -- I'm going to start
and go through a little bit of your credentials, if I
may, sir.
    A Sure.
    Q Okay. You graduated in }1965\mathrm{ with a
degree in biology from Kansas Wesleyan University?
    A Yes.
    Q Master of Science degree in '67 from
North Carolina State University?
    A Yes.
    Q And a Ph.D. in genetics at North Carolina
State University?
    A Yes.
    Q And then in 1976, you got a MPH. What is
an MPH?
    Masters in Public Health.
```

Q And that's -- your CV says epidemiology?
A Correct.
O Okay. And what is epidemiology?
A The study of causes and distribution of
diseases.
Q Have you -- have you been professionally
since 1976 studying the causes of diseases?
A Yes.
Q And explain it to me, if you would.
Where and how have you been studying the causes of
diseases since 1976?
A The study of disease in human
populations, evaluating various factors that might be
related to the initiation or etiology of those
diseases.
Q As the -- you say you've spent your
professional Iife with this doctorate degree studying
the causes of diseases. Have you studied the causes
of cancer?
A Yes.
Q And within the broad field of studying
the causes of cancer, have you studied the causes of
non-Hodgkin's lymphoma?
A Yes.
Q I'm a lay person. Tell me what is

```
non-Hodgkin's lymphoma.
    A Lymphatic and hematopoietic tumors have a
variety of different specific diseases. One is
Hodgkin's disease, you've probably heard of. It's a
lymphoma. Non-Hodgkin's lymphoma is all the
lymphomas that aren't Hodgkin's disease.
    Q So non-Hodgkin's lymphoma is a form of
cancer. You have to answer --
    A Yes.
    Q And non-Hodgkin's lymphoma is a form of
cancer in the blood?
    A Yes.
    Q So any kind of blood cancer that is not
Hodgkin's lymphoma would be called non-Hodgkin's
lymphoma?
    A No. It is --
    Q All right. Explain to me why I'm --
    A -- any type of lymphoma --
    Q I see.
    A -- that isn't Hodgkin's disease is
non-Hodgkin's lymphoma.
    Q So there can be other blood cancers such
as leukemia?
    A Yes.
    Q I understand. Thank you for that
```

correction.
Now, it sounds like you spend an awful
lot of time at the National Cancer Institute. Is
that right?
A Yes.
Q What is the National Cancer Institute?
A It is one of the institutes, the National
Institutes of Health devoted to studying cancer.
Q And you started there in 1976?
A Yes.
Q I think we're about the same age. How
many years ago was that?
A Quite a few.
Q Yeah. Thanks for clearing that up.
And how long did you stay there, from
1976 until when? Are you still there or are you
retired or .-
A I am retired now, but I have an emeritus
position, which means I go in a couple of days a week
and do what I've always done. I just don't get paid.
Q Sounds Iike an interesting promotion,
Dr. Blair
All right. So you started there in 1976.
You were a staff fellow for the Environmental
Epidemiology Eranch at the National Cancer Institute?

Blair, Aaron Earl Ph.D. (In Re Roundup Prods. Liability Lit.) 3/20/2017 12:00:00 PM

```
```

 A Correct.
    ```
```

 A Correct.
 Q Went on 1978 to '82, became the acting
 Q Went on 1978 to '82, became the acting
 chief of the occupational study section of the
chief of the occupational study section of the
Environmental Epidemiology Branch, National Cancer
Environmental Epidemiology Branch, National Cancer
Institute?
Institute?
A Yes.
A Yes.
Q Describe for us what it is you are doing
Q Describe for us what it is you are doing
there and --
there and --
A Studying various sorts of exposures that
A Studying various sorts of exposures that
occur in occupations and to see if they are related
occur in occupations and to see if they are related
to cancer.
to cancer.
Q Would farming be one of those occupations
Q Would farming be one of those occupations
that you've studied for the causes of cancer?
that you've studied for the causes of cancer?
A Yes.
A Yes.
Q Wouldn't that be true for your entire
Q Wouldn't that be true for your entire
profession -- professional career?
profession -- professional career?
A That was one of the early things I
A That was one of the early things I
started doing was studies of farmers.
started doing was studies of farmers.
Q Did there come a time when you saw an
Q Did there come a time when you saw an
increase in cancers in farmers?
increase in cancers in farmers?
A Yes.
A Yes.
Q All right. Let's go on then. You became
Q All right. Let's go on then. You became
the chief of the occupational study section in 1982,
the chief of the occupational study section in 1982,
right?
right?
A Yes.

```
    A Yes.
```

```
A Correct
```

```
A Correct
```

 Q Okay. Remained the chief for, and i will
 do this math, 14 years until 1996?
A Sounds right.
Q Okay, sir. And I have .- you have a copy
of your CV there. I have a copy here. If you want
to look at it, feel free.
And what I will do, I will mark as
Exhibit 1 a copy of your CV or curriculum vitae,
okay?
(Blair Exhibit No. I was marked for
identification.)
BY MR. MILLER:
Q And hand it to you. And you can let me
know if this is -- all right. Thank you, sir.
MR. MILLER: A copy for counsel.
MR. LASKER: Thank you. yeah, do that.
BY MR. MILLER:
Q Is this your CV, sir?
A Yes.
Q Okay. So we were down nere, we were
looking at some of your professions. You were at the
National Cancer Institute after receiving your
Ph.D. --
MR. LASKER: Mike, for the record, are
these highlights your highlights on the document?
Thanks for asking.
MR. MILLER: Yes. Yes. Yes, they are.
MR. LASKER: That's the document that you
will be using for the deposition?
MR. MILLER: I -- I think we're ailowed
to do that, if I recall, under the rules.
MR. LASKER: Okay, that's fine.
MR. MILLER: Yeah. I'm just highlighting
to aid the jury along the way.
BY MR. MILLER:
Q These highlights aren't yours, are they,
Dr. Blair?
A No.
Q Okay. It's all important, isn't it?
Your whole body of work, do you feel like it's
important?
A Oh. Yes, sure.
Q All right. So after being the chief for
14 years at the Occupation and Environmental
Epidemiology Branch, you went on to become in 2004 a
senior investigator. Please tell us what that means.
A It means I stepped down as head of the
unit and just retained a position at the National
Cancer Institute, and that is a senior position.
Q Okay. And then you retired from

```
full-time work there in 2007.
    A Yes
    Q And have been working for free as a
professor emeritus there ever since.
    A Yes.
    Q Very good. All right.
            Ard the reason I'm asking about your
background, sir, there came a time when this
organization asked you to do some scientific work for
them. is that fair?
    MR. LASKER: Objection to form.
    THE WITNESS: Yes.
BY MR, MILLER:
    Q Who is wHO?
    A World Health Organization.
    Q Okay. So the World Health Organization,
what did they ask you to do? What did they ask you
to do, sir?
    A Are you asking about a particular time
or --
    Q You know, tnat's a fair question. When
was the first time the World Health Organization
contacted Aaron Elair and asked him to perform some
professional services?
    A I .. I don't .-
```


22

Q And how many times have you served as an IARC volunteer?

A You know, I don't actuaily remember
the -- the number. Seven maybe.
Q Okay. And I'm going now to your CV to
page 3, and it shows that you served on IARC as early
as 1985.
Does that sound about right, Dr. Blair?
A Sounds about right.
Q Okay. And you were at -- you were
involved in an IARC monograph. I guess we will stop
there. What's a monograph?
A Just a publication, a book.
Q Okay. So it's an International Agency
for the Research of Cancer book on the evaluation of
carcinogenic -- I guess that's cancer?
A Yes.
Q -- of cancer risks to humans.
A Yes.
Q And you -- Volume 35, these books come
out from the World Health Organization in volumes, I
guess?
A Yes.
Q Okay. So Volume 35 was probably one of
the first ones that you worked on.

```
MR. LASKER: Objection to form.
```

MR. LASKER: Objection to form.

```
MR. LASKER: Objection to form.
You can answer.
You can answer.
You can answer.
THE WITNESS: I don't actually remember
THE WITNESS: I don't actually remember
THE WITNESS: I don't actually remember
the earliest year that it was, but I have served on
the earliest year that it was, but I have served on
the earliest year that it was, but I have served on
various world Health Organization groups over the
various world Health Organization groups over the
various world Health Organization groups over the
years.
years.
years.
BY MR. MILLER:
BY MR. MILLER:
BY MR. MILLER:
    Q Could you just let the jury know some of
    Q Could you just let the jury know some of
    Q Could you just let the jury know some of
those groups that you served at the request and for
those groups that you served at the request and for
those groups that you served at the request and for
the World Health Organization.
the World Health Organization.
the World Health Organization.
    A Well, the main one is the International
    A Well, the main one is the International
    A Well, the main one is the International
Agency for Research on Cancer, which is part of the
Agency for Research on Cancer, which is part of the
Agency for Research on Cancer, which is part of the
World Health Organization.
World Health Organization.
World Health Organization.
    Q Okay. And is that also referred to as
    Q Okay. And is that also referred to as
    Q Okay. And is that also referred to as
IARC?
IARC?
IARC?
    A Correct.
    A Correct.
    A Correct.
    Q Okay. So -- and that stands for
    Q Okay. So -- and that stands for
    Q Okay. So -- and that stands for
International Association --
International Association --
International Association --
    A Agency.
    A Agency.
    A Agency.
    Q I'm sorry. International Agency for the
    Q I'm sorry. International Agency for the
    Q I'm sorry. International Agency for the
Research on Cancer?
Research on Cancer?
Research on Cancer?
    A Correct.
    A Correct.
    A Correct.
    Q And that is an organization which is part
    Q And that is an organization which is part
    Q And that is an organization which is part
of the World Health Organization.
of the World Health Organization.
of the World Health Organization.
    A Yes.
```

 A Yes.
    ```
    A Yes.
```

1

Q All right. And this preamble was written

```
Q And a copy for you, Doctor.
```

Q And a copy for you, Doctor.
MR. MILLER: And a copy for counsel.
MR. MILLER: And a copy for counsel.
Q All right. Here, Doctor.
Q All right. Here, Doctor.
A Thank you.
A Thank you.
Q All right. So what we have here, can you
Q All right. So what we have here, can you
identify this document, which is Exhibit 2, please?
identify this document, which is Exhibit 2, please?
A Well, it is one of the monographs.
A Well, it is one of the monographs.
Q Okay. And I just want to ask you a few
Q Okay. And I just want to ask you a few
questions about the front page of this document. So
questions about the front page of this document. So
it says -- again, we've been talking about it, but
it says -- again, we've been talking about it, but
it's a world Health Organization, right?
it's a world Health Organization, right?
A Yes.
A Yes.
Q And it's the International Agency for
Q And it's the International Agency for
Research on Cancer.
Research on Cancer.
A Yes.
A Yes.
Q Also known as IARC, right?
Q Also known as IARC, right?
A Yes.
A Yes.
Q All right. Now, this is a preamble.
Q All right. Now, this is a preamble.
What is a preamble?
What is a preamble?
A Sort of the beginning discussion of what
A Sort of the beginning discussion of what
follows in the monograph.
follows in the monograph.
Q Okay. And they meet in a place called
Q Okay. And they meet in a place called
Lyon, France?
Lyon, France?
A Correct.
A Correct.
Q All right. And this preamble was written

```
    Q All right. And this preamble was written
```

25

1

```
A Yes.
Q So off and on, as requested by world
```

Health Organization, it would be fair to say you've
been involved in working with them since 1985, right?
A Yes.
MR. LASKER: Objection to form.
BY MR. MILLER:
Q Or about - is that }32\mathrm{ years? I'm real
bad with math. Sound about right?
A Sounds right.
Q Okay. All right. So that was Volume 35.
Did there come a time when you were asked
to be involved with the world Health Organization,
the International Association of Cancer, to what has
now become volume 112 of the monographs?
A Yes.
MR. LASKER: Objection to form.
BY MR. MILLER:
Q And I'm going to put a copy under the
highlighter -- and that is my highlighting, so we all
know -- I'll tell you what I will do, I will use a
non-highlighted copy and a highlighter to work with.
(Blair Exhibit No. }2\mathrm{ was marked for
identification.)
BY MR. MILlER:
A Yes.
A Yes.
Q So off and on, as requested by world
Q So off and on, as requested by world
A Yes.
EY MR. MILLER:

```

Page 21-24
```

```
```

in 2006. Have you reviewed this before?

```
```

```
in 2006. Have you reviewed this before?
```

```
```

in 2006. Have you reviewed this before?

```
```

 A Yes. Not .- not recently.
 Q Well, I know, and I'm not -- it's not a
 Q Well, I know, and I'm not -- it's not a
 Q Well, I know, and I'm not -- it's not a
 Q Well, I know, and I'm not -- it's not a
 Q Well, I know, and I'm not -- it's not a
 test, but I just want to go over a couple of things
test, but I just want to go over a couple of things
test, but I just want to go over a couple of things
test, but I just want to go over a couple of things
test, but I just want to go over a couple of things
with you.
with you.
with you.
with you.
with you.
And will go, if you would, sir, to the
And will go, if you would, sir, to the
And will go, if you would, sir, to the
And will go, if you would, sir, to the
And will go, if you would, sir, to the
first page of the preamble, and it says here that the
first page of the preamble, and it says here that the
first page of the preamble, and it says here that the
first page of the preamble, and it says here that the
first page of the preamble, and it says here that the
IARC was established in two -- in 1965.
Is that your understanding?
A Yes.
A Yes.
A Yes.
A Yes.
A Yes.
Q All right. It says: Through the IARC"
-- I'm sorry, I will quote exactly.
"Through the monographs program, IARC
seeks to identify the causes of human cancer."
That's true, isn't it, sir?
A Yes.
A Yes.
A Yes.
A Yes.
A Yes.
Q Okay. And some terms, so the jury and I
Q Okay. And some terms, so the jury and I
Q Okay. And some terms, so the jury and I
Q Okay. And some terms, so the jury and I
Q Okay. And some terms, so the jury and I
can understand them. In this preamble they tell us,
can understand them. In this preamble they tell us,
can understand them. In this preamble they tell us,
can understand them. In this preamble they tell us,
can understand them. In this preamble they tell us,
the world Health Orgamization, that a cancer hazard
is an agent that is capable of causing cancer under
is an agent that is capable of causing cancer under
is an agent that is capable of causing cancer under
is an agent that is capable of causing cancer under
is an agent that is capable of causing cancer under
some circumstances. While a cancer risk is an
estimate of carcinogen -- carcinogenic effects
expected from exposure to a cancer hazard.
I mean, is that what we should
understand?

```
```

```
```

```
understand?
```

```
```

```
```

understand?

```
```

```
```

```
understand?
```

```
```

```
```

understand?

```
```

```
```

```
```

*

```
\[
12
\]
\[
13
\]
```

```
    A Right.
```

```
    A Right.
    Q Okay.
    Q Okay.
        MR. LASKER: Object to form.
        MR. LASKER: Object to form.
BY MR. MILLER:
BY MR. MILLER:
    Q What is a cancer bioassay?
    Q What is a cancer bioassay?
    A It's an experimental study. Usually it
    A It's an experimental study. Usually it
means studies in animals.
means studies in animals.
    Q Okay. What do we mean by "mechanistic
    Q Okay. What do we mean by "mechanistic
and other relevant data"?
and other relevant data"?
    A What are the biologic processes that
    A What are the biologic processes that
might lead from an exposure to development of cancer.
might lead from an exposure to development of cancer.
    Q Yes, sir.
    Q Yes, sir.
    "Only reports that have been published or
    "Only reports that have been published or
accepted for publication in openly available
accepted for publication in openly available
scientific literature are reviewed."
scientific literature are reviewed."
    Is that true, sir?
    Is that true, sir?
    A Yes.
    A Yes.
    Q And why is that true? Why -- why does
    Q And why is that true? Why -- why does
IARC only review those publications that have been
IARC only review those publications that have been
published in available scientific literature or have
published in available scientific literature or have
been accepted for publication?
been accepted for publication?
            MR. LASKER: Objection to form.
            MR. LASKER: Objection to form.
BY MR. MILLER:
BY MR. MILLER:
    Q You can answer.
    Q You can answer.
    A Because these materials are then
```

 A Because these materials are then
    ```
MR, LASKER: Objection to form.
BY MR. MILLER:
Q You can answer.
A Because these materials are then
```

```
*
```

*

5

```
5
```

25

```
A Yes.
    Q Okay. All right. And there's in the
preamble a discussion of the selection of agents for
review by IARC, and I want to ask you about it.
            It says: "Agents are selected for
review" -- is that for review to see if they cause
cancer?
    A Yes.
    Q -- "on the basis of two main criteria:
There is evidence of human exposure, and there is
some evidence or suspicion of carcinogenicity."
            Is that your understanding, Dr. Blair?
    A Yes.
    A Yes. Okay. And IARC has in this preamble a
discussion of what they will review as they consider
these issues, right, sir?
    A Yes.
    Q Okay. And it talks about with regard to
epidemiological studies .- now, first, let's stop
there.
9
```

```
What is an epidemiological study?
```

What is an epidemiological study?
A It's a study of -. in humans to evaluate
A It's a study of -. in humans to evaluate
3 risk of disease or risk factors.
3 risk of disease or risk factors.
Q To find out if some agent may cause some
Q To find out if some agent may cause some
condition?
condition?

```
? (a)
```

```
? (a)
```

```
```

available to anyone.

```
```

available to anyone.
Q And IARC also reviews those exposure
Q And IARC also reviews those exposure
data?
data?
A Yes.
A Yes.
Q And exposure data means how are humans
Q And exposure data means how are humans
exposed to that agent, right?
exposed to that agent, right?
A yes.
A yes.
Q Okay. And IARC extends invitations to
Q Okay. And IARC extends invitations to
scientists around the world to participate in the
scientists around the world to participate in the
creation of a monograph for a book, right?
creation of a monograph for a book, right?
A Yes.
A Yes.
Q And it .- in this preamble it tells us:
Q And it .- in this preamble it tells us:
"Before an invitation is extended, each potential
"Before an invitation is extended, each potential
applicant participant, including the IARC
applicant participant, including the IARC
Secretariat, completes a wHO declaration of interest
Secretariat, completes a wHO declaration of interest
to report financial interests, employment, and
to report financial interests, employment, and
consulting, and individual and institutional research
consulting, and individual and institutional research
support related to the subject of the meeting."
support related to the subject of the meeting."
Is that your understanding?
Is that your understanding?
A Yes.
A Yes.
Q So before these folks are invited to be
Q So before these folks are invited to be
on this IARC panel, they have to declare their
on this IARC panel, they have to declare their
interests?
interests?
A yes.
A yes.
MR. LASKER: Objection to form.

```
```

 MR. LASKER: Objection to form.
    ```
```

```
*
```


28

2
4
4
5
6
6
7
7
8
19
20
1
2
3
3
2
3

$$
11
$$

28

```
    Q Okay. And we're going to get to the IARC
```

 Q Okay. And we're going to get to the IARC
 monograph on Roundup in a minute, but now I will jump
monograph on Roundup in a minute, but now I will jump
out of turn and ask, did they -- did IARC working
out of turn and ask, did they -- did IARC working
group do a meta-analysis on Roundup .-
group do a meta-analysis on Roundup .-
MR. LASKER: Objection to form.
MR. LASKER: Objection to form.
BY MR. MILLER:
BY MR. MILLER:
Q -- and the epidemiology concerning the
Q -- and the epidemiology concerning the
issue of Roundup in non-Hodgkin's lymphoma?
issue of Roundup in non-Hodgkin's lymphoma?
A I'm not sure I remember.
A I'm not sure I remember.
Q All right. We will take a look in a
Q All right. We will take a look in a
minute then. Thank you.
minute then. Thank you.
And does IARC also review pooled
And does IARC also review pooled
analysis?
analysis?
A Yes.
A Yes.
Q Okay. All right. And IARC looks at
Q Okay. All right. And IARC looks at
temporal effects, right, sir?
temporal effects, right, sir?
A Yes.
A Yes.
Q So they aralyze both the detailed
Q So they aralyze both the detailed
analysis of both relative and absolute risk in
analysis of both relative and absolute risk in
relation to temporal variables. Now, that's a
relation to temporal variables. Now, that's a
mouthful.
mouthful.
Detailed analysis of both relative and
Detailed analysis of both relative and
absolute risk. What is a relative risk?
absolute risk. What is a relative risk?
A It would be the calculation of a rate in
A It would be the calculation of a rate in
one group compared to a rate in another.

```
one group compared to a rate in another.
```

```
Q I see. Perhaps a group who's been
exposed to an agent compared to a group that has not
been exposed to an agent?
    A Yes.
    Q Okay. And an absolute risk would --
would be what, sir?
    A. The rate of occurrence of disease in a
group.
    Q Yes, sir. They consider age at first
exposure, time since first exposure, duration of
exposure, cumulative exposure, peak exposure, when
appropriate and time sense -- cessation of exposures
are reviewed and summarized when available. Is that
right, sir?
    A Yes.
    Q Ail right. Going, if we would, to
page ll in the preamble for IARC, it tells us that
they use a criteria to establish causality, right,
sir?
            MR. LASKER: Objection to form.
BY MR. MILLER:
    Q You can answer.
    A Yes.
    Q And in their criteria for cruality --
causality, excuse me, in making its judgment, the
```

```
BY MR. MILLER:
    Q And it says in this monograph preamble
that a working group -- and I want to ask you, what
is a working group?
    A It's tne group of people invited to
perform this activity.
    Q And the working group meets at IARC for
seven to eight days to discuss and finalize the text
and to formulate the evaluation.
            Is that your experience?
    A Roughly that number of days, yes.
    Q Excuse me. All right. Page 8. I want
to ask you about this if I can.
    It says: "Regarding occurrence and
exposure, data that indicate the extent of past and
present human exposure, the sources of exposure, the
people most likely to be exposed, and the factors
that contribute to exposure are reported."
            Is that your experience, sir?
    A Yes.
    Q And one more sentence here. It says,
quote: Information is presented on the range of
humar exposure, including occupational and
environmental exposure.
    Occupational exposure I guess would mean
By MR. MILLER:
Q And it says in this monograph preamble that a working group -- and I want to ask you, what is a working group?
A. It's the group of people invited to perform this activity.
Q And the working group meets at IARC for seven to eight days to discuss and finalize the text and to formulate the evaluation.
Is that your experience?
A Roughly that number of days, yes
Q Excuse me. All right. Page 8. I want to ask you about this if I can.
It says: "Regarding occurrence and exposure, data that indicate the extent of past and present human exposure, the sources of exposure, the people most likely to be exposed, and the factors that contribute to exposure are reported."
Is that your experience, sir?
A Yes.
Q And one more sentence here. It says,
quote: Information is presented on the range of
human exposure, including occupational and
environmental exposure.
Occupational exposure I guess would mean
```

beina exposed to the agent at work?
MR. LASKER: Objection to form.
THE WITNESS: Yes.
BY MR. MILLER:
Q And environmental exposure means what,
sir?
A Usually not exposed at work. In other
ways.
Q All right. And I'm - I just want to ask
you a few more questions. Page 9 , there's a whole
section, and I'm not going to read it, but that IARC
considers the quality of studies considered, right?
A Yes.
Q Okay. And then on page 10 , IARC
considers meta-analysis?
A Yes.
Q Now, could you tell the jury what is a
meta-analysis?
A It is a quantitative or statistical way
of summing up results from several studies.
Q Okay. And does IARC not only consider
meta-analysis that are available in the public
literature, but does IARC in fact do their own
meta-analysis?
A Sometimes.
being exposed to the acent at work?
MR. LASKER: Objection to form.
THE WITNESS: Yes.
BY MR. MILLER:
Q And environmental exposure means what,
sir?
A Usually not exposed at work. In other ways.
you a few more questions. Page 9 , there's a whole
considers the quality of studies considered, right?
A Yes.
Q Okay. And then on page 10, IARC
considers meta-analysis?
A. Yes.

Q Now, could you tell the jury what is a meta-analysis?

A It is a quantitative or statistical way of summing up results from several studies.

Q Okay. And does IARC not only consider literature, but does IARC in fact do their own meta-analysis?

A Sometimes.

Blair, Aaron Earl Ph.D. (In Re Roundup Prods. Liability Lit.) 3/20/2017 12:00:00 PM

```
working group considers several criteria for
causality. Hill, 1965.
    Do you see that, sir?
    A Yes.
    Q And that is Sir Bradford Hill?
    A Yes.
    Q Okay. It says in the preamble for IARC:
"If the risk increases with exposure, this is
considered a strong indication of causality."
        Is that true, sir?
    A Yes.
    Q IARC also considers studies of cancer in
experimental animals?
    A Yes.
    Q Page 15. In the preamble they discuss
that IARC considers mechanistic and other relevant
data. Is that right, sir?
    A Yes.
    Q Okay. And that would include
toxicokinetic data.
        Now, what does toxicokinetic data mean,
Dr. Blair?
    A Sort of the processes of chemicals
interacting with human systems.
    Q Okay, sir. And they consider data on
A Yes.
Q Okay. And that would include
```

34

```
mecharisms of carcinogens?
    A Yes.
    Q And what is that?
    A Various pathways appear to lead to
carcinogenicity.
    Q And after - - even before this sevem- to
nine-day working group meeting in France, does the
working group review materials in the time before
that?
    MR. LASKER: Object -- objection to form.
    THE WITNESS: The individuals on the
working group --
        MR. MILLER: Yes.
        THE WITNESS: -- review materials before
then.
BY MR. MILLER:
    Q Okay. And for what period of time
approximately do individuals in the working group
review material?
A A couple of months. Three months. It's
a while.
    Q Okay. And then after they review, there
is a determination made whether the agent being
reviewed is carcinogenic or not. Is that fair?
    MR. LASKER: Objection to form.
2
10
1 1
```

33
3
4
5 c
12
13
13
14
25

```
of Caxcinogenic Risk to Humans, right, sir?
    A Yes.
    Q So it's Volume 112 of these monographs
we've been talking about, right?
    A Yes.
    Q And one of the things that -- one of the
agents that IARC Volume 112 looked at was glyphosate,
right?
    A Yes.
    Q And the meeting occurred in Lyon, France,
March 3rd through 10th, 2015, right?
    A Yes.
    Q And the list of participants .- I would
like to go over it for -- if I could, included Aaron
Blair, National Cancer Institute, retired --
    That's you, right, sir?
    A Yes.
    Q -- from the United States of America, and
you were the overall chair of the group, weren't you?
    A Yes.
    Q Okay. How much did they pay you for
that?
    A We're not paid.
    Q It's a volunteer assignment, isn't it?
    A Yes.
```

Q So you reviewed ail these materials for months. Right?
MR. LASKER: Objection to form
THE WITNESS: Yes.
BY MR. MILEER:
Q You flew to France.
A Yes.
Q Spent seven to nine days .. I'm sorry, it
looks like seven days reviewing these materials with
these other scientists, and you volunteered and did
it all for free.
A Other than travel expenses.
Q Okay. They paid your airfare. Okay.
Thank you.
All right. Let's look at .- did all 17
of these people do this as volunteers?
A Yes.
Q Okay. I want to look at some of them.
Also from America, Gloria Jahnke. Am I
pronouncing that right?
A I'm not sure
Q She's from the National Institute of
Environmental Health Sciences of the United States?
A Yeah.
Q Do you know her?

Blair, Aaron Earl Ph.D. (In Re Roundup Prods. Liability Lit.) 3/20/2017 12:00:00 PM

```
    Q Okay. How do you know him?
    A We're both epidemiologists doing the same
work.
    Q Yes, sir. All right.
        And from Mississippi State University,
Matthew K. Ross. My wife wouldn't let me -- I would
be in trouble if I didn't bring out Mississippi State
University.
            Do you know him?
    A Yes.
    Q All right. And what sort of professional
is he?
    A He's a toxicologist, a bioassay person.
    Q And from Texas AdM, Ivan Rusyn, he was a
sub -- subgroup chair in mechanism.
    Did you know him professionally before?
    A Yes.
    Q Do you know any of these people socially?
    A A few.
    Q Okay Who?
    A Anorea 't Mennetje; Johrm Mcaaughlir. Tf
"socially" means sometimes I see them not strictly in
a professional meeting.
    Q Have dinner after a meeting or something?
    A Occasionally.
```

42
Q Yeah, sure.
1
All right. From California Environmental
Protection Agency, Lauren Zeise. Do you know what
her profession is?
A No.
Q Okay. So those were the members.
Now, these people were the ones that
ultimately voted that Roundup or glyphosate was a
probable human carcinogen for non-Hodgkin's lymphoma.
Was the vote unanimous?
MR. LASKER: Objection to form.
BY MR. MILLER:
Q You can answer.
A I actually don't remember for sure. I
think so.
I just want to say one thing --
Q Please do.
A -- these are the people who voted.
You've just underlined a whole bunch of them.
Q Yes, sir.
A They all voted.
Q Oh, I understand, sir. Yes, sir. I
wasn't trying to suggest otherwise. Everyone on here
voted, right?
A Yes.

```
    Q And you think it was unanimous, but
you're not a hundred percent sure. Is that fair?
    A Yeah.
    Q Now, I want to ask you, an invited
specialist, what is an invited specialist?
    A It may be that someone brings special
expertise so it would be of value to the working
group.
    Q And the World Health Organization decided
that there was an invited specialist they wanted to
invite for this issue of glyphosate. Is that fair?
            MR. LASKER: Objection to form.
            THE WITNESS: Or for the other pesticides
being evaluated.
BY MR. MILLER:
    Q Sure.
    A I don't know why they did it.
    Q Yes, sir, I understand. You didn't make
the invitation?
    A I did not make the invitation.
    Q But an invitation was extended to
Christopher Portier, who was from the Agency for
Toxic Substances and Disease Registry in the United
States.
            Yes.
```

44
Q Do you know Dr. Portier?
A Yes.
Q Okay. Also present was a gentleman by the name of Jesudosh -- I'm sorry if I'm pronouncing it wrong -- Jesudosh Rowland from the United states Environmental Protection Agency.

Dc you see that, sir?
A Yes.
Q Do you know him?
A No. You know, he was at the meeting. I probably met him --

Q Right, I understand.
A -- at the meeting, but .- yeah.
Q I understand. And there were observers at the meeting. Now, what's the function of an observer?

A That usually means they are sort of stakeholders in the issue being evaluated.

Q Okay.
A A few who were invited to come.
Q And the Monsanto Company was allowed to have an observer at the meeting, weren't they, sir?

A Yeah.
Q That was a Dr. Thomas Sorahan, right?
A Yes.
BY MR. MILLER:
Q Okay. Let's take a look at what I
believe to be the IARC report for glyphosate. And i
marked it as Exhibit 4, and I have a copy for you and
counsel. And I put 4 on it so you know when somebody
goes back to it later, you're going to know what
number it is.
MR. MILLER: Counsel, here you go.
BY MR. MILLER:
Q This is a report from IARC for
glyphosate?
$\begin{aligned} & \text { A Okay. Yes. } \\ & Q \text { Yes? Okay. }\end{aligned}$
A Okay. Yes.
Q Yes? Okay.
And glyphosate is the active ingredient
in Roundup?
in Roundup?
A Yes, sir.
Q Okay. And I want to ask you a few
questions about the report, spend a little time going
over it.
I'm not going to ask you about the
molecular structure. I didn't do very well in high
school chemistry. You'll forgive me.
If you would go to page 4.
The report says that: "Glyphosate is
widely used for household weed control throughout the

```
world. In the USA, glyphosate was consistently
ranked as the second most commonly used pesticide
(after 2,4-D) in the home and garden market sector
between 2001 and 2007, with an annual use of 2,000 to
4,000 tonnes." And you cite the authority for that
comment.
            That was your understanding after
researching the matter?
            A That's my understanding.
            MR. LASKER: Objection to form. Lacks
foundation.
BY MR. MILLER:
    Q All right. I want to go to page 45 of
this report.
    IARC studied obviously the drug in humans
and studied it in exposed humans. That's a fair
statement?
    A Yes.
        MR. LASKER: Objection to form.
BY MR. MILLER:
    Q Okay. You looked at the study, one of --
was it about a thousand studies you guys looked at in
this process?
    MR. LASKER: Objection to form.
    THE WITNESS: I don't actually know what
    48
the total number across all types of studies is. It
was a lot, but I - I don't know if that's the right
number or not.
BY MR. MILLER:
    Q Can you give me an estimate?
    A Not really because I'm on the
epidemiology panei.
    Q Okay.
    A And I sort of look at it. I mean the
monograph lists all of them..
    Q Right.
    A -- that we looked at.
    Q Right, right. Okay. So you not only
chaired the entire panel but you subchaired the
epidemiology section.
    A I was on the epidemiology --
    A I was on the epidemiology --
Q I'm sorry. Well, was there a subchair?
    A. There was.
    Q Who?
    Qho?
A I don't remember.
    Q Okay, fair enough.
    The report says: "The baseline frequency
of binucleated cells with micronuclei" -- excuse me
-. "was significantly higher in subjects from the
three regions where there had been aerial spraying
```

Q Do you know Dr. Sorahan?

```
Q Do you know Dr. Sorahan?
    A I do.
    A I do.
    Q And did he -- was he allowed to speak up
    Q And did he -- was he allowed to speak up
at the meeting?
at the meeting?
    A Yes.
    A Yes.
    Q Okay. Did he object to or complain about
    Q Okay. Did he object to or complain about
the unanimous decision to declare glyphosate a
the unanimous decision to declare glyphosate a
probable human carcinogen for non-Hodgkin's lymphoma?
probable human carcinogen for non-Hodgkin's lymphoma?
    MR. LASKER: Objection to form.
    MR. LASKER: Objection to form.
    THE WITNESS: I don't think I remember
    THE WITNESS: I don't think I remember
this for sure, but typically invited specialists are
this for sure, but typically invited specialists are
asked to comment on specific things, not on the
asked to comment on specific things, not on the
formal evaluation.
formal evaluation.
BY MR. MILLER:
BY MR. MILLER:
    Q I understand. All right.
    Q I understand. All right.
    (Counsel conferring.)
    (Counsel conferring.)
BY MR. MILLER:
BY MR. MILLER:
    Q All right. So after this selection of
    Q All right. So after this selection of
these }17\mathrm{ people IARC put together, you were the
these }17\mathrm{ people IARC put together, you were the
chairman. After months of review, a seven-day
chairman. After months of review, a seven-day
meeting, there was a report issued. Is that fair to
meeting, there was a report issued. Is that fair to
say?
say?
    A Yes.
    A Yes.
    (Blair Exhibit No. 4 was marked for
    (Blair Exhibit No. 4 was marked for
    identification.)
```

 identification.)
    ```

46

Blair, Aaron Earl Ph.D. (In Re Roundup Prods. Liability Lit.) 3/20/2017 12:00:00 PM
```

with glyphosate formulations."
Do you remember reading the Bolognesi
study?
MR. LASKER: Objection to form. And
objection to using this witness just as a basis for
reading in portions of the document and not having a
set of questions with respect to that.
BY MR. MILLER:
Q You can answer.
A This is a toxicologic study. I'm an
epidemiologist. Different subgroups evaluate
different components. I'm really familiar with
epidemiology, not so much the other.
Q That's fair. All right. All right.
Thank you.
Let's look at the epidemiology then. I
think that probably would make more sense. There's a
table in the report with the epidemiology on it,
isn't there?
A Yes.
(Counsel conferring.)
BY MR. MILLER
Q Okay. Going to page }78\mathrm{ of your report,
"Cancer in Humans." We're on page 78. Do you see
this, Doctor?

```

50
It says: "There is limited evidence in humans for the carcinogenicity of glyphosate. A positive association has been observed for non-Hodgkin's lymphoma."

What does a "positive association" mean, sir?

MR. LASKER: Objection to form
BY MR. MILLER
Q Yeah, you can answer. I'm sorry.
A It means there were studies that showed
an excess risk for people exposed
Q And that would include the epidemiological studies that were done.

A Yes.
MR. LASKER: Objection to form.
BY MR. MILLER:
\(Q\) And we'll take a look at a lot of them but all right

Your report goes on to say: "There is strong evidence that exposure to glyphosate or glyphosate-based formulations is genotoxic based on studies in humans in vitro and studies int experimental animals."

That's what your l?-expert committee
```

found?

```

49

1
```

BY MR. MILLER:

```

Q You also concluded: "There is strong evidence that glyphosate and glyphosate-based
formulations, and aminomethylphosphonic acid can act
to induce oxidative stress based on studies in
experimental animals and in studies in humans in
vitro."

Now, that's a mouthful, so I've got to ask you, why did you mention aminomethylphosphonic acid?

MR. LASKER: Objection to form.
THE WITNESS: Again, this comes from the subgroups with a discipline that I'm not as knowledgeable about BY MR. MILLER:

Q Okay.
A And I think this is a breakdown product, but I'm not sure.

Q I understand. Well, we'll pass that off to people that study the breakdown products. Okay

MR. LASKER: Objection to form to that
last comment
BY MR. MILLER:

\section*{"Conclusion" section, this report is in March of} 2015, right?

A Yes, sir.
Q And "the positive association has been observed for non-Hodgkin's lymphoma," IARC has not retracted that statement in any way, shape or form as we sit here in March of 2017?

A Not to my knowledge.
Q And there's been requests by Monsanto
Corporation to retract that, hasn't there?
MR. LASKER: Objection to form.
THE WITNESS: I understand that to be true.

BY MR. MILLER:
Q Now, let's look at some of the epidemiology in the -- all right. There we go.

Table 2.2 is a table about the epidemiology - well, let's look at it. And it's quite a long one here.

Okay. Table 2.2 is -- I got it from here -- is case-control studies of leukemia and lymphoma and exposure to glyphosate, right, sir?

A Yes.
Q Okay. Now, I'm not going to ask about
```

leukemia. But the first study in 1992, Cantor did
not show any statistical significance, right, sir?
A Correct.
Q Explain to a lay person what "statistical
significance" means.
A In statistical analyses, there is a
phenomenon known as noise, which means if you do
different studies, you don't get exactly the same
response. And statistical approaches are used to
decide if it is sort of outside the bounds of what
you would anticipate to occur being just from noise.
Q Okay. So whenever -- explain to us -- in
parentheses here, this 0.7-1.9, what does that tell
us?
A The estimate of 1.1 says that is an
estimate of elevated risk from this exposure. It's
like a lo percent increase, but it's not very big.
And these other two numbers, 0.7 to 1.9, said we
have -- I think in this case it's a }95\mathrm{ percent
confidence interval that the real true estimate is
somewhere between those two numbers.
Q Yes, sir. So then moving on in time, the
next study we see on your chart for non-Hodgkin's
lymphoma is a study by De Roos in 2003, right?
A Yeah.

```
```

```
    Q And what Dr. De Roos and others did --
```

```
    Q And what Dr. De Roos and others did --
and this is an epidemiological report Erom a
and this is an epidemiological report Erom a
peer-reviewed journal?
peer-reviewed journal?
journal"?
journal"?
    A You send a manuscript to a scientific
    A You send a manuscript to a scientific
journal, and they send it out if they think it might
journal, and they send it out if they think it might
9 be worthy of fitting in that journal to other
9 be worthy of fitting in that journal to other
scientists to review it and make comments about its
scientists to review it and make comments about its
quality.
quality.
    Q Okay. And Dr. De Roos and others in this
    Q Okay. And Dr. De Roos and others in this
peer-reviewed journal studied people who were exposed
peer-reviewed journal studied people who were exposed
to glyphosate in Nebraska, Iowa, Minnesota, Kansas,
to glyphosate in Nebraska, Iowa, Minnesota, Kansas,
from the period 1979 to 1986, right?
from the period 1979 to 1986, right?
    A Yes.
    A Yes.
    Q And what they found was that there was
    Q And what they found was that there was
over a doubling of the risk of non-Hodgkin's lymphoma
over a doubling of the risk of non-Hodgkin's lymphoma
for people who had been exposed to glyphosate, right?
for people who had been exposed to glyphosate, right?
    MR. LASKER: Objection to form.
    MR. LASKER: Objection to form.


```

 A Yes.
    ```
    A Yes.
```

 A Yes.
 Q What do we mean by "a peer-reviewed
 Q What do we mean by "a peer-reviewed
 Q What do we mean by "a peer-reviewed
    ```
    THE WITNESS: YeS.
```

 THE WITNESS: YeS.
    ```
    THE WITNESS: YeS.
22 BY MR. MILLER:
```

```
22 BY MR. MILLER:
```

```
22 BY MR. MILLER:
```

```
```

M, Yes

```
```

M, Yes

```
```

M, Yes

```

2
2
```

3

```
4
```

 MR. LASKER: Obiection to form to the
 last question.
BY MR. MILEER:
Q And then in 2001, there was a large
study -- well, strike that.
There was a study from Canada called the
McDuffie study, right, sir?
A Yes.
Q Would you describe it as -- for a
case-control study -- a large study or not?
A Yes.
Q And they examined people who had been
exposed to glyphosate from 1991 to 1994, right, sir?
A They examined cases who occurred in that
time perjod, I think, who might have been exposed.
Q Yes, sir. And they did exposure,
unexposed. They did people that had been exposed for
zero to two days and for people who had been exposed
to greater than two days in that time period, right?
A Yes.
Q And for people that had been exposed to
zero to two days, they found no increased risk of
non-Hodgkin's lymphoma, right?
MR. LASKER: Objection.
THE WITNESS: That actually is the

```
```

```
```

the risk of non-Hodgkin's lymphoma, is it

```
```

```
the risk of non-Hodgkin's lymphoma, is it
```

```
```

the risk of non-Hodgkin's lymphoma, is it
statisticaliy significant?
statisticaliy significant?
statisticaliy significant?
A Yes.
MR. LASKER: Objection to form.
MR. LASKER: Objection to form.
MR. LASKER: Objection to form.
BY MR. MILLER:
BY MR. MILLER:
BY MR. MILLER:
Q Is this one of the pieces of evidence
Q Is this one of the pieces of evidence
Q Is this one of the pieces of evidence
Q Is this one of the pieces of evidence
Q Is this one of the pieces of evidence
Q Is this one of the pieces of evidence
was a positive association between exposure to
was a positive association between exposure to
was a positive association between exposure to
glyphosate and non-Hodgkin's Iymphoma?
glyphosate and non-Hodgkin's Iymphoma?
glyphosate and non-Hodgkin's Iymphoma?
A Yes.
A Yes.
A Yes.
(Counsel conferring.)
(Counsel conferring.)
(Counsel conferring.)
BY MR. MILLER:
BY MR. MILLER:
BY MR. MILLER:
Q All right. So I'm going to go - - the Lee
Q All right. So I'm going to go - - the Lee
Q All right. So I'm going to go - - the Lee
study was also about non-Hodgkin's lymphoma. Is that
study was also about non-Hodgkin's lymphoma. Is that
study was also about non-Hodgkin's lymphoma. Is that
right, sir?
right, sir?
right, sir?
A Yes.
A Yes.
A Yes.
Q And it showed an increased risk of 40
Q And it showed an increased risk of 40
Q And it showed an increased risk of 40
percent but could not rule out chance. Is that fair
percent but could not rule out chance. Is that fair
percent but could not rule out chance. Is that fair
or am I misinterpreting it?
or am I misinterpreting it?
or am I misinterpreting it?
A Correct.
A Correct.
A Correct.
Q Okay.
Q Okay.
Q Okay.
MR. LASKER: Objection to form.
MR. LASKER: Objection to form.
MR. LASKER: Objection to form.
THE WITNESS: Yes.
THE WITNESS: Yes.
THE WITNESS: Yes.
BY MR. MILLER:
BY MR. MILLER:
BY MR. MILLER:
Q Is it - - is this finding of a doubling of
Q Is it - - is this finding of a doubling of
Q Is it - - is this finding of a doubling of
A Yes.

```
```

 A Yes.
    ```
```

 A Yes.
    ```
```

```
23
19
4
25
5s
8
22
23

Blair, Aaron Earl Ph.D. (In Re Roundup Prods. Liability Lit.) 3/20/2017 12:00:00 PM
58
    Q \(\quad \mathrm{K}-\mathrm{A}-\mathrm{R}-\mathrm{U}-\mathrm{N}-\mathrm{A}-\mathrm{N}-\mathrm{A}-\mathrm{Y}-\mathrm{A}-\mathrm{K}-\mathrm{E}\).
    A I don't know
    Q Okay. He did a study out of Canada in
4 for exposure period from '91 to '94, published in
2012, did not find a statistically significant
increased risk in his study. Is that fair?
    A Yes.
    Q The next year, 2013, Kachuri, et al, in
rovinces in canada, studying multiple myeloma.
    \(Q\) The next year, 2013, Kachuri, et al, in
six provinces in canada, studying multiple myeloma.
            Is multiple myeloma a form of
non-Hodgkin's lymphoma?
    A No. Non-Hodgkin's lymphomas had
different definitions over time. When this study was
done, it was not a form of non-Hodgkin's lymphoma.
\(5 \quad Q \quad A l l\) right, sir.
    All right. Excuse me. Continuing on
All right. Excuse me. Continuing on
your table of epidemiological studies, we nave
Hardell and Eriksson in 1999 do a study on
non-Hodgkin's lymphoma from northern and middle
sweden during a three-year period, '87 to 190 .
non-Hodgkin's lymphoma from northern and middle
Sweden during a three-year period, ' 87 to 190 .
Do you see that, sir?
    A Yes.
    Q Now, they found under ever used
glyphosate univariate analysis -- what is a
univariate analysis?

58
```

A Yes.
Q And what they do, they take Sweden, four
northern counties, and they take studying
non-Hodgkin's lymphoma and Hodgkin's lymphoma, and
what they conclude -- I'm sorry. They don't. I've
just been corrected.
Non-Hodgkin's lymphoma and hairy cell.
right, which is a form of non-Hodgkin's --
A Hairy cell leukemia.
Q Yes, which is a form of non-Hodgkin's
lymphoma?
A. Depends on the time frame, but I think it
was at that time. I'm not sure.
Q Okay. And they find a 300 percent
increased risk statistically significant?
increased risk statistically significant?
THE WITNESS: Yes.
BY MR. MILLER:
Q Okay. Meaning that they've eliminated
chance to the }95\mathrm{ percent.
A Yes.
Q Okay.
MR. LASKER: Objection to form.
BY MR. MILLER:
Q All right. So now we go to the next page
Q And what they do, they take Sweden, four northern counties, and they take studying

```
    ma?
```

```
    A Just looking at the relationship in a
statistical analysis that includes glyphosate and not
much of anything else.
    Q All right. And what is an ever
glyphosate multivariate analysis?
    A They have included other factors that
they think might be related to this cancer.
    Q I see.
    And what they concluded was, just using
        glyphosate, they had a doubling of the risk, but it 
        glyphosate, they had a doubling of the risk, but it 
assessment?

```

.

```
```

MR. LASKER: Objection to form.

```
MR. LASKER: Objection to form.
```

THE WITNESS: Yes.

```
THE WITNESS: Yes.
```

THE WITNESS: Yes.

```
THE WITNESS: Yes.
```

THE WITNESS: Yes.

```
```

THE WITNESS: Yes.

```
```

```
THE WITNESS: Yes.
```

```
```

THE WITNESS: Yes.

```
```



```
A Just looking at the relationship in a
```

```
reference population.
```

reference population.
BY MR. MILLER:
BY MR. MILLER:
Q That's the reference population?
Q That's the reference population?
A So it's set at l.0.
A So it's set at l.0.
Q Oh, I see. Of course. All right.
Q Oh, I see. Of course. All right.
But for people that were exposed for
But for people that were exposed for
greater than two days, they found a doubling of the
greater than two days, they found a doubling of the
risk of non-Hodgkin's lymphoma from exposure to
risk of non-Hodgkin's lymphoma from exposure to
Roundup or glyphosate?
Roundup or glyphosate?
A Yes.
A Yes.
MR. LASKER: Objection to form.
MR. LASKER: Objection to form.
BY MR. MILLER:
BY MR. MILLER:
Q And they found that was statistically
Q And they found that was statistically
significant, that is to say it did not occur by
significant, that is to say it did not occur by
chance?
chance?
MR. LASKER: Objection to form.
MR. LASKER: Objection to form.
THE WITNESS: Outside the realm of
THE WITNESS: Outside the realm of
chance.
chance.
BY MR. MILLER:
BY MR. MILLER:
Q Yes, sir.
Q Yes, sir.
A Yes.
A Yes.
Q Okay. How would you pronounce this,
Q Okay. How would you pronounce this,
Karunanayake? I'm sorry. I don't know how to
Karunanayake? I'm sorry. I don't know how to
pronounce that
pronounce that
A Okay. I'msorry, I can't quite read it.

```
    A Okay. I'msorry, I can't quite read it.
```

16
19 B
21
21
22
25
1
1
2
2
3
3
7
21
19
.
4
5
5
6
7
R
59

1
1
2

9
2
2
of your table where you report on the study of Eriksson, an epidemiological study on non-Hodgkin's lymphoma published in 2008, and exposure to any glyphosate, they've got a doubling of the risk of non-Hodgkin's lymphoma statistically significant, right?

MR. LASKER: Objection to form.
THE WITNESS: Yes.
MR. LASKER: You're just going to read from one of those? There's two. By MR. MILLER:

Q They go on to look at days of use. Do you see that, sir? Less than ten days use?

A Yes.

Q Greater than ten days use?
A Yes.
Q So for less than ter days use, they have a nonstatistically significant increased risk of 69 percent, right?

MR. LASKER: Objection to form.
THE WITNESS: Yes.
(Interruption in the proceedings.)
MR. MILLER: Do you need to take a break?
THE WITNESS: No.
MR. LASKER: And for the record, for this

62

```
whole line of questioning, we make an objection to
testimony of studies based upon a tabie as opposed to
the studies themselves. So objection based on lack
of foundation as well.
BY MR. MILLER:
Q Okay. So for the Eriksson study, less than ten days use, 69 percent increased risk, not statistically significant, correct?
A Correct.
MR. LASKER: Objection to form.
By Mr. MILLER:
Q Well, tell us what the findings were for less than ten days use from the Eriksson study.
A So you just read what the findings were.
Q He's objected to me reading. He wants you to explain it.
A Oh. There was a 1.69 relative risk
calculated for less than 10 years use that was not statistically significant.
Q For ten days use.
A. For less than ten days use, it was not statistically significant.
Q All right, sir.
And for greater than ten days per year use, what did the Eriksson study reveal about
```

```
non-Hodgkin's lymphoma after exposure to ten days of
glyphosate?
MR. LASKER: Objection to form.
    THE WITNESS: For this category of use,
it was -- the relative risk was 2.36, which was
statistically significant.
BY MR. MILLER:
Q And 2.36 would be how much of an increase
in risk?
    MR. LASKER: Objection to form.
THE WITNESS: It's better if you just say
the relative risk. It's the relative risk is 2.36.
BY MR. MILLER:
    Q Okay. Would it be -
    A It's more than doubling.
    Q It's more than doubling. All right.
        And what is dose response?
    A As level of exposure goes up, the risk or
relative risk goes up.
    Q Did we see dose response here in the
Eriksson study for non-Hodgkin's lymphoma in exposure
to Roundup?
    MR. LASKER: Objection to form, calls for
expert opinion.
    THE WITNESS: Yes.
```

64

```
BY MR. MIlLER:
```

Q And the preambie to IARC said dose
remonse was etrory $\quad=$:

true?
A Yes.
Q All right. Let's go to lymphatic . I'm
sorry, lymphocytic lympnoma B-celi. Do you see that?
A Yes.
Q Exposure to glyphosate?
A yes.
MR. LASKER: Objection to form.
By Mr. MILLER:
Q Tell us what the findings were by
Eriksson.
A For this subgroup of Iymphoma, the
relative risk was 3.35 , which was statistically

$$
7 \text { significant, because the confidence interval, the }
$$

significant, because the confidence interval, the
Q And I know you don't like to put a
MR. LASKER: Objection to form.
THE WITNESS: Roughly.

$$
16
$$

$$
\text { lower level was greater than } 1.0
$$

percentage on it, but would that be a 300 percent

$$
\text { percentage on it, but would that be a } 300 \text { percent }
$$

increased risk?

MR. LASKER: Objection to form.
THE WITNESS: Roughly.

by Mr. MILLER:
 BY MR. MILLER:

Q Yes, sir. Okay.

confidence interval was less ... the lower amount was
less than 1.0 , so it was not statistically
significart.
Q And even though it was not statisticaliy
$Q \quad$ And even though it was not statistic
significant, does this inform us or aid us in
reaching the conclusions the panel was charged with
or - or not? How does that play out?
A All studies inform us.
Q Okay. There was -. we've looked at the
big thick hundred-and-some page report of IARC on
glyphosate. There was also a shorter summary of the
findings published in Lancet. Do you remember that?
glyphosate. There was also a shorter summary of the
findings published in Lancet. Do you remember that?
A Yes.
Q And Lancet is a peer-reviewed journal?
A Yes.
Q And would it be fair to say -- or you
tell me, is Lancet a prestigious medical journal?
A Lancet oncology is a prestigious journal.
Q Yeah.
(Blair Exhibit No. 5 was marked for
identification.)
BY MR. MILLER:
Q And so I want to look at the IARC
findings published in Lancet Oncology, and I've
marked them as Exhibit 5. And I got a copy for you
Q And that's non Hodgkin's lymphoma?
A Correct.
Q And the mechanistic evidence was what,
sir?
MR. LASKER: Objection to form. Lacks
foundation.
BY MR. MILLER:
Q I'm sorry. You can answer. He objects,
but you can answer.
A That it was genotoxic and had another
possible effect with oxidative stress.
Q Did you help author this article in
Lancet?
A Yes.
Q Okay. You say here: "Glyphosate" -- and
I'm on page 2 -- "is a broad spectrum" -- there it is
right there -- "broad spectrum herbicide currently
with the highest production volume of all herbicides.
It is used in more than }750\mathrm{ different products for
agriculture, forestry and home application. Its use
has increased sharply with the development of
genetically modified glyphosate-resistant crop
varieties."
And that was part of the research that

```
```

```
EY MR. MILLER:
```

```
```

EY MR. MILLER:

```
2
25
```

and a copy for counsel
l and a copy for counsel,
l and a copy for counsel.
l and a copy for counsel.
+

```
2
66
5
confidence interval was less ... the lower amount was
13
25

```

And unspecified non-Hodgkin's lymphoma

```
And unspecified non-Hodgkin's lymphoma
and exposure to glyphosate, what were the findings,
and exposure to glyphosate, what were the findings,
and were they statistically significant?
and were they statistically significant?
    A The relative risk was 5.63, and the
    A The relative risk was 5.63, and the
confidence interval did not include 1.0, so it was
confidence interval did not include 1.0, so it was
statistically significant.
statistically significant.
    Q Would that be synonymous with a five
    Q Would that be synonymous with a five
times risk?
times risk?
A ROUGhly.
A ROUGhly.
    MR. LASKER: Objection to form.
    MR. LASKER: Objection to form.
Objection to the selective questioning regarding the
Objection to the selective questioning regarding the
table.
table.
BY MR. MILLER:
BY MR. MILLER:
    Q There was a study called Orsi, but is it
    Q There was a study called Orsi, but is it
fair to say none of his findings were statistically
fair to say none of his findings were statistically
sjgrificart: Es that aceurate?
sjgrificart: Es that aceurate?
    A I'm looking. None were statistically
    A I'm looking. None were statistically
significant on this page.
significant on this page.
    Q Study from the Czech Republic, the cocco
    Q Study from the Czech Republic, the cocco
study on the issue of B-cell lymphoma. And, first,
study on the issue of B-cell lymphoma. And, first,
B-cell lymphoma is a form of non-Hodgkin's lymphoma?
B-cell lymphoma is a form of non-Hodgkin's lymphoma?
    A Yes.
    A Yes.
    Q And this study, what were the findings of
    Q And this study, what were the findings of
this study, Dr. Blair?
this study, Dr. Blair?
    A The relative risk was 3.1, and the
```

 A The relative risk was 3.1, and the
    ```


1
            -
```

you folks developed in preparing this report?

```
            MR. LASKER: Objection to form.
```

 MR. LASKER: Objection to form.
 BY MR. MILLER:
BY MR. MILLER:
Q You can answer.
Q You can answer.
A It was part of the evidence we reviewed.
A It was part of the evidence we reviewed.
Q Okay. And we've just been taiking about
Q Okay. And we've just been taiking about
them, but I want -- "case-control studies" -- those
them, but I want -- "case-control studies" -- those
8 are the studies that we just talked about, right?
8 are the studies that we just talked about, right?
A Yes.
A Yes.
Q Okay. "-- of occupation exposure in the
Q Okay. "-- of occupation exposure in the
United States, Canada, and Sweden, reported increased
United States, Canada, and Sweden, reported increased
risk for non-Hodgkin's lymphoma that persisted after
risk for non-Hodgkin's lymphoma that persisted after
adjustment for other pesticides."
adjustment for other pesticides."
What does that mean?
What does that mean?
MR. LASKER: Objection to form.
MR. LASKER: Objection to form.
THE WITNESS: It means that's the
THE WITNESS: It means that's the
m multivariate analysis. You include other things that
m multivariate analysis. You include other things that
8 might include a disease in the analysis until you
8 might include a disease in the analysis until you
know which is doing what.
know which is doing what.
20 BY MR. MILLER:
20 BY MR. MILLER:
Q Okay. Now, for the first time we're
ask you about it: "The AHS cohort did not show a
ask you about it: "The AHS cohort did not show a
significantly increased risk of non-Hodgkin's
significantly increased risk of non-Hodgkin's
Iymphoma. "

```
Iymphoma. "
```

```
    I want "case-control studies" (
```

```
    I want "case-control studies" (
```

So there was a study that did not show the association between - - between glyphosate and non-Hodgkin's lymphoma, right?

A Yes.
MR. LASKER: Objection to form.
BY MR. MILLER:
Q And in fact, you were the author of that
study, or one of them, right, sir?
A One of the authors.
Q And in spite of being the author of the study that didn't show the association, you voted
that in fact there was an association based on the totality of the evidence, right, sir?

MR. LASKER: Objection to form.
THE WITNESS: Yes.
BY MR. MILLER:
Q Okay. All right. "And glyphosate has
been detected in the blood and urine of agricultural workers indicating absorption."

What does that mean, sir?
MR. LASKER: Objection to form, lacks
foundation.
BY MR. MILIER:
Q You can answer.
A If it's in the blood, it had to get there

72

```
```

identification.)

```
```

identification.)
BY MR. MILLER:
BY MR. MILLER:
Q This has been produced by IARC on these
Q This has been produced by IARC on these
4 issues, and I want to ask you a little bit about it,
4 issues, and I want to ask you a little bit about it,
okay?
okay?
Have you seen this before, Doctor?
Have you seen this before, Doctor?
A Well, I .- I think so.
A Well, I .- I think so.
Q Well, let's look at it. If at any time
Q Well, let's look at it. If at any time
you want to stop and read it, it's okay with me. All
you want to stop and read it, it's okay with me. All
right. I don't want to - - I don't want to go too
right. I don't want to - - I don't want to go too
fast and don't expect you to have read everything.
fast and don't expect you to have read everything.
But this is promulgated by IARC. It
But this is promulgated by IARC. It
says: "Originally prepared as a confidential
says: "Originally prepared as a confidential
briefing for government councilmembers on IARC
briefing for government councilmembers on IARC
evaluation of glyphosate and requests for meetings
evaluation of glyphosate and requests for meetings
from croptife."
from croptife."
Do you know who CropLife is?
Do you know who CropLife is?
A. It's arn organization that includes many
A. It's arn organization that includes many
pesticide manufacturers on it.
pesticide manufacturers on it.
Q And IARC says here in point number 2
Q And IARC says here in point number 2
that: "Monsanto rejected and attacked the IARC
that: "Monsanto rejected and attacked the IARC
findings, calling it junk -- junk science, and
findings, calling it junk -- junk science, and
immediately requested that the World Health
immediately requested that the World Health
Organization retract the International Agency for the
Organization retract the International Agency for the
Research of Cancer evaluation, and privately lobbied

```
```

Research of Cancer evaluation, and privately lobbied

```
```

```
somehow.
    O Sure.
    A So it had to be absorbed through some
tissue.
    Q After you and your working group
volunteered, looked at all of this material,
7 concluded there was a positive association between
glyphosate and non-Hodgkin's Iymphoma, did Monsanto
attack you and other members of the IARC panel?
    MR. LASKER: Objection to form.
            THE WITNESS: I don't think I quite know
how to answer that.
BY MR. MILLER:
    Q I understand. Let's take a look at this
document, and it will I think help -- helps us look
at it.
            This is going to be marked as
Exhibit 10 -- is it 10 already?
    MR. LASKER: 10?
    MR. MILLER: Six. Oh, it's six. Wrote
the wrong one. Hardest part of my job.
    All right. Six. It shall be marked as
Exhibit 6. And I have a copy for you, Doctor, and a
copy for coumsel. Here you go.
    (Blair Exhibit No. }6\mathrm{ was marked for
```

1
$\begin{array}{ll}1 & \text { so } \\ 2 & \end{array}$
2
3
4
5
6 v
6

Blair, Aaron Earl Ph.D. (In Re Roundup Prods. Liability Lit.) 3/20/2017 12:00:00 PM
74
BY MR. MILLER:
Q Okay, On 4d, Monsanto claimed, quote:
The data evaluated do not represent, quote, real
world exposures.
But IARC writes: "This ignores the fact
that cancer epidemiology based on real world
exposures associated with cancer risk in humans is
the cornerstone of IARC Monograph evaluation."
That's true, isn't it?
MR. LASKER: Objection to form.
Counsel, the witness has already said he
doesn't -- is not sure he has seen this document and
he did not write the document.
BY MR. MILLER:

73
MR. LASKER: Objection to form.

```
    Q You can answer.
    A Epidemiology is based on real world
exposures. That's what humans get 
    Q And is epidemiology the cornerstone of
what IARC Monographs are about?
A It is at least one of them.
Q And are -- and is epidemiology, is it
based on real world exposures?
23 A Yes.
    Q Okay. They go on to say that: "Other
members of the working group and IARC Secretariat are
```

(20)
now being subject to intimidating letters from
Monsanto lawyers."
Did you get a letter from Monsanto
lawyers about this?
lawyers about this?
MR. LASKER: same objection.
BY MR. MILLER:
$Q \quad$ It's okay to answer.
BY MR. MILLER:
$\quad Q \quad$ It's okay to answer.
A No.
Q Did Monsanto lawyers call you?
A I don't think so.
Q Okay. You have spoken to one of the
lawyers that represents plaintiffs at one time,
right, just to be fair about all this?
A Yes.
Q But you're not an expert for either side
in this case, are you?
A No.
Q Okay. Are you aware that Monsanto has
been lobbying the House of Representatives to cut off
funding for IARC because of this?
MR. LASKER: objection to form.
funding for IARC because of this?
MR. LASKER: Objection to form.
BY MR. MILLER:
Q You can answer.
A Yes.
Q How do you feel about that?

```
```

the USEPA to reject IARC's findings."

```
```

the USEPA to reject IARC's findings."
A Yes.

```
        You see that?
```

 You see that?
    ```
        You see that?
    A Yes.
    A Yes.
    A Yes.
        MR. LASKER: Objection to form,
        MR. LASKER: Objection to form,
        MR. LASKER: Objection to form,
foundation, hearsay. 601, 801.
foundation, hearsay. 601, 801.
foundation, hearsay. 601, 801.
BY MR. MILLER:
BY MR. MILLER:
BY MR. MILLER:
Q Have you been aware -- 
THE REPORTER: I'm sorry?
THE REPORTER: I'm sorry?
THE REPORTER: I'm sorry?
BY MR. MILLER:
BY MR. MILLER:
BY MR. MILLER:
Q Have you felt some of this pressure from
Q Have you felt some of this pressure from
Q Have you felt some of this pressure from
IARC -- excuse me -- Erom Monsanto?
IARC -- excuse me -- Erom Monsanto?
IARC -- excuse me -- Erom Monsanto?
    A Well, I know - - I've seen this.
    A Well, I know - - I've seen this.
    A Well, I know - - I've seen this.
A Well, I know - I've seen this.
A Well, I know - I've seen this.
A Well, I know - I've seen this.
    Q Okay. I didn't know that. Okay
    Q Okay. I didn't know that. Okay
    Q Okay. I didn't know that. Okay
information, yes.
information, yes.
information, yes.
    Q Yes.
    Q Yes.
    Q Yes.
            MR. LASKER: Same objection.
            MR. LASKER: Same objection.
            MR. LASKER: Same objection.
BY MR. MILLER:
BY MR. MILLER:
BY MR. MILLER:
    Q Did you help prepare this or do you know
    Q Did you help prepare this or do you know
    Q Did you help prepare this or do you know
who did?
who did?
who did?
who did?
who did?
who did?
    Q Probably Kathy Geiten, you think, or --
    Q Probably Kathy Geiten, you think, or --
    Q Probably Kathy Geiten, you think, or --
        MR. LASKER: Objection to form.
        MR. LASKER: Objection to form.
        MR. LASKER: Objection to form.
        THE WITNESS: I don't know.
```

 THE WITNESS: I don't know.
    ```
        THE WITNESS: I don't know.
```

```
2
```

2
4, LASKER: I'm sorry. 601, 602, 801.
4, LASKER: I'm sorry. 601, 602, 801.
4, LASKER: I'm sorry. 601, 602, 801.
IARC -- excuse me -- from Monsanto?
IARC -- excuse me -- from Monsanto?
IARC -- excuse me -- from Monsanto?
infor

```
infor
```

infor

```
3
41
24
25
25
7
7
8
8
9
9
10
10
11
14
5
.
1
18
    75

7
76
MR. LASKER: Objection to form. THE WITNESS: I don't see why that's
1
2
3
3 pertinent.
BY MR. MILLER:
    Q I - . pertinent in the sense that if
scientists are being intimidated for their
conclusions, that's probably relevant in this
lawsuit.
MR. LASKER: Objection to form.
THE WITNESS: DO I have to answer?
MR. LASKER: Objection to form.
THE WITNESS: DO I have to answer?
BY MR. MILLER:
    Q No. If you don't want to. I will
withdraw the question. Okay?
            MR. MILLER: All right. Why don't we
take a five-minute break and --
            THE VIDEOGRAPHER: The time is \(10: 14 \mathrm{a} . \mathrm{m}\).
We're going off the record.
            THE VIDEOGRAPHER
            (Recess.)
            THE VIDEOGRAPHER: The time is
10:33 a.m., March 20th, 2017, and we are on the
record with video 2.
BY MR. MILLER:
    Q So what we were just talking about off
\(Q\) So what we were just talking about off
record, and we shared with your counsel, it's a
protective order that the court wants us to have

\title{
Blair, Aaron Earl Ph.D. (In Re Roundup Prods. Liability Lit.) 3/20/2017 12:00:00 PM
}
```

witnesses sign before they look at documents. We
haven't had any problems. There are lots of experts
on both sides who have signed it. They've looked at
documents.
I will be frank with you, Dr. Blair, my
experts have already seen the document I'm going to
show you, so you wouldn't be the only one that looked
at it. I have lots of fellows and gals who have
looked at it. But we all know you're a man of honor,
you sign this, you're not going to show it to
anybody. So that's all we're asking
A So that's not my question.
Q What's your question?
A My question is I don't - I do sign it, I
never tell anyone, it gets leaked, and I get accused
because peopie know I had it. What's my protection?
Q Well, I mean, I see your point. I mean,
I'm in the same boat. I've signed --
A There is none.
Q Well, I guess honesty is your protection.
You really won't leak it, so you won't -- I've
seen -- and you guys can speak to this, but I've seen
one litigation one lawyer who leaked something, and
zyprexa comes to mind, and there is some sort of
coding in the documents or something, I don't know,

```
but they will know it's not you. We're not going to give you a copy. You're going to leave without a copy anyway, so you couldn't leak it

MR. GREENE: Dr. Blair, I've had a number of cases where we've had confidentiality agreements because of documents being produced in my cases by the defendant, and my clients have signed it. It's just part of the discovery process. And I've never had any repercussions from anybody or anything dealing with these agreements.

I would suggest, as your counsel, that
you can sign this
THE WITNESS: Okay. Okay.
MR. MILLER: Okay, great. Do you need a
pen?
THE WITNESS: I need a pen.
MR. MILLER: Yes, sir. Here you go, sir
MR. GREENE: Mr. Miller, can I keep a
copy of it?
MR. MILLER: Absolutely. Absolutely.
THE WITNESS: This is me here, right?
MR. MILLER: Yes, sir.
THE WITNESS: (Witness signs document.)
MR. MILLER: All right. Thank you,
Doctor.
```

 All right. You've got it. Okay
 Here you go, Jeffrey. You're in charge
 of those, and if you want, we will send a copy of the
signed one.
MR. GREENE: Just out of curiosity, do
you want me to sign something?
MR. MILLER: I don't think you have to.
I don't think it's required.
MR. LASKER: Actually, it probably is.
MR. MILLER: Okay. Well, then hand it on
down.
MR. LASKER: Since you're not counsel of
record.
MR. GREENE: (Courisel signs document.)
(A discussion was held off the record.)
BY MR. MILLER
Q All set?
All right. Doctor, thank you for your
patience
I want to ask you a little bit about the
North American Pooled Project, the NAPP. It's
"Pooled analyses of case-control studies of
pesticides and agriculture exposures.
Iymphohematopoietic cancers" --
A Yes.

```

80
```

 Q -- "and sarcomas."
 Are you one of the authors of this new
 study?
A One of the authors of these papers, yes.
Q Yes. And I will mark it as Exhibit 7, a
poster presentation concerning the NAPP study. All
right?
(Blair Exhibit No. }7\mathrm{ was marked for
identification.)
EY MR. MILLER:
Q And here is a copy, sir. Thanks
And that's one of the reasons we had you
sign a protective order is because I got this from
the files of Monsanto. Okay.
A Then I have a question.
Q Sure
MR. LASKER: For the record, I don't
think this document was marked "Confidential." It's
a public document.
MR. MILLER: This is a public document,
but my copy is marked "Confidential." I'm just
being -
THE WITNESS: Yes, it's published in the
proceedings
MR. MILLER: Yes, I understand.

```

Blair, Aaron Earl Ph.D. (In Re Roundup Prods. Liability Lit.) 3/20/2017 12:00:00 PM
```

MR. LASKER: I don't think these are confidential documents.
MR. MILLER: Yeah, right, this is not a confidential document
MR. LASKER: It doesn't say
"Confidential" on this.
MR. MILLER: All right, it's not a
confidential document.
BY MR. MILLER:
Q So let me ask you about Exhibit 7, and
just generally, let me ask you about the North
American Pooled Project. Please tell me something about this study that you're one of the authors of.
MR. LASKER: Objection.
THE WITNESS: POOling is assembling data
from different individual studies and putting it together for analysis, which makes the analyses more robust because there are larger numbers. BY MR. MILLER:
Q And are You still -- is this study still ongoing?
A Yes.
Q And has it generated some results?
A I think only this, although maybe there is one other paper on another cancer. I sort of

```

82
```

forget for sure now. But other things are ongoing.
Q Okay. Got it.
Dc you know John Acquavella?
A I do.
Q How do you know John Acquavella?
A John is an epidemiologist that has
studied farmers and pesticide exposures.
Q In the agriculture workers study, did --
which you were an author of we just spoke briefly
about, right?
A Yes.
Q Previously. Did John Acquavella provide
some of the input on how to collect the data in that
study?
A No.
Q No? Okay. All right.
Blair Exhibit No. }8\mathrm{ was marked for
identification.)
BY MR. MILLER:
Q All right. Well, let me show you what I
marked as Exhibit 8, and this is a series of e-mails
from Dr. Acquavella that we've gotten from -- from
Monsanto. And you probably haven't seen that before.
If you want a second to look at it, that's certainly
fine.

```
```

 A (Perusing document.)
 Q And what I wanted to ask you about was on
 the second page.
A (Perusing document.)
Q And this gentleman, I believe his name is
Bill Haydens -- we've actually had the privilege of
taking his deposition, an employee of Monsanto -- he
talks about the results for .. am I -- wait. Let me
see. okay
-- results unadjusted for other
pesticides, subjects who ever used glyphosate had a
significantly elevated non-Hodgkin lymphoma risk,
odds vat!o \.43; confidence interva;, 2.13 to -.83.
Glyphosate used for 3.5 years increased SLL risk
I.98; conficence inverval, 0.89 to 4.39.
Handling glyphosate for two days was
associated with significantly higher odds of
non-Hodgkir Iymphoma. Odas ravio, z. AS; confidence
interval, 1.4, 3.96.
This is a pooled analysis from the NAPP
study, right, sir?
MR. LASKER: Objection to form. I think
you started off saying that Bill -. this is just is a
reprint of a presentation. This isn't any of this
Bill Haydens' words.

```

84
MR. MILLER: I'm not suggesting these are Bill Haydens words. BY MR. MILIER:

Q These are the numbers, the findings from the NAPP study, right?

MR. LASKER: Objection to form.
THE WITNESS: I guess. I wouldn't want
to -- I think so. But ..
BY MR. MILLER:
Q Is this data published now?
MR. LASKER: Lack of foundation.
BY MR. MILLER:
Q Or any data, it's not published --
A Only the abstract.
Q I see. And when do you anticipate
publication of the final NAPP study?
A I'm not sure when that will be out.
\(Q\) Within a year, do you think?
A Probably within a year.
Q Okay. Do you know what journal it's been presented to for publication?

A I don't think it's been submitted yet.
\(Q\) I see. Okay. All right.
But these numbers are generally
consistent with what you remember the findings being?

\title{
Blair, Aaron Earl Ph.D. (In Re Roundup Prods. Liability Lit.) 3/20/2017 12:00:00 PM
}
```

 A Yes.
 (Counsel conferring.)
 BY MR. MILLER:
Q Okay. I'm going to show you a
publication that you and others published in
Environmental Health Perspectives in February of
2015, and just ask you a few questions about it, and
I'm getting about to where I'm about at the end of
the line with my questions. You've been very patient
with me.
Here is a copy for you, sir.
MR. MILLER: And I have a copy for
counsel.
(Blair Exhibit No. }9\mathrm{ was marked for
identification.)
BY MR. MILLER:
Q All right. This is a publication "IA.RC
Monographs: 40 Years of Evaluating Carcinogenic
Hazards to Humans."
Do you remember that?
A Yes
Q And you're one of the authors?
A Yes.
Q All right. I just put the sticker on the
wrong copy. Hang on.

```

All right. A few Guestions on it, and
then we'll move on.
    Basically, what you were looking at here
was to look historically at IARC's findings to see if
they had gotten it right or wrong over the years. Is
that a fair assessment?
    A And to discuss the process that they go
through.
    Q And what you concluded, and correct me if
I'm wrong, was -- was that IARC got it right most of
the time, or wrong?
    A That they get it right most of the time.
    Q It says, for background: "Some critics
have claimed that IARC working groups, failures to
recognize study weaknesses and biases of working
group members, have led to inappropriate
classification of a number of agents as carcinogenic
to humans."
            That was the background for which caused
you to want to research this subject, right?
    A Yes
    Q And what did you do to investigate this
to see if in fact IARC had been getting it right more
often than not?
    MR. LASKER: Objection to form,
```

soliciting expert opinion.
BY MR. MILLER:
Q You can answer.
A Well, we looked at the process that IARC
followed, the historical examples of what they had
done, and whether or not later changes were made to
the evaluations to indicate general agreement with
what IARC had done or not.
Q And you concluded, "you" being this group
of scientists, concluded that these recent criticisms
are unconvincing, right?
MR. LASKER: Objection to form, beyond
the scope.
THE WITNESS: YES.
BY MR. MILLER:
Q I'm not real good with numbers, but I'm
going to give it a try. One, two -- there's over }11
scientists that authored this paper.
A Right.
Q So you're 40 years in -- in your field
now?
A Yeah, right.
Q And over that 40 years of studying this
issue, you have observed that farmers have an
increased incidence of this hematopoietic cancer,

```
```

right?
A Among others.
Q And non-Hodgkin lymphoma is a cancer of
the hematopoietic system, right?
A Yes.
Q And you agree farmers have a good recall
of what pesticides they've used, right?
A Yes.
Q Even homeowners are aware of what they
spray on their products -. i mean on their gardens
and their lawns?
A Less so than farmers.
Q Are they good, though, or no good at it,
do you think?
A It depends.
Q And exposure misclassification can occur
in a cohort study, can't it?
A It can occur in all studies.
Q Yes, sir. Confounding is a problem but
zt rave;; owdurs; is trat fazr?
MR. LASKER: Objection to form.
THE WITNESS: That's fair.
EY MR. MILLER:
Q Exposure miss -- exposure
msungs.figathon most hirely gauses fadse vegatives;

```
```

is that fair?
A Correct
MR. LASKER: Objection to form, beyond
the scope, calls for expert opinion.
MR. MILLER: I've taken enough of your
time. I may come back and ask some rebuttal
questions. I'm now going to yield the floor to the
attorneys for the Monsanto Corporation.
THE WITNESS: Okay.
MR. MILLER: Thank you so much for your
time, Dr. Blair.
MR. LASKER: GO off the record.
THE VIDEOGRAFHER: The time is
10:52 a.m.. And we're going off the record.
(Recess.)
THE VIDEOGRAPHER: The time is 10:57
a.m., and we're back on record
CROSS-EXAMINATION
BY MR. LASKER:
Q Good morning, Dr. Blair. My name is Eric
Lasker on behalf of Monsanto. I have some questions
for you this morning.
A Okay
Q Let's start off where you left off with
plaintiffs' counsel. You have been doing research

```
```

risk of non-Hodgkin lymphoma that we know for a fact
can't be glyphosate, correct?
A Yes.
Q And when plaintiffs' counsel was asking
you about the issue of confounding, that is in
epidemiology when there are other factors that may be
in play that cause an association between a disease
in a certain population aside from the one you're
looking at, correct?
A That is part of the definition of
"confounding." Only part
Q But for Earmers, when we're studying
farmers today and we're looking at various
pesticides, and in particular, when we're looking at
glyphosate, we know that there are other factors out
there that would be independent of glyphosate that
would increase risks for farmers of non-Hodgkin
lymphoma, correct?
A Probably. When you say we know for a
fact --
Q Well --
A -- is I think not true.
Q Okay. But when you're studying
glyphosate in epidemiology, when you're focusing on
glyphosate in farmers, you want to make sure that you

```
control... that you can control for those other
possible confounders to be sure that you are actually
studying glyphosate, correct?
    A Yes
    Q Now, your research into farmers has
included both case -- what's called case-control
studies and cohort studies, correct?
    A Yes
    Q And you played a significant role -- I
think this was referred to briefly in your testimony
with questions from plaintiffs' counsel -- about the
formation of the Agricultural Health Study, correct?
    A Correct
    Q And the Agricultural Health Study is a
collaborative effort involving the National Cancer
Institute, the National Institute of Environmental
Health Sciences, and the United States Environmental
Protection Agency, correct?
    A Those three, and also the National
Institute of occupational Safety and Health, and the
University of Iowa
    Q And the Agricultural Health Study is
what's called a cohort study, correct?
    A Yes.
    Q And that is when you get a group of

\title{
Blair, Aaron Earl Ph.D. (In Re Roundup Prods. Liability Lit.) 3/20/2017 12:00:00 PM
}
```

individuals, and in this case, farmers, correct?

```
individuals, and in this case, farmers, correct?
    A Yes.
    A Yes.
    Q And you --
    Q And you --
    A And their spouses.
    A And their spouses.
    Q And their spouses
    Q And their spouses
    And you find out various exposures
    And you find out various exposures
they've had, various facts about them before they
they've had, various facts about them before they
have any -- the disease in question that you're going
have any -- the disease in question that you're going
to be studying, correct?
to be studying, correct?
    A Correct.
    A Correct.
    Q And then you follow them over time to
    Q And then you follow them over time to
determine whether or not that disease develops --
determine whether or not that disease develops --
    A Yes.
    A Yes.
    Q -- or certain diseases develop?
    Q -- or certain diseases develop?
    And in this case you brought together --
    And in this case you brought together --
how many -- how many farmers and their wives did you
how many -- how many farmers and their wives did you
gather information on in your study?
gather information on in your study?
    A About 80,000.
    A About 80,000.
    Q And for those 80,000 then, you obtained
    Q And for those 80,000 then, you obtained
information about all sorts of different exposures
information about all sorts of different exposures
that they may have had, correct?
that they may have had, correct?
    A. Yes.
    A. Yes.
    Q And that included obtaining information
    Q And that included obtaining information
regarding any exposures to glyphosate, correct?
regarding any exposures to glyphosate, correct?
    A Yes.
```

 A Yes.
    ```
1

2
are asking individuals who have a disease already
about their past exposures, the concern is that they
will recall more exposures than people who don't have
the disease, correct?
    A That's a concern.
    Q If you have recall bias, then you're
going to have an artificial increase in that odds
ratio, those numbers we were looking at previously,
that is due to the fact that the individual with
cancer just recalls more exposures, not that he
actually had more exposures, right?
    A Of course, it depends on the direction of
the bias. It can be either direction.
    Q But for recall bias, if a person with
cancer recalls more exposures than a person who
doesn't have cancer and hasn't been thinking about
that .-
    A If they record more exposures, that would
be true. If they recalled less, it would be the
other direction.
    Q Understood. And so the Agricultural
Health Study was designed to avoid that problem
altogether, correct?
            A Correct.
            Q The issue of recall bias is that when you
```

 Q And at the time you gathered that
 intormation, you were not -- you were looking at
exposures, historical exposures going back in time,
correct?

```
A Yes.
```

A Yes.
Q And the Agricultural Health Study was
Q And the Agricultural Health Study was
initiated and formed to address some of the
initiated and formed to address some of the
limitations in the eariier case-control studies that
limitations in the eariier case-control studies that
had been conducted regarding risks of pesticides or
had been conducted regarding risks of pesticides or
0 other exposures in farmers, correct?
0 other exposures in farmers, correct?
A It -- it was initiated and formed to
A It -- it was initiated and formed to
provide a different design to look at the same issue.
provide a different design to look at the same issue.
Q It was initiated, at least in part, to
Q It was initiated, at least in part, to
address some of the limitations of the case-control
address some of the limitations of the case-control
studies, correct?
studies, correct?
A Yes.
A Yes.

```
    Q And, for example, one of the limitations
```

 Q And, for example, one of the limitations
    ```
    Q And, for example, one of the limitations
of the case-control studies was something called
of the case-control studies was something called
of the case-control studies was something called
recall bias, correct?
recall bias, correct?
recall bias, correct?
    A It's a potential limitation.
    A It's a potential limitation.
    A It's a potential limitation.
    Q The Agricultural Health Study was
    Q The Agricultural Health Study was
    Q The Agricultural Health Study was
initiated in order to have a study that was examining
initiated in order to have a study that was examining
initiated in order to have a study that was examining
the possibility of exposures, for example, glyphosate
the possibility of exposures, for example, glyphosate
the possibility of exposures, for example, glyphosate
and non-Hodgkin lymphoma that did not have this
and non-Hodgkin lymphoma that did not have this
and non-Hodgkin lymphoma that did not have this
problem with recall bias, correct?
```

```
problem with recall bias, correct?
```

```
problem with recall bias, correct?
```

```
```

I A Correct.
A Q The Agricultural Hearth Study was also
designed to try and deal with issues of
misclassification of exposures by going to farmers
who you -- you testified earlier have better recall
and also periodic follow-up, correct?
6 and also periodic
8 Q At the time of enrollment and -- and if
you don't have this recollection, I understand. I
will show you some studies and we can talk about it
But at the time of enrollment, the
members of the AHS cohort had an average of about I5
years of experience mixing or applying pesticides,
correct?
A Sounds about right.
Q And you have been -- just to step back,
you've been researching the issues of potential
association between pesticides and cancer for nearly
your entire professional career, correct?
A Correct.
Q The effort to determine pesticides that
might be associated with cancer has been your life's
work, correct?
A Well, one of them.
Q You certainly invested a lot of time into
25

```
looking for potential expose -- associations between
pesticides and hematopoietic cancers, correct?
    A Yes.
    Q When you heard that IARC was going to
look at this issue that you've been studying for 40
years of pesticides and cancer, you reached out to
them to ask them about what their -- what analyses
they were going to undertake, correct?
    Let me strike that and ask again.
    When you learned that IARC was going to
be looking at pesticides and cancers, your life's
work, you contacted IARC about that, correct?
    A Well, when IARC start -- that may be
true, but just let me explain a little. When IARC
decides they're going to do something, they send out
information to people who might be able to provide
them with relevant papers and that sort of thing. So
if that happened, then I probably contacted them.
    Q Now, Dr. Blair, you provided counsel to
both sides with certain documents from your own
files.
    A Yes.
    Q Well, I'm going to ask you some questions
about some of those documents. I know we haven't
talked about them yet with plaintiffs' questioning.
```

Let me mark as the next exhibit in line,
and we will make this --
MR. LASKER: How have we been doing this?
Has it just been sequential?
MR. MILLER: I would continue with the
numbering.
What is the next number?
MR. LASKER: It's 10 .
MR. MILLER: 10? That will continue.
(Blair Exhibit No. 10 was marked for
identification.)
BY MR. LASKER:
Q And this is an e-mail, Dr. Blair, that ws
obtained from your files, just in order to refresh
your recollection. This is dated March 19th, 2014,
and this is an e-mail from you to Kurt Straif,
correct?
A Yeah.
Q And who is Kurt Straif?
A He's the head of the IARC Monograph
program.
Q And seeing this e-mail, does this refresh
your recollection as to whether or not you reached
out to IARC after you found out that they were going
to be conducting an analysis of pesticides and --

```
    A Yeah, after the announcement about the
meeting had occurred.
    Q Now, do you recall how IARC responded to
your e-mail?
    A No.
        (Blair Exhibit No. }11\mathrm{ was marked for
        identification.
        MR. LASKER: And counsel.
BY MR. LASKER:
    Q And I'm going to show you a highlighted
document that I've highlighted to help you focus on
parts of this.
            A discussion was held off the record.)
BY MR. LASKER:
    Q So, Dr. Blair, in response to your
inquiry, Kathryn Guyton sent you an e-mail back. Who
is Kathryn Guyton?
    A She was the -- like the IARC coordinator
for that evaluation of pesticides that included
glyphosate.
    Q And Kathryn Guyton asked whether you
would be interested in participating in the
Volume ll2 meeting of IARC, correct?
    A Yeah.
    Q And do you recall how you responded to
```

Chat request?
A I think initially I was saying, well,
maybe not.
Q Okay. Let's mark the next exhibit in
line. Well, strike that.
Do you recall having a concern about
serving on working group 112 because the working
group would be looking at many of the studies that
you had been conducting that you had published as
part of your life's work?
A Yep, that's one of them.
Q Your concern was that, given that this
was your life's work, it might be viewed as .- by
others as improper for you to be sitting on a
committee that was going to be evaluating whether or
not what you had been researching for 40 years
actually indicated an association of certain
pesticides and cancer, correct?
A Correct.
Q IARC continued, though, to solicit your
involvement in this working group despite that
concern, correct?
A Yes.
Q And in fact, Kathryn Guyton of IARC asked
that you chair the entire committee that was going to
chat request?
A I think initially I was saying, well,

Q Okay. Let's mark the next exhibit in line. Well, strike that.

Do you recall having a concern about serving on working group 112 because the working group would be looking at many of the studies tha you had been conducting that you had published as part of your life's work?

A Yep, that's one of them.
Q Your concern was that, given that this was your life's work, it might be viewed as - . by others as improper for you to be sitting on a committee that was going to be evaluating whether or not what you had been researching for 40 years actually indicated an association of certain pesticides and cancer, correct?

A Correct.
Q IARC continued, though, to solicit your involvement in this working group despite that concern, correct?

A Yes
Q And in fact, Kathryn Guyton of IARC asked
that you chair the entire committee that was going to

```
be looking at this issue, correct?
    A Yes.
    Q When plaintiffs' counsel showed you the
part of that preamble that asks individuals on the
working group to disclose potential interests that
might give rise to questions of bias, does that
disclosure form require individuals to disclose their
prior research activities and whatever interest they
may have in the outcome of a monograph because of
those research activities?
    A I'm not sure.
    Q Did you fill out a conflict of interest
form that listed as conflicts your life's work in
trying to find associations between pesticides and
cancers?
    A I - actually, I don't recall.
    Q You don't recall doing that?
    A I mean, I had to fill one out, but
generally, the -- the conflicts aren't the research
you have done. The conflicts is hire for money, that
sort of thing
    Q So if there are individuals invited to be
members of IARC working groups who have personal
interests in the outcome of the IARC evaluation but
do not have financial conflicts, that information
```

```
pesticide before they went to the meeting, correct?
For example, you didn't look at anything outside of
epidemiology, correct?
A Up until shortly before the meeting when
drafts, other drafts were distributed on it.
    Q Okay
    A But mainly you focused on your discipline
and the working group you were in, yes
    Q Is it also fair to say that prior to that
week -- that one-week meeting, you would be focusing
on specific assignments that had been given to you to
write certain parts of the Monograph?
    A That would be the main focus, not the
only focus. And the next focus is the subgroup
you're in, to look at that literature because that's
where your expertise lies.
    Q Okay. And with respect to working group
112, the working group members split up the work that
they had with respect to all five of these pesticides
and all four different subgroup analyses, correct?
    A Yes.
    Q And I'd like to show you a document we
received from another IARC working group member,
Dr. Ross, and I think there was some testimony about
him earlier today. And this is going to be --
```

104
MR. LASKER: Exhibit number again? Marked this Defense Exhibit il, is that the correct number?

$$
\begin{array}{ll}
\text { MR. MILLER: } & 12 . \\
\text { MR. LASKER: } & 12 ?
\end{array}
$$

(Blair Exhibit No. 12 was marked for identification.)
MR. MILLER: Yeah, 11 was an e-mail from Kathryn Guyton. And you have a copy of $12 \ldots$

MR. LASKER: Yep
BY MR. LASKER
Q Actually, Dr. Blair, if you can just
trade -- oh, no, never mind. Got one.
Give this one -- you can actually have
this one so the court reporter can have the official
exhibits.
And, Dr. Blair, I don't expect you to
remember the various assignments that individuals on
the working group had, but if this is -- if you look
at the second page of this document, on the bottom it
says "last update," and you can look at the one in
your hand, but "Last update, November 20, 2014." So
this is about three-and-a-half months before that
working group meeting, the plenary session, the
one-week meeting we've talked about, correct?

```
    A Yes.
    Q So that's about consistent with your
testimony earlier that it was about three months
beforehand that people started getting to work and
looking at some of the science, correct?
    A Yes.
    Q And for working group 112, they had a lot
of different eyes of science that they had to look
at, correct? They had -- what is it, one, two,
three, four, five, six, seven, eight, nine, ten,
eleven, twelve, thirteen, fourteen, fifteen,
sixteen -- seventeen different sections of science or
groups of science that they had to look at for
malathion, correct?
    A Yes.
    Q And there was equally -- it looks like
about }15\mathrm{ or more bodies of scientific literature they
were looking at for parathion. Correct?
    A Yes.
    Q And there were }15\mathrm{ categories of science
for diazinon and also for glyphosate and for
tetrachlorvinphose (phonetic). Is that correct?
    A Phos
    Q Phos.
    And for each of these different
```

pesticides, individual members of the working group
were assigned responsibility to look at the
scientific iiterature in that area, correct, and then
to prepare the initial draft analysis that the
working group would look at during that one-week
meeting, correct?
A Yes.
Q And I've looked through this listing of
assignments, and correct me if I'm wrong, but you
were not given any assignment to write up any
individual portions of the working group's draft
Monogracis prior to the meetingi is that rigrt?
A No. Bottom of the second page, "studies
of Cancer in Humans on Tetrachlorvinphos."
Q Okay. So your focus prior to the meeting
and prior to the one-week meeting was to review the
literature on tetrachlorvin -- tetrachlorvinphos?
A Tetrachlorvinphos, yes.
Q And prepare a report that would then form
the basis of the discussion of the epidemiology
subgroup on tetrachlorvinphos at that meeting,
correct?
A Yes
Q And that was the focus of the research
you were doing or the study you were doing prior to

```
that meeting, correct?
    A Tetrachlorvinphos was in those studies,
that's right.
    Q And for each of the individual
pesticides, and, for example, with respect to
glyphosate, there was particular individuals who were
the people who during those -- that three-month
period prior to the meeting were looking at the
literature with respect to glyphosate. So, for
example, with epidemiology, that was Dr. Forrest
Forastiere, correct?
    A Forastiere.
    Q Forastiere. And for animal toxicology,
that was Dr. Jameson, correct?
    A Yes.
    Q Those would been the individuals -- those
would have been the individuals who within that
three-month period were -- prepared an analysis on
either the epidemiology of glyphosate or on animal
studies and glyphosate that would then be presented
to that working group during that one-week meeting,
correct?
    A Preparing a document and the tables, yes.
    Q You mentioned previously that those
documents then were distributed to the working group
```

members shartiy befove the megarag is that ooveeat?
A Sometime before the meeting, shortly. I
must admit I don't quite remember the time frame,
but of..
Q Do you remember -- do you remember how
many days before the working group meeting
$A \quad$ No.
Q .- you obtained copies of any of the --
A That I don't. It's because there were --
there's websites where they're on, and you can go to
the website. The ones you -- people pay most
attention to, of course, is the working group you're
in, but the documents are fed into a website that is
available to group members.
Q So there's no process to actually
physically send to working group members any analyses
of these pesticides or glyphosate before the working
group meeting --
A I don't think that was the case. I think
you used the website.
Q So for individual members of the working
group, they either did or did not look at -- go to
the website to find out something before the meeting
began, correct?
A I assume so, yeah.

Monsanto-IARC / Glyphosate

Blair, Aaron Earl Ph.D. (In Re Roundup Prods. Liability Lit.) 3/20/2017 12:00:00 PM

```
Q Some of the working group members may
have just shown up at the meeting and seen these
analyses for the first time when they -- when the
working group plenary session -- or when the working
group meeting began, correct?
    A I have no way of knowing.
    Q Well, for you personally, would I be
correct in my understanding that you did not look at
any analyses for glyphosate, for example, for
anything other than epidemiology before you got to
that meeting?
    A No. I don't think that's correct. I
don't remember how many of all the things I scanned,
but I did at least look at a lot of -- whether I
looked at every single one. I don't know, but I
looked at a lot of them because I knew you were going
to have to evaluate things.
    Q Do you recall how many days that was
before the meeting began that you looked at those?
    A No.
    Q And you do not know what was reviewed by
other working group members before that one-week
meeting began, correct?
    A No, other than each draft was assigned a
secondary reviewer, and so every draft had a
```

secondary reviewer who looked at it before the
meeting.
Q Okay. So it would -- there would be at
least two people of the working group, but you're not
sure how many others who would have looked at drafts
of analyses before that one-week meeting began?
A True.
Q The bulk of the work then of doing the
analysis for the working group of all the data took
place during that one-week session, correct?
A Well, that -. I mean it's a little hard
to answer because a lot of work goes into reviewing
all the papers by the people who did .- wrote the
draft and so forth, but the bulk .- now I don't know,
this is adding up minutes.
Q Right
A I don't know.
Q So putting aside sections for which an
individual was the principal author or maybe the
secondary author, the bulk of the work then for the
working group in analyzing the scientific literature
would take place during that one-week session
correct?
A Well, a lot of it would. The bulk -- I'm
just quibbling with the bulk because I don't have any

```
information to tell you about that other than those
documents are available.
    Q So you don't know one way or the other
whether ..
    A I don't know one way or other. So I
can't answer your comment where the bulk of it was --
    Q So it's possible that working group
members would be looking at the science for the first
time at the beginning of that one-week meeting or
it's possible not, you just can't say one way or the
ouher; Ls that faim?
    A I can't say one way or the other.
    Q So let's talk about that one-week period
then. During that one week, the working group needed
to research -- specifically with volume 112, the
working group needed to reach classifications under
the IARC scheme of cancer rating for five different
pesticides, correct?
    A Correct
    Q So is this a -- is this -- are you
working through weekends, or is it a five-day
workweek, or how long was this?
    A You work however much time you have
available while you're there. It often means nights
and weekends.
```

```
    Q So for the one-week session for each of
```

 Q So for the one-week session for each of
 the five pesticides, you had maybe a day or a little
the five pesticides, you had maybe a day or a little
bit more of a day of time to be able to reach a
bit more of a day of time to be able to reach a
determination, correct?
determination, correct?
A Doing the division, that is correct. But
A Doing the division, that is correct. But
you understand that it isn't done .- things are done
you understand that it isn't done .- things are done
first all things on one day and all things on the
first all things on one day and all things on the
next
next
Q Right
Q Right
A They repeat it and come back to it.
A They repeat it and come back to it.
Q Understood. And if I understood
Q Understood. And if I understood
correctly, during the first week of the week the
correctly, during the first week of the week the
working group splits up into those subgroups,
working group splits up into those subgroups,
correct?
correct?
A Yes.
A Yes.
Q So you have subgroup meetings for the
Q So you have subgroup meetings for the
first part of the week, and then you meet together as
first part of the week, and then you meet together as
a plenary group, the entire group about midway?
a plenary group, the entire group about midway?
A There's -- there are plenary sessions
A There's -- there are plenary sessions
every day. Always plenary sessions. In the early
every day. Always plenary sessions. In the early
part, they are more instructive rather than
part, they are more instructive rather than
evaluative.
evaluative.
Q When does the working group as a whole
Q When does the working group as a whole
first have an evaluative meeting to reach an
first have an evaluative meeting to reach an
assessment?

```
assessment?
```

Blair, Aaron Earl Ph.D. (In Re Roundup Prods. Liability Lit.) 3/20/2017 12:00:00 PM
subgroup expertise as to how they are classified as
science with respect to each of those pesticides,
correct?
A Would go through the documents of the
review of the papers to come to that conclusion. I
just object to your use of "analyses."
Q Okay. I'm sorry.
A Some of the times it's just putting
things in a table. That's hardly an analysis. It's
an assembly of the data.
Q Fair clarification. So let me go back
ther.
The -- the work that was being done
during that three-month period before the meeting,
the responsibility was to assemble the data and put
into tables. It was not to come up with an
evaluation during that prior period, correct?
A Right.
Q So the evaluation process doesn't begin
until the start of that one-week period, correct?
A Correct.
Q So -- and then during that one-week
period for Monograph 112, which is the monograph for
glyphosate, the working group was then doing the
analysis for five different pesticides, correct?

```
```

math, correct?

```
```

math, correct?
A Understanding it's just doing the math,
A Understanding it's just doing the math,
and I don't actually remember how many -- how much --
and I don't actually remember how many -- how much --
how many hours it took, and it varies by how easy it
how many hours it took, and it varies by how easy it
is to come to a decision.
is to come to a decision.
Q So you would have maybe a day or two of
Q So you would have maybe a day or two of
analysis and evaluation that went into the IARC
analysis and evaluation that went into the IARC
working group's classification of glyphosate,
working group's classification of glyphosate,
correct?
correct?
A Roughly correct.
A Roughly correct.
Q So --
Q So --
A But spread over the five days.
A But spread over the five days.
Q Right
Q Right
A So it -- you know, it's important that
A So it -- you know, it's important that
it's not just done this day and then it's done.
it's not just done this day and then it's done.
Q Right.
Q Right.
A It's done, you look at it, you think
A It's done, you look at it, you think
about it, you come back to it, you look at it and
about it, you come back to it, you look at it and
think about it, you come back to it.

```
think about it, you come back to it.
```

```
    A What analysis was done and evaluation of
```

 A What analysis was done and evaluation of
 five different pesticides.
five different pesticides.
Q So the analysis and evaluation that led
Q So the analysis and evaluation that led
to the classification of glyphosate was -- and I
to the classification of glyphosate was -- and I
recognize it was split over the week -- but was a
recognize it was split over the week -- but was a
total combined time of roughly a day plus doing the

```
total combined time of roughly a day plus doing the
```

```
    A I would be guessing at what day that
```

 A I would be guessing at what day that
 actually comes on.
actually comes on.
Q Sometime in .-
Q Sometime in .-
A I mean it's not the first day.
A I mean it's not the first day.
Q The evaluative process of determining
Q The evaluative process of determining
whether or not the science in particular categories
whether or not the science in particular categories
point one way or the other, first is conducted by the
point one way or the other, first is conducted by the
subgroup that has responsibility for that area,
subgroup that has responsibility for that area,
correct?
correct?
A Correct.
A Correct.
Q So, for example, when you broke into the
Q So, for example, when you broke into the
epidemiology subgroup, you would be then looking at
epidemiology subgroup, you would be then looking at
the analyses that were prepared by the individual
the analyses that were prepared by the individual
assigned for each of five different pesticides,
assigned for each of five different pesticides,
correct?
correct?
A In some serial order.
A In some serial order.
A In some serial order.
Q Yes, obviously.
Q Yes, obviously.
Q Yes, obviously.
You would then listen to the
You would then listen to the
You would then listen to the
presentations of the individual working group member
presentations of the individual working group member
presentations of the individual working group member
who had been assigned to prepare the analysis for
who had been assigned to prepare the analysis for
who had been assigned to prepare the analysis for
that pesticide, correct?
that pesticide, correct?
that pesticide, correct?
A Prepare the document for that pesticide.
A Prepare the document for that pesticide.
A Prepare the document for that pesticide.
Q And over the next maybe two or three
Q And over the next maybe two or three
Q And over the next maybe two or three
days, the subgroup would go through each of those
days, the subgroup would go through each of those
days, the subgroup would go through each of those
analyses and reach their conclusion based upon the
analyses and reach their conclusion based upon the
analyses and reach their conclusion based upon the
a

```
a
```

a

```
Q Right.
A That's a different process than just you
got this day.
Q Understood. And that would be the same
process for the other subgroups. So, for example,
IARC's - the IARC working group analysis of the
science with respect to animal toxicology of
glyphosate would have been conducted with
different -- over different days for a total amount
of time, but maybe a day plus for glyphosate,
correct?
A In the same procedure of looking at it,
evaluating, reconsidering, coming back a day later
and so forth.
Q The analysis of glyphosate science with
respect to mechanism of toxicity and the like, that
would have been a combined total time of
approximately a day or a little bit more than a day
for the IARC working group, correct?
a a through, just doing the math. I don't actualiy
a week's worth of time, some portion, one-fifth or a
kittle bit more of the time -

116

A That's a different process than just you got this day

Q Understood. And that would be the same process for the other subgroups. So, for example, IARC's - the IARC working group analysis of the science with respect to animal toxicology of glyphosate would have been conducted with different -- over different days for a total amount of time, but maybe a day plus for glyphosate,
correct?

A In the same procedure of looking at it, evaluating, reconsidering, coming back a day later and so forth.

Q The analysis of glyphosate science with respect to mechanism of toxicity and the like, that would have been a combined total time of approximately a day or a little bit more than a day for the IARC working group, correct?

A Again, in the same procedure that people go through, just doing the math. I don't actually know how much time they spent.

Q Well, it's obviously something less than a week's worth of time, some portion, one-fifth or a littie bit more of the time
```

 A Yes
 Q -- they spent on glyphosate.
 So that's a lot of work in a short period
 of time.
A Except the documents are already there.
Q So -- but for the analysis, it's a lot of
work in a short period of time. The analysis of
the --
A No. Again, you keep saying "analysis."
Q Okay.
A It's not an analysis. It's a document
with tables that have been prepared that the people
look at.
Q I understand. My -- my mistake. Let me
clarify
The evaluation analysis only takes place
during that one-week period, correct?
A Yes.
Q And for the working group for that
one-week period where you actually do the evaluation
and the analysis of five different pesticides with
four different categories of science, that's a lot of
work in a week.
A It is a lot of work.
Q For glyphosate -- well, strike that.

```

118
When you have the first plenary session.
which is evaluative -- I think that's the term you used .- well. strike that

At the end of that process where the
subgroup is doing its evaluations of the iiterature in its -- in its discipline, does it then provide a presentation to the pienary of what the subgroup has determined is its conclusion with respect to that the strength of that science for that pesticide?

A Yes.
Q So the epidemiology subgroup would give
its presentation to the full plenary session on the epidemiologic evidence for each of the different pesticides, correct?

A Yes. Not all at one time. Again, as they come along

Q Right. Understood.
For glyphosate, the full working group
ultimately determined that the epidemiology on
glyphosate and cancer was limited, right?
A For the full working group?
Q Yes.
A Well, for the full working group, it's Iisted as probable.

Q I'm sorry. I'm limiting it just to the

117
```

epidemiology, not for the -- not for the full
analysis.
Yes.
Q But the full working group does --
A. Does look at each one of them, yes.
THE REPORTER: You're talking at the same
time. It's?
THE WITNESS: It was limited.
BY MR. LASKER:
Q So for the full --
A That was a recommendation of the
subgroup, and the working plenary group agreed.
Q So just so I'm clear, the IARC working
group, both the subgroup and the full working group,
determined that the evidence of glyphosate with
respect to non-Hodgkin lymphoma was limited, correct?
A For epidemiology, yes.
Q The term "limited" as used by IARC, and
as you understood it when you were making that
finding, is that epidemiology -- epidemiology studies
have found an association between glyphosate and
cancer, but that chance, bias and confounding could
not be excluded as explanations for the finding,
correct?

```
    A Correct

Q Now, you had previously in your previous answer talked about the separate evaluation that iARC came to as far as overall the 2 A classification,
correct? So epidemiology is a part of that, right?
    A Yes.
    Q But the 2A classification for glyphosate
was based, at least in part, on a separate
determination regarding the animal studies, correct?
    A Yes.
    Q The 2A classification for glyphosate is
based upon the determination that the animal studies
provided strong evidence of carcinogenicity in
animals for glyphosate, correct?
    A Yes, that's as I recall it. Because now
you're going to the subgroup .-
    Q Right.
    A -- that I didn't sit in on, you know, and
I just have to remember what they said. Yes, I think
that's right.
    Q When the animal subgroup did its initial
assessment of glyphosate and presented their
conclusions to the plenary session, it had not
classified the animal studies of glyphosate as
providing strong evidence of cancer in animals, had
it?

\title{
Blair, Aaron Earl Ph.D. (In Re Roundup Prods. Liability Lit.) 3/20/2017 12:00:00 PM
}
```

 A I don't remember
 Q Do you recall whether or not in fact the
 animal toxicology subgroup had determined that the
animal studies provided limited to inadequate
evidence that glyphosate could cause cancer in
animals?
A I -- I don't recall.
Q Well, Dr. Blair, let me -- let me show
you another document that's been provided to us, and
I will represent in -- from Dr. Blair -- Matthew
Blair, and Dr. Blair was another member of the
working group 112, correct?
A I think so.
Q You testified about him earlier. He did
the work for Mississippi State, correct?
A No.
Q I think you said he's an expert in
animal --
A You said Matthew Blair?
Q I'm sorry.
A Ross.
Q Matthew Ross. I understand. My
apologies
A Yes.
Q This is a document you received from

```

\section*{122}

Dr. Ross, and Dr. Ross was a member of working group 112, correct?

A Yes.
Q You had mentioned that Dr. -- Dr. Ross was an expert in cancer .- animal cancer bioassays, right?
A. Yes.

MR. LASKER: And this is 13?
(Blair Exhibit No. 13 was marked for identification.)
BY MR. LASKER:
Q And I would like to ask you --
MR. MILLER: May I have a copy, please,
Counsel?
MR. LASKER: Yes. If I can.
BY MR. LASKER:
Q If I could ask you -- and this is --
these are --
MR. MILLER: I want to object first.
Lack of foundation.
MR. LASKER: Understood.
BY MR. LASKER:
Q And if I could ask you just to take some time to look through, and we will take time and -- to
read -- for you to read through this, these notes.

124
```

correct?
A If that time frame fits midway through,
I --
Q And if I couid direct you to the last
page of this document and -- actually, let me take
you first to the second page of the document,
because there's -- there's these different groups
identified, Group 1, Group 2, and then Group 3
So -- and Group 4.
Am I correct in my understanding that
from that Group l would be the exposure assessment,
Group 2 would be epidemiology, Group 3 would be
animal studies -- I'm sorry -- and then Group 4 then
would be mechanistic data, correct?
A Correct.
Q And then the final page of this document,
there is the presentation of each of these subgroups
as of March 6th, 2015, with respect to glyphosate,
correct? Right here (indicating), glyphosate?
A The last page?
Q Is it the last page? I believe it's the
last page of the document. The very bottom of the
last page, do you see Glyphosate Group 1, Glyphosate
Group 2, Glyphosate Group 3, and Group 4?
Here is the last page of mine.

```

\title{
Blair, Aaron Earl Ph.D. (In Re Roundup Prods. Liability Lit.) 3/20/2017 12:00:00 PM
}
    Q Yeah, right here (indicating).
Glyphosate, glyphosate, right there (indicating)
    A Okay.
        MR. MILLER: Again, I object to the
entire line of questions for lack of foundation for
the document.
BY MR. LASKER:
    Q So with respect to glyphosate as
reflected in these notes, there is a presentation by
the -- there is a presentations by the exposure
group, by the epidemiology group, by the animal
cancer -- animal bioassay group, and the mechanistic
group, Groups 1 through 4 , correct?
    A Yes
    Q And Group 2 is your group, the
epidemiology group, correct?
    A Yes.
    Q And the notes here state: "Glyphosate,
negative non-Hodgkin lymphoma. Case-control
glyphosate," arrow, "non-Hodgkin lymphoma. AHS,
negative data."
            Is this consistent with your recollection
of the epidemiology working group's presentation of
the data on glyphosate and non-Hodgkin lymphoma?
    A Yeah, roughly so. The case -- there were
case-control studies were oositive and AHS was
negative, yeah.
    Q For Group 3, for the subgroup that was
responsible for looking at the animal data for
glyphosate and cancer, the determination was that
that evidence was limited to inadequate, correct?
    A I - that is what it says. I actually
don't remember
    Q And so you .- sitting here today, can you
exclude the possibility that the animal toxicology
subgroup of IARC determined that the animal data
associating glyphosate with cancer was limited to
inadequate?
    A No.
    Q Do you recall what happened from the
time of this initial plenary session in March -- on
March 6, 2015, through to the end of the working
group that led to the change of the evaluation of the
animal data from limited or inadequate to strong?
    MR. MILLER: Object to the form of the
question.
    THE WITNESS: Well, only in a sense that
from sort of preliminary discussion where things are,
then the subgroups go back and -- and look and
evaluate and discuss, and that's what happened. I
was not in the subgroup, so I have no idea what the discussion was.
BY MR. LASKER

Q So sometime after this initial - this plenary session on March 6, 2015, something happened over the next few days that led the subgroup to change its evaluation of the animal data with respect to glyphosate. Is that fair to say?

A You know, I'm not even sure I can say that, because what this says is "limited to inadequate." So if note-taking is messy, it could be limited or inadequate. Now it's a choice. So they haven't chosen. I have no idea. I really don't remember what went on at that time, other than this is saying they're exactly unsure where to put it.
And I was not privy to discussions of that group at
that time. So..
    Q You are aware that the ultimate
determination that appears in the final monograph is
that the animal data was strong. Correct?
    A Yeah
    Q And in Eact, if the animal -- if the
ultimate determination that the animal data was
either limited or inadequate, the full working group
would not have reached the determination that
```

alyohosate was a probable carcinogen, correct?
MR. MILIER: Object to the form of the
guestion
THE WITNESS: Probably not.
BY MR. LASKER
Q In fact, with that analysis and that
evaluation of the animal data and the conclusion of
Your subgroup that the epidemiology data was limtited,
the highest classification that IARC working group
could have come to is that glyphosate is a
possible --
A That's correct
Q -- carcinogen, right?
And in fact, with inadequate animal data,
the IARC working group may have concluded that the
size of the whole was inadequate to reach
determination, and it would be a Group 3 substance,
correct?
A They could have concluded that, yes.
Q And you discussed earlier that pursuant
to the preamble for IARC, IARC only considers
scientific literature that is peer-reviewed or
mace-furizuM-ava,abie reguratory docmmerts; Ss tab
correct?
A Not just regulatory. It's peer reviewed

```

130
A De Roos was the pooling of the American, the U.S. studies, and they were ther pooled with the Canadian studies.

Q So let me mark as Exhibit 13--14. I'm as good as Mr. Miller at this.
            MR. MILLER: It's a high compliment.
        MR. LASKER: I have to count the double
digits. You were on the single digits. So I don't
know. It's a little harder when you have to take off
your shoe.
        (Blair Exhibit No. 14 was marked for
        identification.)
EY MR. LASKER:
    Q And this is a series of e-mails that
we -- that you provided to us from your files.
    And if .- am I correct that these are
e-mails discussing some of the analyses that were
being conducted for the North American Pooled Project
in October of 2014?
    A It looks like it, yeah.
    Q So this would have been prior to the IARC
working group meeting, which obviously was in March
of 2015 .
    A Right.
    Q Correct. In these e-mails, Dr. Pahwa --
```

who is Dr. Pahwa?
A He's a scientist in Canada.
Q Is that a he or a she?
A A she.
Q And she is an epidemiologist like
Yourself?
A Yes.
Q And Dr. Pahwa and you are discussing the
epidemial -- epidemiologic analysis that was being
discussed as part of the North American Pooled
Project in these e-mails, correct?
A Correct.
Q And in her October 23rd e-mail to you and
others, I guess these -- am I correct these other
individuals are other epidemiologists who are part of
the North American Pooled Project study?
A Correct.
Q In this October 23rd e-mail, Dr. Pahwa
provides a summary of a meeting you guys had on
October 20 in which you discussed in part the
possibility of getting some -. I will focus this
because it's getting out of focus.
Dr. Pahwa is recounting a discussion that
you had on October 20 about the possibility of
getting some NAPP data on glyphosate published in

```
time for consideration by the Monograph 112 working
group, correct?
    A Yes.
    Q And during this meeting, you explained
your role on the Monograph 112 working group and the
deadline for getting data published for consideration
by the working group in its evaluation of glyphosate,
correct?
    A Well, is it in here somewhere?
    Q Yes.
    A you're saying --
    Q I'm sorry. It's the final bullet on the
first page, and it's highlighted on the document, but
it starts: "Aaron will be" -- the final bullet.
    A Okay. Closing date. All right. Yes.
    Q "Aaron will be on the IARC" --
    A Yeah.
    Q -- "Monograph 112 working group on
March 3rd to 10 to help evaluate malathion,
parathion" --
    A Yeah, okay.
    Q -- "diazinon, glyphosate," et cetera.
"The closing date for data is February 3rd. Manisha
has agreed to lead an analysis of glyphosate and NHL,
5 MM and HL risks. She will submit her proposal to the
1
```

or publicly available is the key thing.

```
or publicly available is the key thing.
    Q Understood. Prior to Monograph 112 --
    Q Understood. Prior to Monograph 112 --
the Monograph }112\mathrm{ working group meeting, you were
the Monograph }112\mathrm{ working group meeting, you were
aware of unpublished epidemiological data regarding
aware of unpublished epidemiological data regarding
glyphosate and hematopoietic cancers, correct?
glyphosate and hematopoietic cancers, correct?
    A Well, I'm hesitating because it means
    A Well, I'm hesitating because it means
were we working on the pooled analysis at that time,
were we working on the pooled analysis at that time,
which I think was probably true.
which I think was probably true.
    Q Okay. And, in fact, we have some
    Q Okay. And, in fact, we have some
documents on that that I will show you about that.
documents on that that I will show you about that.
            So we -- you had some testimony earlier
            So we -- you had some testimony earlier
in question -- response to questions from Mr. Miller
in question -- response to questions from Mr. Miller
about the North American Pooled Project, correct?
about the North American Pooled Project, correct?
    A Yes.
    A Yes.
    Q That is a study that is pooling data that
    Q That is a study that is pooling data that
has been previously used for the Canadian McDuffie .-
has been previously used for the Canadian McDuffie .-
McDuffie study and the U.S. studies in that 2003
McDuffie study and the U.S. studies in that 2003
case-control study in the United States, correct?
case-control study in the United States, correct?
    A It's three different case-control studies
    A It's three different case-control studies
in the United States.
in the United States.
    Q Right. Yeah. So all of those studies
    Q Right. Yeah. So all of those studies
were combined for the North American Pooled Project
were combined for the North American Pooled Project
in this pooled analysis, correct?
in this pooled analysis, correct?
    A Yes.
    A Yes.
    Q And that was De Roos 2003 was the
```

 Q And that was De Roos 2003 was the
    ```
```

NAPP executive committee by October 24th. Once
approved, a progress check will be done in a month to
determine if it's feasible to meet the February 3rd
deadline. NHL is the priority cancer site."
You see that?
A Yeah.
Q And in your e-mail back to Manisha, you
state: "Let me know if I can help in trying to meet
the IARC manuscript deadline." Correct?
A Yeah.
Q So you were -- not only were you the
chair of the working group, but in the months leading
up to the working group, you were involved in
investigating some data that might inform the
decision of the working group but only if it was
published, correct?
A Yes.
Q Now, let me mark the next document of
mine
(Blair Exhibit No. }15\mathrm{ as marked for
identification.)
BY MR. LASKER:
Q And can you -- am I correct these are
some further e-mails between you and other
individuals, investigators for the North American

```

Pooled Proiect, presenting some analysis of the data with respect to glyphosate and cancer risks, correct?

A Well. I can clearly read the names, so it's people in the North American Pooled Project Yes, okay. Finally, I see glyphosate, so it appears to be so, yes.

Q And there are a series of communications reflected in this document between you and other NAPP investigators about, say, for certain analyses of glyphosate that could be published in time for the IARC working group deliberations, correct?

A I take your word for it. I --
Q Weil, there is data on this -- there's data on this document with respect --

A I'm not disagreeing. I just mean you handed this to me, and these are e-mails of years ago, and you're saying this is correct. I'm just saying if it's in the document, I agree.

Q Okay. Well, just to be clear, this is an e-mail that was sent to you -- and these e-mails were sent to you in october of 2014, roughly four, four-and-a-half months before the IARC working group meeting, correct?

A Correct.
Q And these e-mails contain analyses of the
```

North American Pooled Project data with respect to
glyphosate, and in this case multiple myeloma,
correct?
A Well, at least -- yes
Q And if you could, because this is the way
e-mails are, they always work this way when you print
them out, they don't go in chronological order so
it's hard to read them.
But if I could ask you to turn to the
very last page, which is the first e-mail in this
chain on October 27, 2014, from Dr. Pahwa, it starts:
"Hi, John, Shelly and Laura." Do you see that?
A Yeah
Q Now, in this -- on October 27 -- it's not
focusing, so let me just read it, what the e-mail
states.
Dr. Pahwa is discussing -- states: "I
have prepared a research proposal for assessing
glyphosate exposure and NHL risk in the NAPP. While
we had discussed looking at glyphosate exposure and
the risks of non-Hodgkin lymphoma, multiple myeloma
and Hodgkin lymphoma in the NAPP, I thought to start
off with non-Hodgkin lymphoma since it has been
identified as a priority cancer type in general and
has the largest sample size compared to the other

```
```

cancer types."
Correct?
A You say this is the last page of this
document you handed me?
Q Yes, the last page - Dr. Pahwa is
sending around a proposal for assessing glyphosate
exposure in non-Hodgkin's lymphoma risk, correct?
A All right, here it is. You -. I just
couldn't see this "I have prepared," but it's in a
couple of words. Okay.
Q Right.
A All right.
Q So Dr. Pahwa, on October 27th, 2014, she
sends around a proposal for assessing glyphosate
exposure and non-Hodgkin lymphoma in the NAPP data,
correct?
A Yes
Q Now, in response to her e-mail, and again
we have to go backwards in time, but Dr. Harris .- so
it's on the bottom of the second to the last page,
the e-mail that responds to Dr. Pahwa. In response,
Dr. Harris, another NAPP investigator, suggests
extending the analysis to include other cancers,
correct?
A Okay. Yes.

```

Blair, Aaron Earl Ph.D. (In Re Roundup Prods. Liability Lit.) 3/20/2017 12:00:00 PM
```

Q And then in response to Dr. Harris's e-mail, another NAPP investigator, Dr. Freeman, notes that there may already have been an investigation of the NAPP data to determine whether there was an association between glyphosate and multiple myeloma, correct?
A So tell me your interpretation of this sentence again.
Q That Dr. Beane-Freeman in the e-mail was asking whether or not -- hey, haven't we already looked at the NAPP data on glyphosate to determine if there is an association with multiple myeloma, correct? That's her question.
A Yes. Yes.
Q And then Dr. Pahwa comes back and says, You're right, we've already done this, but I'm not sure what we found. Correct?
A Yes.
Q And then Dr. Freeman in her e-mail, which is on the middle of this page, on October 28th, 2014, at 10:54, suggests that the group of NAPP investors, including yourself, have, quote: A strategic decision about whether to include multiple myeloma in the paper that was being considered for publication in time for the IARC Monograph review of glyphosate,

```
```

correct?
A Yes
Q We're not going to read that, but
Dr. Freeman raises two factors for consideration:
How far along the analysis is of glyphosate and
matiple myeloma from tre Nffe data; ard whetrer
there was, quote, any hint of an association, end
quote. Correct?
A Yes.
Q And she states that the answers to those
questions and probably others might affect how we
think about the question, correct?
A Yes.
Q So the NAPP investigators, including
yourself, wanted to find out first whether there was,
quote, any hint of an association between glyphosate
and multiple myeloma before deciding whether to make
that data available for use in the IARC review,
correct?
A Whether to complete the analysis.
Q In response to Dr. Freeman's e-mail,
Dr. Harris took a look at the analysis that had been
conducted from the North American Pooled Project data
regarding glyphosate and multiple myeloma, correct?
A Where .- where is this? So I see .-

```

Q The first -- the first page now, the final e-mail, it's from Dr. Harris.

A Okay.
Q And she is going through --
A Okay.
Q -- and saying, Yes, we've done this
analysis, and she presents the data from the North
American Pooled Project on glyphosate and multiple
    Q Correct?
    A Yes.
    Q Dr. Harris reports back to the group that
the North American Pooled Project data did not show
an elevated risk for multiple myeloma associated with
glyphosate, correct?
    A Yes.
    Q The adjusted odds ratio for multiple
myeloma for ever and never use of glyphosate was 1.23
with confidence intervals of 0.86 to 1.76 , correct?
    A Yes.
    Q That's what epidemiologists refer to as a
null finding, correct?
    A No, that's not what they refer to as a
null finding.

Q Correct?
A Yes.
Q Dr. Harris reports back to the group that the North American Pooled Project data did not show an elevated risk for multiple myeloma associated with glyphosate, correct?

A Yes.
Q The adjusted odds ratio for multiple

A Yes.
Q That's what epidemiologists refer to as a null finding, correct?

A No, that's not what they refer to as a null finding.

Q Not the
A That's what they refer to as an excess that isn't statistically significant.

Q A nonstatistically significant finding, correct?

A Nonstatistically significant excess.
Q Okay. So there was no statistically significant association between glyphosate exposure and multiple myeloma in the NAPP data, correct?

A Correct.
Q Dr. Harris also reports results with proxy respondents excluded, correct? The last three columns in her table?

A Yes.
Q A proxy is a next of \(k i n\) or a spouse, not the actual individual who had the potential exposure, correct?

A Correct.
\(Q\) And generally speaking, self-reported
data of the individual who had the exposure is considered more reliable than proxy reported exposure data, correct?

A Correct
Q When proxy respondents were excluded, the NAP data - NAPP data showed that the odds ratio for
```

ever/never use of glyphosate and multiple myeloma was
0.97 with confidence intervals of 0.63 to 1.48,
correct?
A Right
Q So using the most reliable exposure data,
there was no suggestion whatsoever of any increased
risk of multiple myeloma with glyphosate exposure,
correct?
A Correct.
Q So that was a null finding, correct?
A Yes.
Q Now, Dr. Harris notes that they could
have a draft of this paper, including this glyphosate
analysis, available for review in the next few weeks
and that a paper could be submitted for publication
early in the new year or before, correct?
And that's the very beginning of her
e-mail, the second paragraph, the last sentence: "I
expect you will have a draft to review in the next
few weeks, and the paper could be submitted" --
A Well, if you're reading it, I don't find
it, but okay, fine.
Q Well, no, I want you to be able to see
it. In the very top of the e-mail, the first line
is: "Hi, everyone. Thanks all for weighing in on

```

142
```

this." Correct?
A. Yeah.
Q And then the second paragraph, the last
sentence, starting at the end of line 2: "1 expect
we will have a draft to review in the next few weeks
and a paper could be submitted early in the new year
or before." Correct?
A Okay. Yes.
Q And you were copied on obviously this
e-mail that sets forth the NAPP data for glyphosate
and multiple myeloma, correct?
A Correct
Q But despite the fact that you had this
data and it was in a form that could be submitted for
review and submitted for publication in time for the
IARC Monograph, this data was not in fact published
in time for the IARC Monograph 112 review, was it?
A I think not.
Q In fact, the data was not published until
June of 2016, some twenty months later and well after
the IARC working group had conducted its review of
glyphosate, correct?
A And I don't think it was submitted to --
it can be submitted to IARC if it's accepted for
publication, but I don't think this was. So I think

```
```

your answer -- your comments are correct.
Q Now, the June 2000
A And I just want to make the point that it
doesn't have to be published, it has to be accepted,
which means it's available from the journal.
Q Good clarification. So if you had -- you
and the other NAPP investigators had submitted this
data, it could have been considered by the IARC
working group even if it hadn't been published yet?
A If it had been accepted by the journal
and up on the journal's website, which happens to -.
actually, one of the papers I got is the website
version. It is the same thing as the published one.
Q But you guys didn't -- you guys didn't do
that. You didn't get this data in a position that
the IARC working group could consider it, correct?
A correct.
Q And -- but you were obviously aware of
this data during the IARC working group
deliberations, right?
A Yes.
Q Did you mention the NAPP findings of no
association between glyphosate and multiple myeloma
to any of your fellow working group members during
the Monograph 112 deliberations?

```
```

A T don't think so. But I dontt recall for
sure. It wasn't published
Q Just to be clear, it wasn't published
because you guys decided not to publish it, correct?
A Because we didn't go through the process
to get everything ready to send it off for
publication. It's still not a sure thing, you
understand. You make it sound like you decide, then
it's done for sure. No, that's not the case. You
work on it, you look at it, you revise, you send it
to the journal to get reviews back from authors of --
the reviewers at the journal and so forth, and all
that goes into the decision of whether you can make
it, and we didn't do that. That is correct.
Q Dr. Harris in October of 2014 is
suggesting, Hey, let's get this -- let's submit this
to a journal and get it published so the IARC working
group can consider it, but you didn't do that,
correct?
A Did not do that.
Q Now, Dr. Pahwa had also discussed in
these e-mails that she was looking at the North
Americar Pooled Project data with respect to
glyphosate and non-Hodgkin's lymphoma, correct?
A Right.

```

\title{
Blair, Aaron Earl Ph.D. (In Re Roundup Prods. Liability Lit.) 3/20/2017 12:00:00 PM
}
```

Q And the NAPF investigators did not
publish any findings with respect to glyphosate and
non-Hodgkin's lymphoma prior to the monograph one --
IARC 112 meeting in March 2015, correct?
A I think that's correct, yeah.
Q Now, you have presented - - the NAPP
investigators have presented data about glyphosate
and non-Hodgkin's lymphoma at various scientific
meetings, correct?
A At least two, I think
Q Okay. Let me ask you about the first of
those. What I believe is the first, and correct me
if I'm wrong.
\Blair Exhibit No. }16\mathrm{ was marked for
identification.
MR. MILLER: 16?
MR. LASKER: 16
BY MR. LASKER
Q And, Dr. Blair, this is a presentation
that the North American Fooled project investigators
including yourself, made with respect to what the
NAPP data showed for glyphosate and non-Hodgkin
lymphoma, correct?
A Yeah. Yes.
Q And this was presented on June 2015,

```
which was after the IARC -- a few months after the
IARC Monograph 112 meeting, correct?
    A Right.
    Q Now, if I can direct you to the first
data table in this log deck, and it's a few pages in,
and specifically -- so it would be this table right
here (indicating). Okay. We will put it up on the
screen.
            MR. LASKER: Help me focus this. zoom
out, actually.
            (Counsel conferring.)
BY MR. LASKER:
    Q So the -- this table presents data on
what the North American Pooled Froject had found with
respect to glyphosate use and non-Hodgkin lymphoma
risks, correct?
    A Yes.
    Q And the first .- the overall odds ratio
for ever/never use of glyphosate and non-Hodgkin
lymphoma in the North American Pooled Project is 1.22
with confidence intervals of 0.91 to 1.63 , correct?
    A Correct.
    \(Q\) So this is basicaliy the same finding
that the NAPF had made with respect to multiple
myelome back in October of 2014, almost exact same
```

odds ratios, not statistically significant, correct?
A The odds ratio that are similar, right?
Yes
Is that your point?
Yes.
Yes.
And not statistically significant,
correct?
A Yes
Q And just like with the multiple myeloma
analysis we looked at before, we also have an
analysis that breaks out proxies and looks only at
the most reliable exposure data, and I think that is
the table that looks like this (indicating). I
apologize, there's not -- there are no page numbers
here.
A Okay.
Q But in this analysis, proxy by
self-respondents, just as with multiple myeloma
finding, when you looked at the NAPP data and you
looked at the most -- the more reliable
self-respondent only data, you have an odds ratio for
non-Hodgkin lymphoma and glyphosate in the North
American Pooled Project of 1.04, with a confidence
interval of 0.75 to 1.45, correct?

```

A Correct
Q So, again, this is a null finding from the North American Pooled Project with respect to whether or not glyphosate is associated with non-Hodgkin lymphoma, correct?

A Yes.
Q Did you mention these North American Pooled Project findings of no association between glyphosate and non-Hodgkin lymphoma to any of your fellow working group members during the Monograph 112 deliberations?

A I don't think so. And I want to say, actually \(I\) don't know whether these were available or not. So you .- I mean whether I even knew about them, because the analysis of multiple myeloma was going on, but I don't know whether this one was done or not. If it was, I'm sure you're going to show me, but I don't know whether this one was done or not

Q Well, you certainly knew that you had the ability to look at that. You were --

A Well, that's a different thing than knowing what it is. We can look at a lot of things.

Q So in October of 2014, though, you and Dr. Pahwa and the others were taiking about, Hey, let's look at the data from our North American pooled
```

Project with respect to glyphosate and non-Hodgkin
lymphoma, correct?
A Yes.
Q Is it your testimony that you in fact,
though, then didn't look at that data?
A I -- there were a bunch of things going
on, and they were already analyzing, and I just don't
remember the sequence that got to it. You make it
sound like as if you can decide to look at it, and
just it's over and done. These things take months
and months and months. And so if you haven't looked
at anything at all, the odds aren't good that you can
complete it beforehand, before some date. And I
think that was part of the thinking about non-Hodgkin
lymphoma, that we couldn't get it ready in time.
Q You haven't published your findings with
respect to glyphosate and non-Hodgkin lymphoma to
this day, have you?
A No.
Q It's now three years later, correct?
A Scientific research takes time
Q The -- and because of the fact that you
had not published these results, including this
finding of -- a null finding in the North American
Pooled Project for glyphosate and non-Hodgkin

```

\section*{150}
lvmphoma that informarion was not available to IARC
Correct?
    A \(\quad \mathrm{No}\).
    Q It was not available, correct?
    A No.
    Q I'm going to restate that
            It is correct that IARC did not have this
information, right? Yes, IARC didn't have it?
    A IARC did not have it.
    Q IARC didn't have it.
    A No.
    Q And the various regulatory agencies,
including the EPA and regulatory agencies around the
world, also have not had this information that the -.
that you've been aware of with respect to non-Hodgkin
lymphoma?
    A Yeah, except -- so, okay, I see you're
pushing this hard now. So what if we look at
frequency of days per year of use?
    Q Okay.
    A So now when you look at the people who
used it more, they do have an excess of non-Hodgkin's
lymphoma among the self-respondents
    Q That -- now, that's interesting you
picked that one out. Why did you not look at
```

duration or lifetime days?
A There's a lot --
Q There's a lot of analyses. You picked
that one.
A There are a lot of them. You look at a
lot of different things and you have to try to
evaluate the whole thing. I picked out one and you
picked out one.
Q Okay. But you didn't present any of the
data so that the IARC working group could look .-
A Because it wasn't -- I don't think it was
available at the IARC working group time. If it --
Q But it was available to you.
A I'm not sure it was available to me. If
you have information to show it's available, well,
tell me, but I don't it was available. I remember
this coming after the IARC working group stuff.
Q We just looked at October 28th, 2014
e-mails where you or the NAPP investigators were
discussing --
A What to do. They didn't -. I don't
remember it saying we had done it and this
information was available. That's the issue.
Q Now, so that I understand, the NAPP
analysis was based upon data that was already

```
152
available to the TARC working groun because jt was
pooling ..
    A Yes.
    Q -. the McDuffie case report and the
De Roos 2003 report
    A Correct.
    Q Okay. Now, during the IARC Monograph --
during the IARC Monograph 112 deliberations, you were
also .- strike that
    During the IARC Monograph 112
deliberations, you were also aware of unpublished
data on glyphosate and non-Hodgkin lymphoma from the
Agricultural Health Study, correct?
    A You know, I - I don't remember
    Q Okay. Well, we will go through this, but
let me first refresh and let the jury understand
because during Mr. Miller's questioning you didn't
have the opportunity to talk about the findings from
the Agricultural Health Study that has been published
on glyphosate and non-Hodgkin lymphoma.
            So let me provide for you, and we will
mark this as Defense Exhibit 16-- 17. 17. Sorry
    (Blair Exhibit No. 17 was marked for
    identification.)
    MR. MILLER: Thank you. Exhibit 17.
\[
2
\]
    156
.

```

MR. LASKER: Exhibit 17.
MR. MILLER: We have a rule in the law Doctor, it's called hungry break.
MR. LASKER: Oh, you want to take a
break?
MR. MILLER: Whatever. It's not up to
me. It's up to you, Doctor. You're the witness. So
you can keep going or you can take a break. It's up to you
THE WITNESS: It would be nice to take a
break. It's sort of a physiological position. So is that --
MR. LASKER: Okay. That is -- we can
take a break whenever you want. I just don't know if you mean now or later. Whenever you want to, just let me know.

```
break?
```

break?
MR. LASKER: Oh, you want to take a

```
            MR. LASKER: Oh, you want to take a
```

```
me. It's up to you, Doctor. You're the witness. So
```

me. It's up to you, Doctor. You're the witness. So
to you.
to you.
that --
that --
MR. LASKER: Okay. That is .- we can
MR. LASKER: Okay. That is .- we can
you mean now or later. Whenever you want to, just
you mean now or later. Whenever you want to, just
let me know.
let me know.

```
THE WITNESS: I have no clue.
MR. LASKER: You have no clue whether you want to take a break?
THE WITNESS: No. I mean --
MR. LASKER: Well, we should have -- we should definitely have a lunch break. If you want to take it now, it's up to you.
THE WITNESS: Well, you're on a topic
now. What I'm trying to find out is, are you going
    THE WITNESS: I have no clue.
    THE WITNESS: I have no clue.
    THE WITNESS: I have no clue.
    ke a break?
    ke a break?
    ke a break?
    THE WITNESS: No. I mean -- 
    THE WITNESS: No. I mean -- 
    THE WITNESS: No. I mean -- 
take it now, it's up to you.
take it now, it's up to you.
take it now, it's up to you.
            THE WITNESS: Well, you're on a topic
            THE WITNESS: Well, you're on a topic
            THE WITNESS: Well, you're on a topic
now. What I'm trying to find out is, are you going
```

now. What I'm trying to find out is, are you going

```
now. What I'm trying to find out is, are you going
```

```
    MR. LASKER: Exhibit }17
```

 MR. LASKER: Exhibit }17
 MR. LASKER: You have no clue whether you
MR. LASKER: You have no clue whether you
MR. LASKER: You have no clue whether you
want to take a break?
want to take a break?
want to take a break?
THE WITNESS: No. I mean -

```
THE WITNESS: No. I mean -
```

THE WITNESS: No. I mean -

```

Blair, Aaron Earl Ph.D. (In Re Roundup Prods. Liability Lit.) 3/20/2017 12:00:00 PM
```

gathered between 1993 and 1997, and incidence of
cancers identified as of December 31st, 2001,
correct?
A Well, the '93 to '97 is correct. I guess
the other is.
Q If you read down a little bit further
along that same section, you will see --
A Yes.
Q -- cancers.
A Okay. Yes. Okay.
Q And if you go to page 51, Table 2, based
on this data, De Roos 2005 identified 92 cases of
non-Hodgkin lymphoma in farmers and the cohorts who
had been -- who had reported exposure to glyphosate,
correct?
A Yes.
Q And De Roos calculated and adjusted risk
ratio for ever/never use of glyphosate and
non-Hodgkin lymphoma of 1.1 with a confidence
interval of 0.7 to 1.9, correct?
A Correct.
Q Which is showing no statistically
significant association, correct?
A Yes
Q And De Roos 2005 also presents data on

```

```

A Yes.

```
\(Q \quad\) That data was presented on page 52 ,
Table 3 ?
\(A\) Yes.
    \(Q\) And provides an analysis of 61 cases of
non-Hodgkin lymphoma in farmers who had been exposed
to glyphosate, correct? Towards the bottom of that
chart, the non-Hodgkin lymphoma.
A Yes. Yes. Yes.
\(Q\) And for both - 1
    \(Q\) And for both -- let me do this so it's
not in the - actually, it's better to put it there.
A Which I found it in the table. Now you
not in the - actually, it's better to put it there
A Which I found it in the table. Now you
don't need to.
    Q For both cumulative exposure days --
well, first of all, let me see if I understand this.
            What is cumulative exposure days in the
AHS evaluation?
    A The number of days per year they say they
applied a chemical multiplied by the number of years
they said they used it.
    \(Q\) And what is the intensity of exposure?
    5 A It's those two factors weighted also by
    non-Hodgkin lymphoma and glyphosate in association
with the duration and intensity of exposure to
glyphosate, correct?
```

```
```

to go on this for a while and then switch to

```
```

```
to go on this for a while and then switch to
```

```
```

to go on this for a while and then switch to
something else? I would prefer to get this done.
something else? I would prefer to get this done.
something else? I would prefer to get this done.
MR. LASKER: Okay.
MR. LASKER: Okay.
MR. LASKER: Okay.
THE WITNESS: Eut I don't know that.
THE WITNESS: Eut I don't know that.
THE WITNESS: Eut I don't know that.
MR. LASKER: Okay. well, why --
MR. LASKER: Okay. well, why --
MR. LASKER: Okay. well, why --
THE WITNESS: Only you know that.
THE WITNESS: Only you know that.
THE WITNESS: Only you know that.
MR. LASKER: Okay. Well, why don't we
MR. LASKER: Okay. Well, why don't we
MR. LASKER: Okay. Well, why don't we
get this done, and then we will switch to something
get this done, and then we will switch to something
get this done, and then we will switch to something
else.
else.
else.
THE WITNESS: Okay.
BY MR. LASKER:
BY MR. LASKER:
BY MR. LASKER:
Q So, with respect to the De Roos 2005
Q So, with respect to the De Roos 2005
Q So, with respect to the De Roos 2005
paper, this is a paper that you were . . a study that
paper, this is a paper that you were . . a study that
paper, this is a paper that you were . . a study that
y you were co-author on, correct?
y you were co-author on, correct?
y you were co-author on, correct?
-6 A Yes.
-6 A Yes.
-6 A Yes.
Q And this is the cohort study we have been
Q And this is the cohort study we have been
Q And this is the cohort study we have been
discussing before and the analysis of cancer
applicators, correct?
applicators, correct?
applicators, correct?
A Yeah. Yes.
A Yeah. Yes.
A Yeah. Yes.
Q And if you turn to page 49, the first
Q And if you turn to page 49, the first
Q And if you turn to page 49, the first
page actually, on the "Materials and Methods"
page actually, on the "Materials and Methods"
page actually, on the "Materials and Methods"
section, the De Roos }2005\mathrm{ paper was reporting out the
section, the De Roos }2005\mathrm{ paper was reporting out the
section, the De Roos }2005\mathrm{ paper was reporting out the
findings from the AHS cohort based upon exposure data

```
findings from the AHS cohort based upon exposure data
```

findings from the AHS cohort based upon exposure data

```
```

 1 5 4
    ```
            1 5 4
A yeah. yes.
```

A yeah. yes.

```
A yeah. yes.
```

156

Blair, Aaron Earl Ph.D. (In Re Roundup Prods. Liability Lit.) 3/20/2017 12:00:00 PM

```
how they use protective equipment and things such as
that that would influence exposure.
    Q So in the De Roos 2005 paper for both
cumulative exposure days, which is this data here
(indicating), and for intensity weighted exposure
dates, which is this data here (indicating), the
relative risk for non-Hodgkin lymphoma was below 1.0
for higher exposures to glyphosate, correct?
    A Correct.
    Q So farmers who had either more days of
exposure to glyphosate or had more intense exposure
to glyphosate had a high -- had a lower --
    A Lower.
    Q -- lower incidence of non-Hodgkin
lymphoma than farmers who had not used glyphosate,
correct?
    A That was not statistically significant.
    Q So this would be a negative association.
It wouldn't be a mull finding, but it would not be
statistically significant, correct?
    A Correct.
    Q Okay. And are you aware of some of the
discussions that have taken place following the IARC
classification of glyphosate about this AHS study and
its strengths or weaknesses?
```

A I mean I'm involved in the study, so if
the answer is are there .- am I involved in
discussions about it, well, yes
Q Okay. Well, let me show you --
A But why don't you ask what you're
interested in.
Q Let me show you specificaliy -- let me
show you specifically a publication by Dr. Portier.
I think you mentioned him earlier
you know Dr. Portier, correct?
A I do.
(Blair Exhibit No. 18 was marked for
identification.)
BY MR. LASKER:
Q And this is Defense Exhibit 18.
A You have two things there. Did you --
Q Oh, that has highlighting. Thank you.
A Actually, you have three things there.
MR. MILLER: Three things.
BY MR. LASKER:
Q Okay. And in this publication,
Dr. Portier is -- well, first of all, it's entitled
"Differences in carcinogenic evaluation of glyphosate
between the IARC - between the International Agency
for Research on Cancer and the European Food Safety

```
Authority," correct?
    A Yes.
    Q And in this publication, a variety of
individuals are trying to address their views about
the differences between what IARC concluded with
respect to glyphosate and cancer and what the
European Food Safety Authority concluded, correct?
    A Yes.
    Q And if we turn to the second page of this
commentary, Dr. Portier is talking specifically
about - - at the bottom of the first page and then
turning over to the second page -- the Agricultural
Health Study we were just looking at, the 2005
publication, correct?
    A Okay. Yes.
    Q And at page 2, on the top of that left
column, Dr. Portier writes: "Despite potential
advantages of cohort versus case-control studies, the
AHS only had 92 NHL cases in the unadjusted analysis
as compared to 650 cases in the case-control
studies." Correct?
    A Yes.
    Q So he is pointing to the fact that
there's only 92 NHLs found as of 2005?
    A Yes.
```

160
Q He aiso talks about the fact that the median follow-up time in AHS was 6.7 years, which is unlikely to be long enough to account for cancer latency, correct?

A Yes.
Q Now, in fact, the 6.7 years of follow-up
to which Dr. Portier is referring to is not the
amount of time between exposure and cancer, is it?

A No.
Q In fact, as we discussed earlier, at the time of entry into the Agricultural Health Study, the subject applicators, the farmers, had an average of about 15 years of pesticide use already, correct?

A Correct.
Q And glyphosates had been on the market since 1974 or about that time. I think Mr. Miller just read something about that in his questioning. Right?

A Yeah.
Q So on average, by the time the data collected for the 2005 De Roos study was analyzed, the farmers would have had -- more than 20 years had passed from the time of their first exposure to their cancer potentially, correct?

A More than twenty years' exposure to what?

Blair, Aaron Earl Ph.D. (In Re Roundup Prods. Liability Lit.) 3/20/2017 12:00:00 PM

```
    Q To glyphosate.
    A Some may have. Right?
    Q Correct
    A Some may have.
    Q Certainly more than 6.7 years. That's
not the correct year to be looking at for how much
exposure they had had, correct?
    A That's the person -. their follow-up
time.
    Q So that was the time from the
questionnaire to follow-up, not exposure to
follow-up?
    A. Correct
    Q So Dr. Portier's comment here in this
publication is inaccurate, correct? There is
something wrong with it?
    A In -.
    MR. MILLER: Object to the form of the
question, but it says "in addition to median
follow-up time."
    MR. LASKER: You can object. You can't
testify. That's what the witness does.
            THE WITNESS: Well, I -- I'm debating
whether to answer your question or give you an
epidemiology primer. I think I will just -- the
```

162

```
length of time of follow up has to be from the time
you've followed people.
BY MR. LASKER:
    Q Right.
    A So if a person was exposed to anything 20
years before you started the study and died }19\mathrm{ years
after -- before you started the study, they wouldn't
be in it.
    Q Understood.
    A So there is that element in it, but it's
correct that 6.7 is not the total amount of time that
people would have -- some of the people would have
been exposed in this study
    Q Well, the -- the median we talked about
before for these farmers was that if they had 15
years of pesticide use prior to -- at the time of
their questionnaire, correct?
    A }15\mathrm{ years of pesticide use.
    Q And you had data also on glyphosates.
correct?
    A But, again, it's a matter of how many
people started using it and when they started using
it.
    I'm just saying your characterization is
not fully descriptive. It goes on in the cohort
```

Monsanto - IARC / Glyphosate

```
```

study. There are staggered times --

```
```

study. There are staggered times --
Q Understood.
Q Understood.
A -- going on and so forth. People have
A -- going on and so forth. People have
different amounts, but it could be -- some of them
different amounts, but it could be -- some of them
clearly have it more than 6.7 years.
clearly have it more than 6.7 years.
Q And we're not -- to be clear, we're not
Q And we're not -- to be clear, we're not
talking about my characterization of the study.
talking about my characterization of the study.
We're talking about Dr. Portier's characterization of
We're talking about Dr. Portier's characterization of
the study.
the study.
MR. MILLER: Well, I object and move to
MR. MILLER: Well, I object and move to
strike that
strike that
BY MR. LASKER:
BY MR. LASKER:
Q And just so it's clear --
Q And just so it's clear --
MR. MILLER: I just object and move to
not exposure. You're interchanging those two terms
not exposure. You're interchanging those two terms
intentionally to mislead, and I object.
intentionally to mislead, and I object.
BY MR. LASKER:
BY MR. LASKER:
Q Just to be clear, the period of 6.7
Q Just to be clear, the period of 6.7
years, which Dr. Portier says is unlikely to account
years, which Dr. Portier says is unlikely to account
for the cancer latency, is not the period of time
for the cancer latency, is not the period of time
from exposure to cancer that was assessed in the
from exposure to cancer that was assessed in the
non -- in the AHS study, correct?
non -- in the AHS study, correct?
A That's correct. He says it's the median
A That's correct. He says it's the median
follow-up time.

```
follow-up time.
```

```
*
```

```
*
```

 Q Right. So cancer latency, what's
 important is date of exposure to date of cancer, not
date of questionnaire to date of cancer, correct?
A Yes, but he says follow-up time, not
latency.
Q No, he mentions latency right there.
That's what he Ealks about. He says, "Unlikely to be
long enough to account for cancer latency," correct?
A But he says it's a median follow-up time.
Q Correct.
A Yeah.
Q But just we're clear, the median
follow-up time doesn't tell you anything about the
period of exposure to cancer. That's relating for .-
to latency, correct?
A Yes
Q Okay. Now, in fact, the AHS has
conducted additional analyses of glyphosate following
the 2005 paper - published study with far larger
a far larger number of incidence of NHL cases and
longer follow-up, correct?
A There is a paper on that?
Q AHS has conducted anaiyses of
glyphosate --
5 A Oh, okay. Okay
1
25
Q Right. So cancer latency, what's
important is date of exposure to date of cancer, not
date of questionnaire to date of cancer, correct?
A Yes, but he says follow-up time, not
latency.
Q No, he mentions latency right there.
That's what he talks about. He says, "Unlikely to be
long enough to account for cancer latency," correct?
A But he says it's a median follow-up time.
$Q \quad$ Correct.
A Yeah.
$Q \quad$ But just we're clear, the median
follow-up time doesn't tell you anything about the
period of exposure to cancer. That's relating for -
to latency, correct?
A Yes.
$Q \quad$ Okay. Now, in fact, the AHs has
conducted additional analyses of glyphosate following
the zoos paper published study with far larger -
a far larger number of incidence of NHL cases and
longer follow-up, correct?
A There is a paper on that?
Q
AHS has conducted analyses of
glyphosate -
A oh, okay. Okay.

54

```
    Q -- following the 2005 publication with a
far larger number of NHL cases and a longer
follow-up, correct?
    A I think that's underway, yes
    Q Let me mark as next exhibit in line, and
I will do this as Exhibit A and B. So 19-A and 19-B.
    (Blair Exhibit Nos. 19-A and 19-B
    were marked for identification.)
BY MR. LASKER:
    Q And let me represent that there is a
printing date on this that is when this document was
printed, somebody .. or maybe for public .. for
production, but there is also a date on the document
of when it was prepared. So we will have two dates
on the document.
    And this is yours.
    A Oh, yes. I'm sorry. I was thinking you
were talking about an analysis of just glyphosate
people, but there is a ... this paper has been
published actually for non-Hodgkin's lymphoma.
    Q Okay. Well, we will talk about that.
    A Yeah.
    Q We will talk about what data was
published and what data was not published
    But this is 19-B. And here you are
```

 166
 So I marked two versions of -- well,
 first of all, if you could just identify for the
record what I 've handed you as Exhibit $19-\mathrm{A}$ and $19-\mathrm{B}$.
A Well, they look like documents, probably
drafts that were prepared for the study of lymphoma
and pesticide use in the Agricultural Health Study.
Q And these are drafts dated February 6 ,
2013, and March 15, 2013, correct?
A Well, mine says --
Q Well, there's a print --
A -- December 5th, 2016, and this one is
November 30th, 2016
Q And just .- that's why I want to clarify
when we talk about -- that's when it was printed out
by somebody, that's a word -- something the word
program does, but if you look at the actual .. in the
text --
A Oh, okay. Okay. Yes. Yes.
Q So these are drafts prepared in February
2013 and March of 2013, correct?
A Yes.
Q And if you look at the Eebruary '13 -
February 2013 .- strike that.
If you look at the February 2013 draft,
there is -- in fact, starting on the very first page,
a comment on the draft by an $A E B$, and that would be
you, correct? Aaron Blair.
A On the first page?
Q Well, if you look on the right, you will
see these little comment bubbles. And if you look
throughout the document, you will see these comment
bubbles.
A Yes Yes.
Q And these -- this is your comment --
these are your comments on the document, correct?
A Yeah. Correct.
Q And if you look at the March 2013 draft,
which is the next document, it also has various
comments by you on the publication -- on the draft
publication, correct?
A Yes.
Q Okay. Now, let's -- so it's fair to say
that as of March 2013, you had reviewed at least two
versions of this draft publication, correct?
A Yes.
Q Well, let's focus on the March 2013
draft. And if I could turn you first to page 6 in
the discussion of the study population.
A We're at 2000 ... oh, March '13. Okay
Yes, got it.

Q So I turn you to page 6.
A Six?
Q Yes. And this has a discussion of the study population about halfway through, correct?

A Yes.
Q And now we're looking at all -- I'm sorry, if you look at page 7, all incidence of primary non-Hodgkin lymphoma in the ABS cohort from enrollment through December 31st, 2008, correct? At the very top.
A Yes.
Q So this study includes an additional seven years of follow-up, an additional seven years of NHL cases beyond those that were reported and published in the De Roos 2005 paper, correct?
A Yes.
Q And if you look at page 9 of this 2013
draft paper, in the second paragraph on that page, it
talks about the fact that this study also includes
additional exposure data from a follow-up
questionnaire
So you have five years of additional
exposure data that was rot available for the 2005
study that was published, correct?
A Correct.

Monsanto - IARC / Glyphosate
Page 165-168
Q Then the 2013 paper -- or 2013 study, I'm sorry, that includes a series of tables in the back that reports on the findings of various analyses of different exposures and the risks of non-Hodgkin lymphoma, correct? There's a whole bunch of tables back here.
A Okay.
Q Data tables?
A Yeah.
Q So how are these data tables prepared?
A I don't understand your question.
Q Okay, let me strike that.
This is the data that was available to

```
```

the Agricultural Health Study and was to be presented

```
the Agricultural Health Study and was to be presented
in this publication, correct?
    A Yes.
    Q And this is - - these tables are showing
the relative risks of non-Hodgkin lymphoma in farmers
with various exposures based upon the additional data
that had been generated in the AHS study, correct?
    A Correct.
    Q Now, I've looked through these tables,
and the 2013 study does not appear to contain data on
ever/never use. But I would like to have you turn to
page 34
```

And on page - - on page 34 of the
document, we have the AHS updated data on glyphosate and non-Hodgkin lymphoma, correct?

A Yes.
Q And we have - this is the data for both duration and intensity-weighted duration of exposure to glyphosate, correct?

A Well, I think that's the case. I have to look at the -- not duration but total days of exposure and intensity-weighted days of exposure.
Q okay. Well, isn't total days of exposure the duration of exposure?

A Not in normal epidemiologic parlance.
Q Okay.
A Duration is often measured in years, and that can be different than the total number of days.

Q But in the 2005 De Roos paper, De Roos was -- 2005 De Roos paper, duration was number of days and --

A Yes. And this is the same. It's the same.

Q It's the same analysis .-
A Same analysis
Q - as the 2005 exposure -- 2005
publication, except in this analysis we have a

```
category also of no exposure, correct?
    A Yes.
    Q And the De Roos 2005 analysis that we
looked at was based upon -- the exposure analysis was
based upon }51\mathrm{ cases of non-Hodgkin lymphoma in
farmers who had reported exposure to glyphosate,
correct?
    A That sounds right to me
    Q The 2013 analysis includes data on 250
NHL cases among farmers who had reported exposure to
glyphosate, correct? Just add up the three rows of
exposure, about 250?
    A About. I was looking, and say, Well,
it's not going to add to 250, but it's about 250.
I'm not quibbling.
    Q I think it actually is, but it's about
250. That's fine.
            And so this 2013 cohort study has results
for glyphosate and non-Hodgkin lymphoma -- I'm sorry
Strike that.
            This 2013 cohort study with results for
glyphosate and non-Hodgkin lymphoma is more than four
times larger than the De Roos 2005 study, correct?
    A Yes.
    Q It's gone from 61 -- or 62 to 250 cases.
```

 A Yes.
 Q And the confidence intervals for the
 various analyses of NHL based upon the levels of
glyphosate exposure, because it's a larger study, are
much tighter than the confidence intervals were for
De Roos 2005, correct?
A. Correct
Q Because this study now has more power,
correct?
A Correct.
Q So this 2013 cohort study finds no
association - no evidence of association between
exposure to glyphosate and non-Hodgkin lymphoma,
correct?
A. Correct.
Q And based upon the data that's set forth
here, if you look at individuals who had no exposure
to glyphosate, which is that first row, and you look
at the three categories of individuals who did have
exposure to glyphosate, if we were to do an
ever/never analysis of glyphosate and non-Hodgkin
lymphoma, the - the relative risk here would be
something below i.0, correct? About 0.9?
A That's a reasonable guess, I think, yes.
Q So that means that the incidence of

```
non-Hodgkin lymphoma in farmers exposed to glyphosate
in the 2013 cohort study was lower than the incidence
of non-Hodgkin lymphoma in farmers who were not
exposed to glyphosate, correct?
    A But not statistically significant.
    Q So it's a negative association, but
statistically
    A Not statistically significant.
    Q Not a null result but a negative
association.
    A Correct.
    Q And the applicators in the highest levels
of exposure to glyphosate, both by lifetime days and
intensity-weighted lifetime days, had the exact same
incidence of non-Hodgkin lymphoma as applicators with
no exposure to glyphosate whatsoever, correct?
    A. Correct.
    Q So for the highest -- for each of these
measures of exposure, for the relative risk for
non-Hodgkin lymphoma at the highest level of exposure
to glyphosate as compared to not exposed was a
completely null result, correct?
    A Yes.
    Q The median lifetime use in days for the
highest exposure group now is 172 days, correct?
```

174
A Where do I see that?
Q Right here (indicating). The median days
in the highest exposure group, 1.73 days. I apologize.

So the highest - - the highest exposure
group for duration, we're looking at farmers with an
average of 173 days of exposure to glyphosate,
correct?
A I must be on the wrong table then.
Q If you look at the first column --
A Well, it's just not the ones I had.
Maybe I've got the --
Q Are you on page 34?
A Page 34.
Q If you --
A The March l5th document.
Q Yep.
A Right? Glyphosate --
Q We have none, low, medium. Right here
(indicating) You have the numbers in the brackets, right? Those numbers in the brackets are the median days of exposure, correct? Right here (indicating).

A Oh, 173. I'm sorry. I was hearing
something else. It was there. I thought it's not the same number. Yeah, okay. Yes.4

5
right that the judgment is this is the days, but that
finding applies all across that row, and that can:t
be.
Q okay.
A You know, but I think you're right, I
think this is cumulative days, yes.
Q Got it. Okay.
A That's not your fault. That's --
Q And -- yes.
A - - the paper's fault.
Q And because of the fact that we now have
longer follow-up, the exposure levels at each of
these three categories of low, medium and high
exposure to glyphosate also are much higher than the
exposure levels in the corresponding analysis in the
2005 published paper, correct?

176

A The cumulative exposure is higher.
Q Now, these findings for glyphosate have never been published, have they?

A No. They haven't been published.
$Q \quad$ These findings, the AHS updated findings
for glyphosate and non-Hodgkin lymphoma were not considered by IARC in its review of glyphosate, correct?

A No.
Q These findings also have not been available to any of the regulatory agencies that have been conducting reviews of glyphosate and cancer, correct?

A Correct.
Q Now, this obviously is data that you had in your possession and were aware of at the time of the IARC working group meeting, which is two years after you reviewed this paper, correct?

A Say again.
Q Well, you reviewed this data in

```
March 2013, correct?
```

A Yes.
Q And then in March 2015, you were the chair of the IARC working group that was considering the question of --

```
A Yes.
Q - what the epidemiological data shows
with respect to --
    A Yeah, right.
    Q -- glyphosate and non-Hodgkin --
    A Right.
    Q So you obviously knew about --
    THE REPORTER: Excuse me. I need you to
finish that question, please.
BY MR. LASKER:
    Q I'll say it again. So in -- let me
rephrase.
    At the time that you were the chair of
the IARC working group and a member of the
epidemiology subgroup that was looking at the
evidence of whether or not glyphosate was associated
with non-Hodgkin lymphoma, you were aware of this
updated data of a study four times larger than the
published 2005 paper with respect to glyphosate and
non-Hodgkin lymphoma, correct?
    A That there were analyses of such data,
but no published studies.
    Q Correct. But you were aware of what the
data showed, correct?
    A Yes. But no published studies
```

178
Q Right. And did you alert any of your fellow working group members or any of the other members of the subgroup on epidemiology at IARC about the fact that this much larger AHS cohort study with larger follow - a larger time of follow-up and higher levels of exposure had been conducted?

A No.
Q Now, the IARC working group also cited to a meta-analysis that IARC had prepared of the epidemiological studies regarding glyphosate and non-Hodgkin lymphoma. And Mr. Miller asked you about that earlier today. Correct?

A Yes.
Q Well, let me show you a copy of that meta-analysis, if I might.
(Blair Exhibit No. 20 was marked for
identification.)
BY MR. LASKER:
Q This is Defense Exhibit 20.
And also let me just -- we have -- do you have the monograph working group which was a plaintiffs' exhibit? Oh, you have that. Okay.

This was marked previously as a
plaintiffs' exhibit, I just don't remember what
number it was, but this is the monograph.

```
MR. LASKER: Do you remember what number
this is, Mr. Miller?
    MR. MILLER: This should be 20.
    MR. LASKER: Four. Flaintiffs' 4? No,
this is Plaintiffs' 4. It's the same - - you guys
marked this.
    MR. MILLER: Oh, I'm sorry.
    MR. LASKER: I'm talking about the --
    MR. MILLER: Well, we need to be more
precise. Okay. 20 was the last exhibit you handed
me. Now you're asking me what the original monograph
was?
            MR. LASKER: I believe it's Plaintiffs'
Exhibit 4
            MR. MILLER: Four? Okay. Very well. On
we go.
BY MR. LASKER:
    Q I'm just going to hand you a copy of the
monograph again. It's the same document. Mr. Miller
can confirm.
            But with respect to the meta-analysis
that IARC conducted, that is mentioned on page 30
of the monograph. So if I could just turn you to
page 30 of the monograph.
    And do you see there is the discussion of
```

 A Yes.
 Q And the meta-analysis is identified as
 Schinasi and Leon. That is the publication, the
paper I just handed to you, which we marked as
exhibit -- Defense Exhibit 20, correct?
A Correct.
Q And it discusses the meta-analysis that
was done by Schinasi and Leon, and then an adjustment
that the working group made to that monogxaph .- I'm
sorry, to that meta-analysis so as to use fully
adjusted estimates of the risks with non-Hodgkin's
lymphoma and glyphosate, correct?
A Yes.
Q And the IARC working group's conclusion
was that the meta risk ratio of all the epidemiology
was 1.3, which had a confidence interval of 1.03 to
1.65. So it just made barely that level of
statistically significance, correct?
A Correct.
Q Now, the meta-analysis was based in part
on the 2005 AHS publication, correct?
A Correct.
O It was not based upon the data we've now
just looked at of the 2013 AHS data, correct?

```
```

```
a meta-analysis?
```

```
```

a meta-analysis?

```
```

A Yes.
Q And the meta-analysis is identified as Schinasi and Leon. That is the publication, the
2 And

```

180

Page 177-180
```

 A Right
 Q So if we look at Defense Exhibit 20,
 which is the Schinasi paper, and if you look at
page 4505, this sets forth the various studies that
IARC looked at with respect to glyphosate and
non-Hodgk in lymphoma and the risk ratios from those
studies, correct?
A Correct.
Q And the meta-analysis is a process of
weighing these findings from these studies, correct?
A Right.
Q And the way that the meta-analysis works
is it gives a different weight to different studies
based upon the power of the study, which is reflected
in the size of those confidence intervals, correct?
A Correct.
Q So the IARC meta-analysis weighing of the
2005 AHS study, which is listed here, is based upon
the 71 cases of non-Hodgkin lymphoma that were
available as of the time of that 2005 publication,
correct?
A Correct.
Q Now, as we've already discussed, the 2013
data finds for a much larger number of NHL cases --
provides findings for a much larger number of NHL

```
cases, we had like some four times, like 250 cases --
    A Right.
    Q -- in that data, correct?
    A Right.
    Q And the confidence intervals, because
it's a much larger study, were much tighter in that
2013 data than the -- than the data we have here,
correct?
    A Correct.
    Q And we ailready talked about the fact that
the relative risk from the 2013 data of ever/never
use was below 1.0, something like 0.9, so it was
slightly below the 1.1 relative risk for the De Roos
2005 paper, correct?
    A. Correct.
    Q So if the 2013 data, which you were aware
of, had been available for IARC in its meta-analysis,
the AHS data would have had significantly more weight
in the meta-analysis than is reflected here --
    A Yes.
    Q -- and the relative risk data would have
been lower than the 2005 study that's incorporated
here, correct?
    A The relative risk for the AHS study would
have been lower.
```

 Q Right.
 A Was lower. Yeah.
 Q Yes, it would have been.
 A Yeah.
 Q So it's fair to say, given that IARC
 your meta-analysis was just barely statistically
significant at l.03 in the lower bound, if IARC had
had the data from the 2013 study, much more -- a much
larger study, much greater weight, lower relative
risk -- that would have driven the meta-relative risk
downward, correct?
A. Correct.
Q And the meta-relative risk with that 2013
data from the AHS study that you were aware of would
have not have been statistically significant, would
it?
A I don't know, but probably not.
Q Probably not.
Now, during the Monograph }112\mathrm{ working
group meeting, IARC provided the working group with
this meta-analysis data, correct?
A Yes.
Q Did you mention to anyone at the meeting
the likely impact that the more recent data from AHS
would have in decreasing the meta -- meta-relative

```
```

risk for glyphosate and non-Hodgkin lymphoma?
A NO.
Q Now, the Schinasi meta-analysis also
includes data from a case-control study, a pooled
analysis in the U.S., the De Roos 2003 paper, and it
includes relative risk from the McDuffie paper from
Canada, correct? Those are aiso on this chart?
A Yes.
Q And Schinasi, IARC used an odds ratio of
2.1 for the Canadian -- I'm sorry, for the U.S.
case-control data, correct? It's on the charts here,
the De Roos 2003 with an odds ratio --
A you are .-
Q We're still -- we're still on the
Schinasi paper. Same --
A Oh, okay. Oh, okay.
Q So the De Roos 2003 is listed here.
That's the U.S. case-control data, and that's an odds
ratio of 2.1, correct?
A. Yes.
MR. MILLER: What page are we on?
MR. LASKER: We're on page 4505.
MR. MILIER: 4505.
EY MR. LASKER:
Q And McDuffie, that's the Canadian

```

Blair, Aaron Earl Ph.D. (In Re Roundup Prods. Liability Lit.) 3/20/2017 12:00:00 PM
```

case-control study, and that's l.2, correct?
A Correct.
Q And now if -- there's a little bit
different weighting of those two studies because
McDuffie is a little bit larger, but if you were to
sort of take those two studies in aggregate as
considered by the meta-analysis, that works out to .-
for those two studies an odds ratio of about 1.6 for
purposes of meta-analysis if you combine those two
studies, correct? 2.1, 1.2, it's going to be around
that -- that area, right?
A Probably. I don't know. Sometimes you
can't just put them together.
Q Roughly -. but roughly, roughly 1.6 or
so, correct?
A Probably
Q Okay. Now, the NAP data -- NAPP data
that we were discussing earlier, that's actually a
pooled analysis of the data from McDuffie 2001 and
De Roos 2003, correct?
A Yes.
Q And the way that this meta-analysis works
is IARC takes the most recent and most comprehensive
pooled analysis and doesn't consider the earlier
studies, correct?

```
    So, for example. Kantor 1992 is not in
here because it was pooled into De Roos 2003,
correct?
    A They do -- unless the individual papers
have information that isn't in the pooled analyses,
which is often the case.
    Q But with respect to this analysis, for
example, De Roos 2003, they don't include Cantor -
the Cantor study. They include the most recent
pooled data, correct?
    A In this table
    Q Yes.
    A Yes.
    Q And in this meta-analysis.
    A And in this meta-analysis.
    Q So if we were then to use -- if the NAPP
data had been available to IARC, the data we were
looking at previously, you recall that the NAPP odds
ratio, even including proxy respondents for
ever/never use, for glyphosate and non-Hodgkin's
lymphoma was 1.22 , correct? We looked at that
previously
    A Sounds right
    Q Okay. So if the NAPP data, again that
you were aware of at the time, had been available to
drop from probably somewhere around 1.6 to 1.2 or so.
correct?
    A I -- you know, I'm not comfortable making
pronouncements about your combining of data from
different studies without me seeing the data.
    Q Okay. Well, just so we're clear, the
NAPP data is your data. We looked at it earlier.
    A It's not in front of me. I'm not
comfortable --
    Q Okay. Well, then --
    A -. with combining -.
    Q -- let's go -- that's a good point.
    A - different things without seeing that.
    Q Let's go back to that. That's a very
good point.
            So if we could refer -- okay. Look back
to Defense Exhibit --
                            MS. SHIMADA: 16.
BY MR. LASKER:
    Q -- 16. So it should be on that -- on the
pile, probably in reverse order.
    MR. MILLER: Well, while we look at that,
we're calling a break. It's 1 o'clock. We've been
going --
            MR. LASKER: We're in the middle -- when
we finish this line of questioning, we will take a
break.
            MR. MILLER: We said that a half an hour
ago.
            MR. LASKER: When I finish this line of
questioning. I'm almost done. We'll be fine. I've
got maybe five or ten more questions at most.
            THE WITNESS: Is this the one you're --
BY MR. LASKER:
    Q That's the one
    A Okay.
    Q So this is the one that we looked at
previously, and the first data table we looked at was
the -- this table right here, right? This is the
ever/never use. That's it.
            So the ever/never use of this pooled
analysis that's pooling the data from McDuffie and
from De Roos 2003, the data that you had was 1.22 as
the odds ratio, correct?
    A Correct.
    Q So that is a lower odds ratio than was
used for purposes of the IARC meta-analysis because

IARC and had been put into this analysis and replaced McDuffie 2001 and De Roos 2003, the odds ratio number
for the U.S. and Canadian case-control studies would

\title{
Blair, Aaron Earl Ph.D. (In Re Roundup Prods. Liability Lit.) 3/20/2017 12:00:00 PM
}
```

that meta-analysis was combining a 2.1 and a l.2,
correct?
A Yes.
Q So if that NAPP data had been available
to IARC for its meta-analysis, that also would have
lowered the meta-relative risk for glyphosate and
non-Hodgkin lymphoma even further, correct?
A Probably.
MR. LASKER: We can take a break now
THE VIDEOGRAPHER: The time is 12:56 p.m
we're off the record
(Lunch Recess.)
THE VIDEOGRAPHER: The time is 1:47 p.m.
on March 20th, 2017. And we are on the record with
video }3
MR. MILLER: I just wanted to make a
short statement regards time management. Plaintiffs
went about an hour and 30 something. I think the -
THE VIDEOGRAPHER: 1:34.
MR. MILLER: 1:34. So far defendants
have gone
THE VIDEOGRAPHER: Two hours.
MR. MILLER: -- two hours
Counsel for Dr. Blair has been kind
enough to say a total of eight hours, and that's time

```
```

```
data that uses what is referred to as the old NHL
```

```
data that uses what is referred to as the old NHL
definition.
definition.
            Do you see that?
            Do you see that?
    A Yes.
    A Yes.
    Q Okay. And do you recall how the
    Q Okay. And do you recall how the
definition changed from the old definition to the
definition changed from the old definition to the
definition that's being used today?
definition that's being used today?
            MR. MILLER: Excuse me, Counsel. Page
            MR. MILLER: Excuse me, Counsel. Page
number?
number?
            MR. LASKER: 84.
            MR. LASKER: 84.
            THE WITNESS: Lymphoma -- non-Hodgkin
            THE WITNESS: Lymphoma -- non-Hodgkin
lymphoma now includes multiple myeloma and chronic
lymphoma now includes multiple myeloma and chronic
lymphocytic leukemia.
lymphocytic leukemia.
BY MR. LASKER:
BY MR. LASKER:
    Q Okay, So this data table, Supplemental
    Q Okay, So this data table, Supplemental
Table }7\mathrm{ is defining non-Hodgkin lymphoma as not
Table }7\mathrm{ is defining non-Hodgkin lymphoma as not
inciviing mutupie myeloma or cil; is that cormect?
inciviing mutupie myeloma or cil; is that cormect?
    A Correct.
    A Correct.
    Q Okay. So let's look at the data for
    Q Okay. So let's look at the data for
glyphosate under the old definition, and that's on
glyphosate under the old definition, and that's on
page }9
page }9
And on the middle of the page, again we
And on the middle of the page, again we
have glyphosate data, both the duration and intensity
have glyphosate data, both the duration and intensity
of use, correct?
of use, correct?
    A Yes.
```

```
    A Yes.
```

```
on record \(I\) wanted to clear \(u p\) and we want our equal
time on the record. So we think you would have two
hours left then
    MR. LASKER: I don't have any problem
with that.
    MR. MILLER: Okay, great. Hopefully you
will be done before then, and certainly I'm not going
to go on just to hear myself talk either, believe me.
Just - all right, let's go.
BY MR. LASKER
    Q Okay, back on the record.
    Dr. Blair, I would like to continue our
discussion of the 2013 AHS data on glyphosate and --
or actually on pesticides and lymphoma risk or
non-Hodgkin lymphoma risks, and particularly the
glyphosate data.
    If I could ask you to turn to page 84 of
that document, Supplemental Table 7. And you had
testified earlier this morning about the fact that
the definition of non-Hodgkin lymphoma has changed
over time. Do you recall that?
    A Yes
    \(Q\) And in this 2013 study, the AHS data is
actually presented with two different definitions of
non-Hodgkin lymphoma, and Supplemental Table 7 is
    Q And again, we have data on no exposure
and then low, medium and high exposure groups.
correct?
    A Correct
    Q Now, the total number of -- of farmers
with non-Hodgkin lymphoma in this analysis is 72 plus
51 plus 60 , that's about 183 farmers, correct?
    A Correct
    Q So with using this data from the 2013
study, the study is about three times larger than the
published data from the 2005 study, correct?
    A Okay.
    Q And the findings as far as the relative
risks are concerned are pretty close to what the
findings were with the new definition, correct?
    A Correct
    Q As far as non-Hodgkin lymphoma risks?
    A Yes.
    Q So as we look at no exposures versus
different levels of exposure, the ever/never risk
ratio is again something like 0.9 or so, correct?
    A Probably
    Q Okay. And the same discussion we had
previously about how use of this updated data in the
IARC meta-analysis would lower the meta-relative

\title{
Blair, Aaron Earl Ph.D. (In Re Roundup Prods. Liability Lit.) 3/20/2017 12:00:00 PM
}
```

risk, that same answer would apply for this data as
well, correct?
A Yes.
Q Now, I would like to take you to another
part of the analysis in the 2013 -- in the 2013 AHS
study with respect to different NHL subtypes.
Now, let me -- let's turn first to page }
of the .- of the paper because they discuss the
different subtypes there. And there are five
different groups of subtypes discussed under tumor
characteristics.
Do you see that?
A Yes.
Q So the -- this is looking at different
types of non-Hodgkin lymphoma putting them into
categories, correct?
A Correct.
Q And then there is a separate analysis
conducted in this 2013 paper looking at the relative
risks for the studied herbicides for each of the
different NHL subtype categories, correct?
A Correct.
A Correct.
A Correct.
A Correct.
you see that?
A Yes
A Correct

```
categories correct - on page 66 at the beginning of
the table, so we can understand what is what.
    So page 66 has the different categories
of non-Hodgkin lymphoma on those columns on the top,
5 right?
    A Correct.
Q Okay. And then if you just keep your
finger on that page just so you can remind yourself
which categories are which, page 69 is where they
have the findings for glyphosate, and I would iike to
ask you about the glyphosate finding with respect
to -- on these different types of non-Hodgk in
lymphoma
            So if you look at page 69, the AHS
analysis in the first subtype grouping, which is
chronic B-cell lymph .. lymphocytic lymphoma, small
B-cell lymphocytic lymphomas, and mantle cell
lymphomas, the 2013 AHS data analysis does not find
any association between glyphosate and that NHL
subtype, correct?
\(\begin{array}{ll}\text { A Correct. } \\ Q & \text { And if we look at - - in fact, for that }\end{array}\)
A Correct.
\(Q\) And if we look at - - in fact, for that
subgroup - - oh, strike that.
    If you look at the large B-cell
lymphoma --
6
7
on?
    MR. MILLER: I'm sorry. What page are we
        MR. LASKER: We're on page 69.
        MR. MILLER: Thank you.
BY MR. LASKER:
    Q -. the second column is large B-cell
lymphoma, correct?
    A Diffuse large B-cell, yeah.
    Q And the 2013 AHS data actually finds a
statistically significant negative association
between increased glyphosate exposure and -- and
diffuse large B-cell lymphoma, correct?
    A For days per year, yes.
    Q yeah. So, in other words, as a farmer
has more days of exposure of glyphosate in this study
population, the instance of large B-cell lymphoma
actually decreases, correct?
    A Correct.
    Q And that's a statistically significant
finding, correct?
    A Yes. Trend test.
    Q The 2013 AHS data also looks at
follicular B-cell lymphomas, correct?
    A Yes.
\(Q\) And the 2013 AHS analysis does not find


4
    Q And the 2013 AHS analysis does not find
1
any association between glyphosate exposure and
196
follicular B-cell lymphomas, correct?
    A Deficits that aren't statistically
significant.
    Q And when you say "deficits," what
actually they found in this study, again, is as the
actually they found in this study, again, is as the
level of -- as a farmer had more days of exposure to
glyphosate, the incidence of follicular B -cell
lymphomas went down, correct?
    A No. It means that at any level of
exposure, the level, the relative risk was less than
1.0 .
    \(Q\) Correct. Correct Correct.
    A It was 0.7 or 0.6 It does not go down
Q So what with the 2013 AHS data reveals is
that any level of exposure to glyphosate resulted in
a lower incidence of follicular B-cell lymphomas,
correct?
    A Lower -- lower incidence or lower
relative risk that isn't statistically significant.
    \(Q\) And with respect to the category for -
    A Other B-cell.
    Q -- other B-cell type lymphomas, again we
see that with any level of exposure to glyphosate,
see that with any level of exposure to glyphosate,
the incidence of \(B\)-cell type lymphomas, the relative
    Q So what with the 2013 AHS data reveals is
3
3
4
3
9
0
5

-
15
14
```

```
risk goes down, correct?
```

```
risk goes down, correct?
    A It's lower.
    A It's lower.
    Q And if you look at the point estimate for
    Q And if you look at the point estimate for
relative risk, both for the other B-cell type
relative risk, both for the other B-cell type
lymphomas and the follicular B-cell lymphomas at the
lymphomas and the follicular B-cell lymphomas at the
highest level of exposure, the relative risk is 30 to
highest level of exposure, the relative risk is 30 to
4 0 \text { percent lower for farmers with the highest level}
4 0 \text { percent lower for farmers with the highest level}
of glyphosate exposure compared to farmers with no
of glyphosate exposure compared to farmers with no
exposure, correct?
exposure, correct?
    A Correct.
    A Correct.
Q Did you inform anyone at the IARC working
Q Did you inform anyone at the IARC working
group that the AHS -- that the Agricultural Health
group that the AHS -- that the Agricultural Health
Study had conducted additional analyses of glyphosate
Study had conducted additional analyses of glyphosate
for various NHL subtypes?
for various NHL subtypes?
    A No, because it wasn't published.
    A No, because it wasn't published.
    Q Now, let me ask you to turn to page 78 of
    Q Now, let me ask you to turn to page 78 of
this paper. And here we have a table that's looking
this paper. And here we have a table that's looking
at potential individual and joint effects of
at potential individual and joint effects of
pesticide combinations and NHL risk, correct?
pesticide combinations and NHL risk, correct?
    A Yes.
    A Yes.
    Q So now we're looking to see, well, what
    Q So now we're looking to see, well, what
if you put two different types of pesticides
if you put two different types of pesticides
together, what is that - - what is reflected in the
together, what is that - - what is reflected in the
data for that, correct?
data for that, correct?
    A correct.
```

 A correct.
    ```
```

 A Correct.
    ```
```

 A Correct.
    ```
        198
\(Q\) So let's turn to paqe 80 and 81 . And
here we have the data for glyphosate with .. in
combination with other types of -- with other --
three other pesticides.
            Do you see that?
    A Yes.
    Q So glyphosate and atrazine, glyphosate
and 2,4-D, and glyphosate and chlordane, correct?
    A Yes.
    Q And the analysis, when you look at it
this way for glyphosate only, and the atrazine..
glyphosate and atrazine analysis, glyphosate only is
万.g6; for g-yphosaze or-y wizt. tre giyphosace and
Z, \(\leq-\mathrm{D}\), it's \(1 . \overline{\text { i }}\) for glyprosate oniy and gurrosste
and chlordane is 0.9 .
            So in the glyphosate-only portions of
this, again we're not showing any increased risk of
non-Hodgkin lymphoma, correct?
    A Correct.
        MR. MILLER: Object to the form of the
question.
BY MR. LASKER:
    \(Q\) And with respect to combinations, if you
look at farmers exposed to glyphosate and atrazine
together, there is no increased risk -- statistically
look at farmers exposed to glyphosate and atrazine
together, there is no increased risk -- statistically
\(Q \quad\) So let's turn to page 80 and 81. And
```

significant increased risk of non-Hodgkin Iymphoma,
correct?
A Say again.
Q For farmers who are exposed to both
glyphosate and atrazine, there is no statistically
significant increased risk of non-Hodgkin lymphoma,
correct?
A Correct.
Q For farmers exposed to both glyphosate
and 2,4-D, there is no statistically significant
increased risk of non-Hodgkin lymphoma, correct?
A Correct.
Q For farmers exposed to glyphosate and
chlordane, there is no statistically significant
increased risk of non-Hodgkin lymphoma, correct?
A Yes.
Q And this is also information that the
IARC working group did not have at the time it made
its analysis of glyphosate, correct?
A Correct.
Q Now, I want to show you another document
that was from your production to us, and this is an
e-mail between you and some of the other Agricultural
Health Study investigators in February 2014.
First of all, who is Dr. Alavanha

```
    200
(phonetic)?
2 A Alavanja.
    Q Alavania.
    A He was an investigator at the National
Cancer Institute and was involved in the Agricultural
Health Study.
    Q Is he an epidemiologist as well -.
    A Yes.
    Q -- as yourself?
        Okay. Let's mark this as Defense Exhibit
21.
(Blair Exhibit No. 21 was marked for
            identification.)
BY MR. LASKER:
    Q Well, first of all, do you recall when it
was that the glyphosate data was removed from this
AHS study that we've been talking about?
    A Not exactly, but it went through many
iterations after we decided to remove it because
there really wasn't - you couldn't put it all into
one paper.
    Q Let's look at an e-mail dated February
28. 2014, and this is an e-mail from Dr. Alavanja to
other members of the AHS, including yourself,
25 correct?
5

\title{
Blair, Aaron Earl Ph.D. (In Re Roundup Prods. Liability Lit.) 3/20/2017 12:00:00 PM
}
A This is the one you just handed me?
Q Yes.
A Yes.
Q Dr. Alavanja, he was the lead author,
wasn't he -- was he not, on the 2013 paper that we were just looking at?
A The document, yes. Right.
Q In his Eebruary 14, 2014 e-mail,
Dr. Alavanja is discussing the AHS team's efforts to get its updated NHL analysis published, correct?
A Yes, I guess so.
Q And I take it from your former answer, you're not -- you don't recall now whether or not the glyphosate data was still in the paper at this point in time or not, correct?
A No, it was not because it had been submitted to a journal, and we never submitted to a journal with that data in it.
Q Okay. So in this e-mail Dr. Alavanja is discussing the fact that the International Journal of Cancer had decided not to publish what was at that point the updated manuscript for non-Hodgkin lymphoma and other pesticides, correct?
A Yes. Insecticides.
Q Insecticides. And Dr. Alavanja
```

attributes the journal's decision not to publish the AHS paper on NHL and insecticides on the fact that the paper did not present conclusive evidence associating NHL with any of the pesticides examined, correct?

A That's what it says.
$Q \quad$ So Dr. Alavanja is referring to the fact that journals are sometimes less willing to publish epidemiologic studies if they don't find positive associations, correct?

A Yes.
Q This problem is sometimes referred to as publication bias, correct?

A Yes.
Q It's more difficult to get negative findings published, correct?

A Correct.
Q And as a result, sometimes negative findings and epidemiological studies are not published, correct?

A Yes. Right.
Q And Dr. Alavanja notes in the second paragraph of his e-mail - and let's see, if it's working its way -- I was going to read it: "At the current time" -- and this is the second paragrapn
starting at the very beginning: "At the current time
IARC is making plans for a new monograph on pesticides."

And so, again, we're talking about the monograph that ultimately became Monograph 112 where you were the chair prior, correct?

A Well, it preceded that monograph
certainly.
Q Right. So when he is talking about IARC is making plans for a new monograph on pesticides, he is referring to the monograph that was the one that you ultimately worked on, correct?

A Yes. Right.
Q And Dr. Alavanja states: "Concerning IARC's timetable for selecting candidates for the monograph, it would be irresponsible if we didn't seek publication of our NHL manuscript in time to influence IARC's decision."

Do you see that?

A Yeah.
Q And you would agree that the AHS provides important data regarding potential associations between pesticides and cancer, correct?

A Yes.
Q You would agree that the AHS data and the

202
1
most updated AHS data should be considered by IARC, correct?

> A. Yes.

Q You would agree that it would be .-
A. Well, wait, wait. If it's been
published.
Q And you would agree with Dr. Alavanja
that it would be irresponsible for the AHS -
Agricultural Health Study investigators not to publish the updated findings on pesticides and NHL in time to influence IARC's decision, correct?

A No. I don't agree with that. And the reason is because the timetable about when you have to have it published is arbitrary. And doing analyses and writing papers is not wedded to a timetable. And what is irresponsible is to rush something out that's not fully analyzed or thought out.

Q Let me ask you --
A That's irresponsible.
Q I'm sorry. Let me ask you then about the e-mails you were talking about previously with respect to the North American Pooled Project, and we can go back to those if you want. But as I remember, Dr. Pahwa was discussing the possibility of doing
you could to try to get the data published in time
for the IARC monograph meeting, correct?
A Yeah.
Q But then after we -- after you determined
and found out what the data showed with respect to
glyphosate and these cancers, the data wasn't
published, correct?
A The paper wasn't finished, and you have
to finish things in the analysis and the writing
before you can publish it.
Q Okay. So let's go back then to what the
IARC analysis was and what the working group did.
So the IARC working group then in its
analysis of the epidemiology was relying upon -- was
not relying upon the most up-to-date AHS data,
correct?
A It was relying upon the most up-to-date
published data, and that's always the standard at
IARC.
Q I understand. But just so the record is
clear, IARC was not relying upon the most updated
analysis that you were aware of from the AHS data
with respect to glyphosate and non-Hodgkin lymphoma,
correct?
A Now you present it as if the analyses

```
some analyses of NHL and multiple myeloma and
```

some analyses of NHL and multiple myeloma and
glyphosate in time to get those published for the
glyphosate in time to get those published for the
IARC analysis, right?
IARC analysis, right?
A Yeah.
A Yeah.
Q And at that time you offered Dr. Pahwa
Q And at that time you offered Dr. Pahwa
whatever help she needed to see if you could get that
whatever help she needed to see if you could get that
data published, and this is before you saw what the
data published, and this is before you saw what the
data was, correct?
data was, correct?
A I don't remember about that. Maybe.
A I don't remember about that. Maybe.
I -- I just don't remember about that.
I -- I just don't remember about that.
Q So --
Q So --
A I mean about whether I had seen the --
A I mean about whether I had seen the --
any data or not. I mean tables come out. There's --
any data or not. I mean tables come out. There's --
none of this is listed in -- glistened down in your
none of this is listed in -- glistened down in your
mind about where things are.
mind about where things are.
Q Well, if we can go back to Exhibit 14,
Q Well, if we can go back to Exhibit 14,
and that should be in your pile there, but I can give
and that should be in your pile there, but I can give
you another copy if you want if that would be easier.
you another copy if you want if that would be easier.
Dr. Blair.
Dr. Blair.
A Yeah.
A Yeah.
Q So-- so this, just to refresh our jury's
Q So-- so this, just to refresh our jury's
recollection, was prior to Dr. Pahwa going back and
recollection, was prior to Dr. Pahwa going back and
finding out what the data showed from NAPP for
finding out what the data showed from NAPP for
glyphosate and NHL or MM and -- or HL, Hodgkin
glyphosate and NHL or MM and -- or HL, Hodgkin
lymphoma. You were offering Dr. Pahwa whatever help
lymphoma. You were offering Dr. Pahwa whatever help
A Yeah.

```
    A Yeah.
```

were completed. Analyses were done, manuscripts were
in description, but the work wasn't finished, which
means it's incomplete, and that you don't want to be
reporting on. And we didn't.
Q So .. understood.
And because of the fact that you had not
completed the manuscript that was in at least
manuscript form in March of 2013 in time for it to be
a publication by March 2015, IARC didn't have that
information?
A That's correct.
Q Now, going back to this issue of
publication bias, did the Agricultural Health Study
decide not to include data regarding glyphosate and
non-Hodgkin lymphoma in its updated publication
because the data did not show a positive association?
A No. It decided to do pesticides first
because we proceeded -- insecticides first, we sort
of proceeded down that line early on and didn't think
we had time to switch and do the other when IARC
become clear that that's what they were going to look
at.
Q Now, you and other AHS investigators are
certainly aware, and we looked at some of this
discussion previously, that questions have arisen

208
about IARC's -- I won't say questions -- have arisen about IARC's classification of glyphosate, correct?

MR. MILLER: Objection to form.
Questions by whom, Monsanto?
BY MR. LASKER:
Q Well, let me put it this way: You're aware that Christopher Portier, we looked at one of his publications, has been defending the IARC classification of glyphosate by relying on the old data from the Agricultural Health Study to try and minimize the importance of that study, correct?
A Well, I guess as he reported about what IARC did, it was the -- there's no new published data from AHS to look at.

Q And --
A Is that what you're saying?
Q Well, Dr. Portier, though, as we looked at previously, in defending the IARC classification, has included arguments that the AHS data -- the AHS study in 2005 was of smaller numbers and limited follow-up. Remember we looked at that?

A Yes.
Q Okay. Nearly four years have passed now since you and the other AHS investigators looked at the updated and more robust AHS data and found no

Blair, Aaron Earl Ph.D. (In Re Roundup Prods. Liability Lit.) 3/20/2017 12:00:00 PM

```
```

association between glyphosate and non-Hodgkin

```
```

association between glyphosate and non-Hodgkin
lymphoma, correct?
lymphoma, correct?
MR. MILLER: Object to the form of the
MR. MILLER: Object to the form of the
question.
question.
BY MR. L.ASKER:
BY MR. L.ASKER:
Q You can answer.
Q You can answer.
MR. MILLER: You can answer.
MR. MILLER: You can answer.
EY MR. LASKER:
EY MR. LASKER:
Q I will repeat the question.
Q I will repeat the question.
A Yes.
A Yes.
Q Nearly four years have passed now since
Q Nearly four years have passed now since
you and other AHS investigators looked at the updated
you and other AHS investigators looked at the updated
data and saw that it did not show any association
data and saw that it did not show any association
between glyphosate and non-Hodgkin lymphoma, correct?
between glyphosate and non-Hodgkin lymphoma, correct?
MR. MILLER: And I object to the form of
MR. MILLER: And I object to the form of
the question because you intentionally leave out that
the question because you intentionally leave out that
it's not statistical.
it's not statistical.
THE WITNESS: Yes, we .- we've looked at
THE WITNESS: Yes, we .- we've looked at
some data like that, but we haven't looked at a
some data like that, but we haven't looked at a
finished product.
finished product.
BY MR. LASKER:
BY MR. LASKER:
Q Now, the updated AHS data would directly
Q Now, the updated AHS data would directly
answer the questions Dr. Portier raised about the
answer the questions Dr. Portier raised about the
size of the study and about the length of follow-up
size of the study and about the length of follow-up
time, correct?

```
```

time, correct?

```
```

 A Yes.
 Q But you and the other AHS investigators
 have, as of today's date in March 2017, not yet
published this updated AHS data on glyphosate,
correct?
A Correct
Q In fact, the AHS has actively sought to
prevent Monsanto from learning about this updated AHS
data, hasn't it?
A I .. I .. I don't know about that.
Q Weli, let me ask you - - let me show you
another e-mail from your document production to us.
(Blair Exhibit No. 22 was marked for
identification.)
BY MR. LASKER:
Q This is Defense Exhibit 22.
And this is an e-mail in which
Mr. Sandler is responding to your e-mail to him
attaching a copy of a subpoena we sent to you in this
litigation, correct?
A Yes.
Q Mr. Sandler notes --
A It's a woman.
Q I'm sorry?
A It's a woman.
2
3
4
5

```
\(\square\)
1
you, and Dr. Sandler .- just so I understand,
Dr. Sandler is with NIEHS?
    A Correct.
    Q The National Institute of Health?
    A Environmental Health Sciences.
    Q And Dr. Sandler notes in her e-mail back
that our subpoena to you was seeking the same AHS
papers and requests for data that Monsanto had
separately sought from the AHS investigators
affiliated with the National Institutes of Health
through a FOIA request, correct?
            MR. MILLER: Object to the form of the
question. Intentionally misrepresenting the
document. Read the document, Counsel.
BY MR. LASKER:
    Q Dr. Blair?
    A Apparently that's it.
    Q And Dr. Sandler states, quote: We were
hoping to make the Freedom of Information Act go away
by offering data through a data sharing agreement.
    Do you see that?
Q Oh, Ms. Sandler. Dr. Sandler?
    A Dr. Sandler.
    Q Dr. Sandler. Thank you.
    Dr. Sandler notes that our subpoena to
```

```
```

A I do.

```
```

A I do.
Q But - - and then Dr. Sandler says: "It's
Q But - - and then Dr. Sandler says: "It's
probably time to seek protection from NA ... NIH
probably time to seek protection from NA ... NIH
lawyers." Correct?
lawyers." Correct?
A Yes.
A Yes.
Q So the AHS investigators at the National
Q So the AHS investigators at the National
Institutes of Health were seeking protection from
Institutes of Health were seeking protection from
National Institutes of Health lawyers to prevent
National Institutes of Health lawyers to prevent
Monsanto from getting access to the updated AHS data
Monsanto from getting access to the updated AHS data
showing no association between glyphosate and
showing no association between glyphosate and
non-Hodgkin lymphoma.
non-Hodgkin lymphoma.
MR. MILLER: Object to the form of the
MR. MILLER: Object to the form of the
question.
question.
THE WITNESS: Maybe they did. I'm
THE WITNESS: Maybe they did. I'm
just -- I see the e-mail. It's the only thing I know
just -- I see the e-mail. It's the only thing I know
about it.
about it.
BY MR. IASKER:
BY MR. IASKER:
Q Okay. But you received this e-mail,
Q Okay. But you received this e-mail,
correct? It's from your document production.
correct? It's from your document production.
A Yes. But I'm saying I see this e-mail
A Yes. But I'm saying I see this e-mail
and that's the only thing I know about this.
and that's the only thing I know about this.
Q You would agree that it's not appropriate
Q You would agree that it's not appropriate
for the National Institutes of Health to be seeking
for the National Institutes of Health to be seeking
protection from its lawyers to prevent Monsanto from
protection from its lawyers to prevent Monsanto from
learning that the updated AHS data showed no

```
learning that the updated AHS data showed no
``` learning that the updated AHS data showed no
```

212

212
His.
Q Do you think it's appropriate for the
National Institutes of Health to try and use legal
means to avoid providing Monsanto with updated
Agricultural Health Study data?
MR. MILLER: Object to the question.
Requires a legal conclusion and on a motion to quash
you've already lost, Counselor. And that's the third
time you've asked the witness the same question.
You're clearly harassing the witness.
BY MR. LASKER:
Q Do you think it's appropriate for the
National Institutes of Health to use its lawyers to
prevent Monsanto from getting updated AHS data that
shows no association between glyphosate and
non-Hodgkin lymphoma?
MR. MILLER: Objection to the question.
Calls for a legal conclusion on a motion to quash you
have already lost and will lose when you try again
You are harassing the witness. That is the fourth
time you have asked the same question. You have only
a certain amount of time left
Ask it again and there will be a fifth
objection.
MR. LASKER: Okay. So you are objecting

```
association between glyphosate and non-Hodgkin
```

association between glyphosate and non-Hodgkin
lymphoma, don't you?
lymphoma, don't you?
MR. MILLER: Objection. Calls for a
MR. MILLER: Objection. Calls for a
legal conclusion. We already had one subpoena
legal conclusion. We already had one subpoena
quashed.
quashed.
THE WITNESS: I guess I don't see -- give
THE WITNESS: I guess I don't see -- give
me your question again, because I don't see it here.
me your question again, because I don't see it here.
They're asking for data. That's the raw data.
They're asking for data. That's the raw data.
BY MR. LASKER:
BY MR. LASKER:
Q So do you believe -- well, strike that.
Q So do you believe -- well, strike that.
You would agree that it's not appropriate
You would agree that it's not appropriate
for the National Institutes of Health to turn to its
for the National Institutes of Health to turn to its
lawyers to protect it from Monsanto's efforts to
lawyers to protect it from Monsanto's efforts to
obtain updated Agricultural Health Study data with
obtain updated Agricultural Health Study data with
respect to glyphosate and non-Hodgkin lympioma, don't
respect to glyphosate and non-Hodgkin lympioma, don't
you?
you?
MR. MILLER: Objection to the question.
MR. MILLER: Objection to the question.
It calls for a legal conclusion, when you've already
It calls for a legal conclusion, when you've already
lost before the court.
lost before the court.
THE WITNESS: I don't think I can
THE WITNESS: I don't think I can
provide -- I mean there is a Freedom of Information
provide -- I mean there is a Freedom of Information
Act that government employees follow, so I --
Act that government employees follow, so I --
BY MR. LASKER:
BY MR. LASKER:
Q Let me ..
Q Let me ..
A -- I don't think I have any expertise in

```
 A -- I don't think I have any expertise in
```

to us finding out why the NIH has not given us the
update from the Agricultural Health study showing no
association between glyphosate and cancer --
MR. MILLER: I'm referring to the
National Institute of Health and their attorneys to
find out what their legal rights might be, Counselor
BY MR. LASKER:
Q And, Dr. Blair, perhaps counsel may try
to prevent you from answering this question one more
time, but I will ask you one more time.
MR. GREENE: Objection. I don't know if
Dr. Blair .-
MR. LASKER: He can answer that -- if
that's his answer, that's fine. I just want an
answer from him.
MR. GREENE: It's his position --
MR. LASKER: That's his -- if he has that
answer, that's fine. I need to hear an answer from
him, though. He's the witness.
MR. MILLER: What's the question,
Counselor?
BY MR. LASKER:
Q Dr. Blair, do you think it's appropriate
for the National Institutes of Health to use their
lawyers to prevent Monsanto from getting updated
Aaricultural Health Study data showina no association
between glyphosate and non-Hodgkin iymphoma?
MR. MILLER: And I object to the
question. This calls for a legal conclusion on the
harassing subpoenas that have been sent out by
Monsanto and have been quashed by this court as
recently as two weeks ago. You have now asked the
witness the same question six times. Ask it of the
National Institutes of Health attorneys. Ask it of
Judge Chhabria, see if Judge Chhabria will give it to
you.
BY MR. LASKER:
Q Dr. Blair, do you have an answer to my
question?
MR. MILLER: You don't have to answer
that.
MR. LASKER: He's not your witness.
MR. MILLER: He's not my witness, but
BY MR. LASKER:
Q Dr. Blair, do you have an answer to my
question?
A No.
Q All right. Dr. Blair, you have had the
opportunity to discuss the IARC classification with
various interested parties over the past three years.

# Blair, Aaron Earl Ph.D. (In Re Roundup Prods. Liability Lit.) 3/20/2017 12:00:00 PM 

```
correct?
 A In general, yes. Right.
 Q I would like to ask you about some of
those communications.
 (Blair Exhibit No. 23 was marked for
 identification.)
BY MR. LASKER:
 Q Marked as Exhibit 23. And this is an
e-mail string from March 23rd to March 25th of 2015
between you and a number of members of the IARC
staff, including Kurt Straif, Dana Loomis and Kate
Guyton, correct?
 A Yeah.
 Q And in the beginning of this e-mail
chain, which again is at the end of the physical
documents, or actually it's the third page in, you
are advising IARC about a number of press interviews
that you had conducted in the wake of the IARC
classification of glyphosate, correct?
 A Yes.
 Q And you state here that the reporters
questioned you about why the IARC evaluation of
glyphosate was different than those done earlier
elsewhere, correct?
 A Yes.
```

218
Q You stated -- I'm sorry, you state that your answer to the question was that, quote: New information becomes available over time. Right?

A Yes.
Q In discussing this new information, did you inform any of these reporters about the updated Agricultural Health Study data finding no association between glyphosate and non-Hodgkin lymphoma based upon a study that was three to four times larger than the 2005 AHS paper?

MR. MILLER: Objection to the form of the question.

THE WITNESS: No, because we're talking about papers that are published.
BY MR. LASKER:
Q Is there any rule that reporters impose
like IARC imposes that prevents you from informing them about scientific data if it's not published?

A There is when talking about the IARC data, which is based on published studies.

Q Well, did the reporters -- here you're saying new information becomes available over time. Did you tell those reporters, Listen, I'm only going to talk to you about the published data and not the unpublished data that I'm aware of?

```
 A No, I certainly didn't do that.
 Q You've also had a --
 A Let me add to that, though. Yes, I
didn't do that, but it's only prudent and appropriate
to talk about studies that are finished before you
start talking to the press about them.
 Q And --
 A Because things change.
 Q And it's your decision with the AHS, as
an AHS investigator, to determine and decide when
you're going to try and submit things for them to be
published, correct?
 A Absolutely.
 Q You've also had a number of discussions
with a reporter named Carey Gillam, correct?
 A Yes, I think so.
 Q Did you ever tell Carey Gillam about the
updated AHS data showing no association between
glyphosate and non-Hodgkin lymphoma?
 A No.
 Q Now, Ms. Gillam reached out to you in
September of 2016, and let me show you the document
because I don't know if you will remember this.
 And let's this .. we will mark this as
Exhibit 24.
```

220

2
3
BY MR. LASKER:
Q And this is an e-mail exchange between
you and Carey Gillam, correct?
A Yes.
Q And in this e-mail she is reaching out to
you in September 2016 after a phone call she had with
Chris Portier, correct?
A Yes.
$Q$ And again, we've discussed the fact that
Chris Portier has been critical of the published 2005
AHS study because of what he viewed as limited
numbers and limited use of follow-up, correct?
A Yes.
Q Did the issue of the AHS study come up
during this conversation with Ms. Gillam?
A The issue of the AHS study?
Q Yes. And Dr. Fortier's criticisms of
that study.
A I - I don't recall.
Q Do you recall if Ms. Gillam was following
up on Chris fortier's observations about the 2005 AHS
study?
A Well, she had talked to him, but I --

```
nothing do I remember specific what was in the
conversation she had with him.
 Q But you do know that you did not tell her
about the updated AHS data we've been discussing,
correct?
 A. Correct
 Q You also contacted -- you were also
contacted by someone named Marie-Monique Robin,
correct?
 Well, let me show you --
 A Is there a document here somewhere?
 Q There will be. It's the next one in
line. Just wait a second.
 A Doesn't ring a bell.
 MR. LASKER: This will be Defense
Exhibit 25.
 (Blair Exhibit No. 25 was marked for
 identification.)
 MR. MILLER: Thank you. 25.
 MR. LASKER: 25.
BY MR. LASKER:
 Q And so this is an e-mail in August of
2016 from Marie-Monique Robin to you, correct?
 A Yes
 Q And in her e-mail to you, Ms. Robin
```

222
explains that she is the author of a number of books
that have been sharply critical of Monsanto and
glyphosate, including, quote, Our Daily Poison,
correct?

A I assume that is in there somewhere,
but -
Q It's right at the beginning of her e-mail
to you. "I am the author of documentaries and books,
The World According to Monsanto, Our Daily Poison .-
A Okay. Yes.
Q -- Crops of the Future, Good Old Growth.
A Yes.
Q And she also in that e-mail in the next
paragraph accuses Monsanto of crimes against the
environment and the ecosystem because of its sales of
glyphosate, correct?
A Well, I don't see exactly the words you
just read, but
Q Well, she talks about submitting --
and about halfway through, she talks about making
recommendations to the International Criminal Court
in The Hague to recognize the crime of ecocide.
Do you see that?
A Okay.
Q So she is suggesting that Monsanto should
be tried in the International Court -- Criminal Court
in the Hague, correct?
A I -- I guess. I mean this is not
something I -- I mean this sounds legal that I .. I
can guess what the words say, but I have no idea what
that means.
Q And Ms. Robin was referred to you by
Kathryn Guyton of IARC, correct? That's what her
subject line says.
A Yes.
Q Do you know why IARC suggested that
Ms. Robin speak with you about glyphosate and her
views about the International Criminal Court?
A No.
Q Do you believe
A Other than I assume it's because I was on
the IARC panel.
Q Do you believe that the sale of
giyphosate amounts to a violation of international
criminal law?
A I -
MR. MILLER: Calls for a legal
conclusion.
THE WITNESS: Yeah, I -.
BY MR. LASKER:

224

```
Q You don't have an opinion one way or the
other on that?
 A No.
 Q Did you --
 MR. LASKER: Whoever is on the phone, if
they could moot .. mute their line, please.
 MR. MILLER: Is anyone on the phone?
 MS. WAGSTAFF: Yeah, Aimee Wagstaff. I
will put it back on mute.
 MR. MILLER: Thank you. Thank you,
Ms. Wagstaff.
BY MR. LASKER:
 Q Did you tell Ms. Fobin about the updated
Agricultural Health Study data that showed no
association between glyphosate and non-Hodgkin
lymphoma?
 A No.
 Q Okay. You were also contacted on
March 6th --
 A I did not tell her about the incompleted
AHS study --
 Q Understood.
 A -- that purports to show no -- yes.
Let's use those words from now on.
 Q And again, as an investigator for the
Q You don't have an opinion one way or the
```

$$
8
$$

[
from Mr. A Martin from Bloomberg News, correct?

```
```

```
AHS, it was your determination whether to submit that
```

```
AHS, it was your determination whether to submit that
```

```
AHS, it was your determination whether to submit that
```

```
AHS, it was your determination whether to submit that
data for publication or not, correct?
 A Ves. Not mire; authors.
 Q You were one of --
 A I'm just one of the authors.
 Q -- the authors. Okay.
 (Blair Exhibit No. 26 was marked for
 identification.)
 identification.)
 identification.)
 identification.)
 THE WITNESS: Are we done with the one we
 THE WITNESS: Are we done with the one we
 THE WITNESS: Are we done with the one we
 THE WITNESS: Are we done with the one we
just looked at?
just looked at?
just looked at?
just looked at?
 MR. LASKER: Yes, we are.
 MR. LASKER: Yes, we are.
 MR. LASKER: Yes, we are.
 MR. LASKER: Yes, we are.
BY MR. LASKER:
BY MR. LASKER:
BY MR. LASKER:
BY MR. LASKER:
 Q So Exhibit 26, now you have an inquiry
 Q So Exhibit 26, now you have an inquiry
 Q So Exhibit 26, now you have an inquiry
 Q So Exhibit 26, now you have an inquiry
from Mr. A Martin from Bloomberg News, correct?
Andrew Martin?
Andrew Martin?
Andrew Martin?
Andrew Martin?
 A Yes.
 A Yes.
 A Yes.
 A Yes.
 Q And in his e-mail to you on March 24th,
 Q And in his e-mail to you on March 24th,
 Q And in his e-mail to you on March 24th,
 Q And in his e-mail to you on March 24th,
2016, he states, quote: I wonder if you would be
2016, he states, quote: I wonder if you would be
2016, he states, quote: I wonder if you would be
2016, he states, quote: I wonder if you would be
willing to talk about the pesticide -- pesticide
industry's response to the IARC report on glyphosate,
in particular criticism that was specific to you.
 Do you see that?
 Do you see that?
 Do you see that?
 Do you see that?
 A Yes.
 A Yes.
 A Yes.
 A Yes.
 Q And you in response to this reach out to
 Q And you in response to this reach out to
 Q And you in response to this reach out to
 Q And you in response to this reach out to
 IARC asked them what -- what this might be about,
 IARC asked them what -- what this might be about,
 IARC asked them what -- what this might be about,
 IARC asked them what -- what this might be about,
 16. Ie, monder f You would ber
```

```
 16. Ie, monder f You would ber
```

```
 16. Ie, monder f You would ber
```

```
 16. Ie, monder f You would ber
```

```
\[
9
\]
```

,
correct? You reach out to Kathryn Guyton and Kurt
Straif of IARC.
You have to go backwards. It's the first
page that has your response.
A Well, I certainly referred him to IARC.
I --
Q Well, you reach out to IARC and say, any
idea of what criticisms he is referring to -
idea of what criticisms he is ref
A Okay, yes. I see it
A Okay, yes I see
$Q \quad-$ or any advice.
A Yes. Right.
Q So you asked IARC for advice as to how to
respond to Andrew Martin from Bloomberg News.
A The -- actually, the decision was always
who was going to talk to whom. IARC people talk to
some, I talk to other people, and it was just a
decision of who was going to talk to him.
Q So IARC in their response to you state
that Mr. Martin might be talking about two potential
criticisms, correct? There are two potential issues
that Mr. Martin might be talking about two potential
criticisms, correct? There are two potential issues
that come to mind?
A This is the top?
$Q$ The top e-mail.
A Yes.
Q And the first potential criticism that
,

## Blair, Aaron Earl Ph.D. (In Re Roundup Prods. Liability Lit.) 3/20/2017 12:00:00 PM

about experts reviewing their own work .-
A Yes.
Q - which is the issue that you had raised
at the very beginning of this process, correct?
A Yes.
$Q$ And Mr. Straif of IARC refers you to some
IARC Q\&A in response to those criticisms regarding
IARC's treatment of the Agricultural Health Study,
correct?
"We have posted additional material on
our website responding to some criticisms." Do you
see that?
A This is still in the top?
Q Yeah, the top e-mail, the third
paragraph: After the latest invitation to the
European farliament, we have posted additional
materials on our website" --
A Okay. Okay. Yes. All right.
Q -- "responding to some criticisms
including the AHS issue." Correct?
IARC identifies is the issue of the negative AHS
study outweighing the positive studies on non-Hodgkin
lymphoma, correct?
A Okay. Yes.
Q And the second potential criticism is

IARC identifies is the issue of the negative AHS

```
A Okay. Yes.
```

A Okay. Yes.
Q So let's take a look at that IARC Q\&A
Q So let's take a look at that IARC Q\&A
document.
document.
(Blair Exhibit No. 27 was marked for
(Blair Exhibit No. 27 was marked for
identification.)
identification.)
EY MR. LASKER:
Q Exhibit 27. And this is from the IARC
website dated March 1st, 2016. So this is a few
website dated March 1st, 2016. So this is a few
correct?
A Yes.
Q So this is the Q\&A on glyphosate that
IARC refers you to with respect to the criticisms of
the AHS study, correct?
A Yes.
Q Now, with respect to the Agricultural
Q Now, with respect to the Agricultural
the middle of the page in bold a discussion of the
Agricultural Health Study and the criticisms of
Agricultural Health Study and the criticisms of
response. Correct?
A Yes.
Q And IARC in its Q\&A states: "The
Agricultural Health Study has been described as the
most powerful study, but this is not correct. The
228


Monsanto - IARC / Glyphosate
Page 225-228

```
```

AHS data on cancer and pesticides use in more than

```
```

AHS data on cancer and pesticides use in more than
50,000 farmers and pesticide applicators in two
50,000 farmers and pesticide applicators in two
states in the U.S., the weakness of the study is that
states in the U.S., the weakness of the study is that
people were followed up for a short period of time,
people were followed up for a short period of time,
which means fewer cases of cancer would have had time
which means fewer cases of cancer would have had time
to appear." Correct?
to appear." Correct?
A Yes.
A Yes.
Q But as of this date, you were aware and
Q But as of this date, you were aware and
had been for three years that there was more AHS data
had been for three years that there was more AHS data
that had a longer follow-up and some four times more
that had a longer follow-up and some four times more
cases of NHL than had been discussed in the 2005
cases of NHL than had been discussed in the 2005
published paper, correct?

```
published paper, correct?
```

A Yes. For analyses that had not been completed.
Q Did you write back to Kurt Straif at IARC and point out that there is actually more updated data available from the AHS and that this criticism was no longer valid?
A. No, because IARC works on papers that have been published.
Q And the IARC Q\&A also refers in that last - - second paragraph, last paragraph in response to the questions about the Agricultural Health Study that the IARC working group had done an analysis -statistical analysis of the results of all of the

```
 A Yes. For analyses that had not been
```

    A Yes. For analyses that had not been
    completed.
completed.
Q Did you write back to Kurt Straif at IARC
Q Did you write back to Kurt Straif at IARC
and point out that there is actually more updated
and point out that there is actually more updated
data available from the AHS and that this criticism
data available from the AHS and that this criticism
was no longer valid?
was no longer valid?
A No, because IARC works on papers that
A No, because IARC works on papers that
have been published.
have been published.
Q And the IARC Q\&A also refers in that
Q And the IARC Q\&A also refers in that
statistical analysis of the results of all of the

```
statistical analysis of the results of all of the
```

```
```

```
 identification.)
```

```
```

        identification.)
    ```
```

```
 identification.)
BY MR. LASKER:
BY MR. LASKER:
BY MR. LASKER:
Q Now, Dr. Blair, does EPA have any rule
Q Now, Dr. Blair, does EPA have any rule
Q Now, Dr. Blair, does EPA have any rule
that states that it will not look at data unless it's
that states that it will not look at data unless it's
that states that it will not look at data unless it's
been published, to your knowledge?
been published, to your knowledge?
been published, to your knowledge?
 A Not to my knowledge.
 A Not to my knowledge.
 A Not to my knowledge.
 Q Okay. So this is an e-mail chain from
 Q Okay. So this is an e-mail chain from
 Q Okay. So this is an e-mail chain from
 Q Okay. So this is an e-mail chain from
 Q Okay. So this is an e-mail chain from
 Q Okay. So this is an e-mail chain from
Natasha Henry. Did you in fact meet with EPA about
Natasha Henry. Did you in fact meet with EPA about
Natasha Henry. Did you in fact meet with EPA about
glyphosate on or about May 2016?
glyphosate on or about May 2016?
glyphosate on or about May 2016?
 A I'm trying to remember whether we met or
 A I'm trying to remember whether we met or
 A I'm trying to remember whether we met or
just talked. I actually don't remember.
just talked. I actually don't remember.
just talked. I actually don't remember.
 Q Okay. Do you recall if you've had more
 Q Okay. Do you recall if you've had more
 Q Okay. Do you recall if you've had more
than one conversation with EPA about glyphosate?
than one conversation with EPA about glyphosate?
than one conversation with EPA about glyphosate?
 A I had two conversations with this person.
 A I had two conversations with this person.
 A I had two conversations with this person.
But two for sure.
But two for sure.
But two for sure.
 Q Okay. And did you tell Dr. Henry or
 Q Okay. And did you tell Dr. Henry or
 Q Okay. And did you tell Dr. Henry or
anyone else at EPA about the updated AHS findings of
anyone else at EPA about the updated AHS findings of
anyone else at EPA about the updated AHS findings of
no association between glyphosate exposure and AH --
no association between glyphosate exposure and AH --
no association between glyphosate exposure and AH --
and non-Hodgkin lymphoma that are set forth in that
and non-Hodgkin lymphoma that are set forth in that
and non-Hodgkin lymphoma that are set forth in that
2 0 1 3 \text { study we just looked at?}
2 0 1 3 \text { study we just looked at?}
2 0 1 3 \text { study we just looked at?}
 A No, because the studies weren't finished
 A No, because the studies weren't finished
 A No, because the studies weren't finished
and weren't published.
and weren't published.
and weren't published.
 Q But we just talked about the fact that
 Q But we just talked about the fact that
 Q But we just talked about the fact that
```

EPA does not limit its anal--- analysis to published

```
```

```
```

```
EPA does not limit its anal--- analysis to published
```

```
```

```
```

EPA does not limit its anal--- analysis to published

```
```

```
```

```
EPA does not limit its anal--- analysis to published
```

```
```

```

1 d
```

data, correct?

```
data, correct?
 A But it makes a difference to scientists
to not release things before you're finished with it.
And that was the case here.
 Q Did EPA ask you any questions about the
AHS?
 A I don't remember.
 Q And you are aware that EPA has -- is in
the process of -- of conducting its amalysis and has
issued some findings with respect to glyphosate and
cancer, including non-Hodgkin lymphoma, correct?
 A I've seen it in the press.
 Q EPA, in reaching that determination, has
not had the benefit that you have of having seen the
updated Agricultural Health Study data showing no
association between glyphosate and non-Hodgkin
lymphoma, correct?
 A correct.
 Q Now, you've also been contacted by
plaintiffs' attorneys in this litigation, correct?
 A Yes.
 Q Let me mark as the next exhibit in line,
Exhibit 29.
 (Blair Exhibit No. }29\mathrm{ was marked for
 identification.)
Q And you are aware that ERA has is in
*
```

```
available studies on alvphosate and non-Hodakin
lymphoma, which includes the AHS and all the
case-control studies, and that's referring to the
meta-analysis, correct?
 Q And the Q&A states that the data from all
the studies combined showed a statistically
significant association between non-Hodgkin lymphoma
and exposure to glyphosate, correct?
 A Correct.
 Q And did you write back to Kurt Straif and
point out that there was updated both from the
Agricultural Health Study and through the NAPF that,
if included, would result in that meta-analysis not
showing a statistically significant increased risk of
non-Hodgkin lymphoma?
 A No, because those studies hadn't been
published and weren't finished.
 Q Now, you have also had conversations
since the IARC glyphosate monograph with scientists
at EPA, correct?
 A Yeah, I guess. I --
 MR. LASKER: Let's mark this as
Exhibit 28.
 (Blair Exhibit No. 28 was marked for
```

```
A Yes.
```

```
A Yes.
```

```
(Blair Exhibit No. 28 was marked for
```

3
4.

Blair, Aaron Earl Ph.D. (In Re Roundup Prods. Liability Lit.) 3/20/2017 12:00:00 PM

```
MR. MILLER: 28. I could be wrong.
MR. LASKER: This is 29.
THE WITNESS: This is 29
MR. MILLER: Okay, 29 it is.
BY MR. LASKER:
 Q And this is an e-mail exchange between
you and Kathryn Forgie, who is sitting at the end of
this table, at the Andrus Wagstaff law form -. law
firm, correct?
 A. Yes.
 Q And did you in fact meet with Ms. Forgie
or any other plaintiffs' attorneys in December 2015?
 A Well, I must admit I don't remember, but
this sounds like I did. So I must have.
 Q Well, let me ask you --
 A I know I talked to her.
 Q Separate from this document, you've
had -- you've had a conversation with plaintiffs
counsel.
 A Absolutely. Yes.
 Q How many conversations have you had with
plaintiffs' counsel in this litigation prior to
today?
 A Well, it -- I'm not sure I can give a
precise answer, but not many.
```

```
 Q A haif dozen?
 A I don't think it was that many, but I
don't know for sure.
 Q Three or four?
 A That would be my guess, three or four.
 Q And what -- what did you and plaintiffs'
counsel discuss during these conversations?
 A Well, as I recall, they were asking about
what went on at IARC and I think whether or not I
would provide advice regarding this. And I said no.
 Q Did they ask you any questions about your
own scientific research including the Agricultural
Health Study?
 A I don't remember.
 Q Do you recall if you shared with
plaintiffs' attorneys any information about either
the North American Pooled Project or the Agricultural
Health Study analyses that were still going forward?
 A I doubt it.
 Q You said you had three or four
conversations witin plaintiffs' counsel.
 A No, I said I guessed.
 Q So the first conversation, was the issue
of whether or not you would serve as an expert
witness raised?
```

```
 A Well, I'm not sure whether it was the
first conversation or which one. I --
 Q So there were a series of conversations
in which you guys were discussing the possibility,
three to four conversations; Is that fair?
 A There was more than one. I don't
actually know what the number was. But adding the
numbers, it's more than one. That's all I know for
sure.
 Q Do you recall how long these conversation
lasted?
 A Not long.
 Q Let me show you an e-mail from May of
2016. And this is an e-mail exchange between you and
a Dr. Weisenburger. Do you who Dr. Weisenburger is?
 A I do.
 Q Who is Dr. Weisenburger?
 A He is a cancer researcher.
 MR. MILLER: May I have a copy, please.
Exhibit 30? Maybe it is behind there.
 MR. LASKER: I'm sorry. I did that.
Just -- sorry.
 MR. MILLER: Sure. Okay. Exhibit 30.
 (Blair Exhibit 30 was marked for
 identification.)
```

```
BY MR. LASKER:
 Q Okay. So this is an e-mail that was
forwarded to you from Dr. Weisenburger. Again, I'm
sorry, I missed it. Who was Dr. Weisenburger?
 A Pardon?
 Q Who is Dr. Weisenburger?
 A He's a pathologist who does epidemiologic
studies like I do.
 Q And he -- he actually is one of the other
investigators with you on the North American Pooled
Project?
 A He is.
 Q And so he also would be aware and would
have been aware of this analysis of the NAPP data
that we looked at earlier before the IARC
monograph -
 A Well, probably, but there's a lot of
co-authors in that study and they get informed at
different times, depending on where you are in the
analysis, and I don't remember about this one.
Eventually he would be informed if he wasn't then.
 Q And so Dr. Weisenburger here --
Dr. Weisenburger, these e-mails reflect, is serving
as an expert witness for plaintiffs' counsel,
correct?
BY MR. LASKER:
\(Q\) Okay. So this is an e-mail that was
forwarded to you from Dr. Weisenburger. Again, I'm
A Pardon?
\(Q \quad\) Who is Dr. Weisenburger?
A He's a pathologist who does epidemiologic studies like I do.
Q And he -- he actually is one of the other investigators with you on the North American Pooled Project?
A He is.
Q And so he also would be aware and would have been aware of this analysis of the NAPP data that we looked at earlier before the IARC monograph --
A Well, probably, but there's a lot of co-authors in that study and they get informed at different times, depending on where you are in the analysis, and I don't remember about this one. Eventually he would be informed if he wasn't then.
```

236

```
 I think so.
 You have had conversations --
 Yes.
 -- with him where he's told you that,
correct?
 A Yes
 And in this e-mail he is passing on to
you, he is letting you know that plaintiffs' counsel
have contacted him about discussing his first case,
correct?
 A Yes
 Q What did Dr. Weisenburger tell you about
his meetings with plaintiffs' counsel regarding this
litigation?
 MR. MILLER: Objection.
 THE WITNESS: I .. I .. I don't remember
BY MR. LASKER:
 Q Do you recall having conversations with
him about the NAPP data and how and when that might
be published?
 A I'm sure we had conversations about that.
 Q Well
 A I don't remember details, but I'm sure we
had conversations
 Q Okay. You had mentioned earlier with
```


## 238

respect to the NAPP that there has been a number of -- more than one presentation of that data to date, correct?

A Well, two for sure. Maybe more than that.

Q And during that process, the NAPP
investigators, you and Dr. Ferguson and other -Dr. Weisenburger, I'm sorry, and others have been looking at the data in different ways, correct, and reporting it in different ways? Is that fair to say?

A We've been looking at the analyses that have been done trying to make judgments about what it says. Is that what you mean?

Q Well, in your presentation of the data, the data you're presenting had been changing over time, correct?

A I don't actually know whether that's true or not.

Q Okay. Well, let me show you an e-mail exchange between NAPP investigators -- actually, before we get to that, let's just refer back to Exhibit 29, which is the e-mail exchange between you and Ms. Forgie, plaintiffs' counsel

And if you look at the first e-mail in
that chain, it's dated -- again, it's the last page,

```
so the second to the last page or the last page of
the document. It's from Ms. Forgie to you, and it
states: "Dear Dr. Blair" -- and this is dated on
August 20, 2015, correct? Go to the last page.
 So Ms. Forgie sent you this e-mail,
plaintiffs' counsel, on August 20, 2015, correct?
 A August 20. I thought you said August 15.
August 20.
 Q And in this e-mail, plaintiffs' counsel
indicates that they have spoken to you twice with
regard to pesticide exposure and cancer, and she
notes that she is an attorney with Aimee wagstaff,
correct?
 A Okay. Yes.
 Q Okay. So I just want to put that in
time.
 If we can go back now to what has been
marked as Exhibit 31. This is now an e-mail exchange
on August 26, 2015, correct? I'm sorry.
 A I don't have 31.
 (Blair Exhibit No. }31\mathrm{ was marked for
 identification.)
 MR. LASKER: I'm sorry, I need to give
you one here. Let me finish this process.
 MR. MILLER: 31?
```

```
 MR. LASKER: }31
 MR. MILLER: 31.
```

BY MR. LASKER:
Q So this is -- this e-mail is about a week
after your e-mail exchange with plaintiffs' counsel,
correct?
A Yes. Yes. August 20-- 26th.
Q So if we can now look at the earliest
e-mail in this string, Exhibit 3I, so, again, you got
to go back to the end and read forward, Dr. Pahwa is
advising you and other NAPP investigators that she
was going to be presenting findings about glyphosate
use and NHL risk at the International Society for
Environmental Epidemiology in August -- on
August 31st, 2015, correct?
A Yes.
Q And she states in her e-mail, the very
last line, that she is sharing her slide deck for
that presentation with you all in advance, quote,
given the sensitivity of the topic, correct?
A Yes.
Q And in your e-mail response, which is
starts on the bottom of the first page of this
document and then continues through the second page,
you state that Dr. Pahwa will need to be prepared for

```
questions after the presentation and that the -- the
question is going to be, Do these data indicate that
the IARC evaluation was wrong?
 Do you see that?
 A It's on the first page?
 Q It's on the second page.
 A Yes.
 Q And you also suggest alerting IARC in
advance of the meeting, correct?
 A Yes.
 Q Now, you do not suggest alerting Monsanto
to the NAPP data, do you?
 A No.
 Q And if you look at page - - the first page
of this e-mail chain, in fact, you were concerned
that Monsanto might be, quote, scanning programs of
meetings like ISEE and might find out about the NAPF
findings, correct?
 A Well, if you're presenting at a meeting,
you can't be concerned about them finding it because
again
 Q Doctor --
 A -- it's at the meeting.
 Q Dr. Blair, do you see --
 MR. MILLER: Don't. Stop. Let him -- I
```

object.
Doctor, if you want to finish the answer,
go right ahead.
MR. LASKER: I'm sorry.
MR. MILIER: He doesn't have the right to
interrupt you.
BY MR. LASKER
Q I'm sorry, did you have more to say? I
thought you were finished.
A It's - if you're presenting at a
meeting, you would assume people might be able to get
something, and you just want to be prepared to deal
with questions that might come. It's known that this
is pretty topical.
Q You state in your e-mail that, quote: I
just suspect Monsanto has someone scanning programs
of meetings like ISEE and would want to get press if
they can. Correct?
A Yes. Yes.
Q And you were worried about that
possibility, correct?
A Worried about the person presenting not
being prepared to address questions that are relevant
to them.
Q And for that reason, you decided -- you

```
told Dr. Pahwa that she should alert IARC in advance,
correct?
 A Because it would affect what IARC gets,
yeah.
 Q Now, let me show you another e-mail that
branches off in this e-mail chain of Exhibit 31,
Exhibit 32.
 (Blair Exhibit No. }32\mathrm{ was marked for
 identification.)
 MR. MILIEER: 32.
 MR. LASKER: 32.
 MR. MILLER: Gotcha.
BY MR. LASKER:
 Q And this e-mail chain sort of branches
off from the earlier e-mail chain, and the second
e-mail in this chain starting from -- again, we've
got to go to the back, so we have to read this
backwards, I apologize .- but the second to the last
page, there is an e-mail that was sent by you at
4:11 p.m. on August 26, 2015.
 Do you see that?
 A Yeah.
 Q So that e-mail was sent -- and, I'm
sorry, to make you do this, if you go back to
Exhibit 31 -- this e-mail was sent roughly nine hours
```

after you -- after you had raised the issue of the
questions that Dr. Pahwa might receive about her
presentation, correct?
A Okay.
Q And as set forth in this e-mail now at
4:11 p.m., and Dr. Pahwa's responding e-mail at 4:22,
Dr. Pahwa had revised her slide presentation in
response to comments she had received from you and
from the other NAPP investigators, correct?
A Yes.
Q She also states that the abstract of the
NAPF findings for glyphosate and non-Hodgkin
lymphoma, quote: Does not appear on the ISEE website
or in the conference program. Correct?
A Yes.
Q So she addressed your concern about the
possibility that Monsanto might learn about these
NAPP findings. Correct?
A Yes.
Q Dr. Pahwa agrees with you that it would
be best for her not to deal with any potential press
at the COP conference about her NAPP findings,
correct?
A Yes.
Q She states, though, that she will prepare

Blair, Aaron Earl Ph.D. (In Re Roundup Prods. Liability Lit.) 3/20/2017 12:00:00 PM

```
```

some talking points, and that she will share them

```
```

some talking points, and that she will share them
with you and the rest of the group prior to the
with you and the rest of the group prior to the
conference, correct?
conference, correct?
A Yes.
A Yes.
Q In response, you again suggest that the
Q In response, you again suggest that the
abstract and the slide deck should be shared with
abstract and the slide deck should be shared with
IARC prior to the ISEE conference, correct?
IARC prior to the ISEE conference, correct?
A Yes.
A Yes.
Q So even though you now were sure that
Q So even though you now were sure that
Monsanto was unlikely to learn about the NAPP
Monsanto was unlikely to learn about the NAPP
findings, you still wanted IARC to be prepared in the
findings, you still wanted IARC to be prepared in the
event that the findings somehow got out to the
event that the findings somehow got out to the
press --
press --
A Yes.
A Yes.
Q - correct?
Q - correct?
A Yes.
A Yes.
Q And then you prepared some talking points
Q And then you prepared some talking points
for Dr. Pahwa in case she was questioned about the
for Dr. Pahwa in case she was questioned about the
NAPP findings and how they relate to the IARC
NAPP findings and how they relate to the IARC
evaluation, correct?
evaluation, correct?
A Which - where are you reading --
A Which - where are you reading --
Q The first page now, the last e-mail: "I
Q The first page now, the last e-mail: "I
think we also should provide some suggested talking
think we also should provide some suggested talking
points in case" --
points in case" --
A Okay, yes. First page, yes.

```
```

    A Okay, yes. First page, yes.
    ```
```

246
O. So vou prenared some talkina Doints for
Dr. Pahwa just in case -.
A Yes.
Q -- she was asked about IARC?
A Yes.
Q Now, Dr. Pahwa gave a subsequent
presentation about the NAPP findings in connection
with IARC's 50th anniversary conference in June 2016,
correct?
A Yes.
Q Let me show you an e-mail chain with
respect to that presentation. And this is going to
be 33 .
(Blair Exhibit No. 33 was marked for
identification.
BY MR. LASKER:
Q And this is the e-mail chain between
various of the NAPP investigators, including
Dr. Cantor, correct?
A Yes.
Q And you are on there as well.
A From Dr. Cantor, yes.
Q Who is Dr. Cantor?
A He is a retired epidemiologist from the
Narional Cancer Institute.

245

```
 Q And Dr. Cantor actually was lead author
on one of the first studies on -- that reported data
on glyphosate and non-Hodgkin lymphoma, correct?
 A Correct.
 Q And in his original case-control study,
he did not find any association between glyphosate
and non-Hodgkin lymphoma, correct?
 A That's what I remember.
 Q But that data has now been pooled into
the NAPP, correct?
 A Yes.
 Q Now, in this e-mail chain, there is a
discussion of five abstracts that the NAPP was
preparing for the IARC conference, correct?
 A Yes.
 Q And one of these abstracts addressed the
NAPP findings that were going to be reported with
respect to glyphosate and non-Hodgkin lymphoma,
correct?
 A Yes.
 Q And Dr. Cantor in his e-mail talks
specifically about that abstract with respect to
glyphosate, correct?
 A Yes.
 Q And in his e-mail about the NAPP
```

248
findinas, Dr. Cantor states that the findings with
respect to glyphosate and NHL, quote, are less than
convincing given that control for other pesticides
resulted in attenuated $O R$, which aren't in the
abstract. Correct?
A Yes.
Q So we discussed earlier the NAPP data in
June 2015 which showed no association between
glyphosate and non-Hodgkin lymphoma when adjusted for
other pesticides. You recall that, correct?
A Yes.
Q And Dr. Cantor is explaining in his
e-mail now in January 2016 that the NAPP data still
did not show any statistically significant
association between glyphosate and non-Hodgkin
lymphoma when the data was controlled for other
pesticides, correct?
A Correct.
Q But in presenting the NAPF data for the
IARC meeting, the abstract only reports odds ratios
without controlling for other pesticide exposures.
correct?
A I don't remember.
Q Well, Dr. Cantor is expressing that
concern in this e-mail, correct, that the data on --

```
the control data is not reported in the abstract?
```

the control data is not reported in the abstract?
A Well, he suggests the last sentence be
A Well, he suggests the last sentence be
removed.
removed.
Q He states that: "Results in the second
Q He states that: "Results in the second
abstract glyphosate .- about glyphosate are less than
abstract glyphosate .- about glyphosate are less than
convincing given that control for other pesticides
convincing given that control for other pesticides
resulted in attenuated OR which aren't in the
resulted in attenuated OR which aren't in the
abstract."
abstract."
So this concern is that the presentation
So this concern is that the presentation
of the NAPP data was not making clear that when the
of the NAPP data was not making clear that when the
data was controlled for other exposures, there was no
data was controlled for other exposures, there was no
association between glyphosate and non-Hodgkin
association between glyphosate and non-Hodgkin
lymphoma?
lymphoma?
A I understand all that. I don't -- but
A I understand all that. I don't -- but
then he suggests it should be removed from the -- and
then he suggests it should be removed from the -- and
so I'm not clear whether he is suggesting remove it
so I'm not clear whether he is suggesting remove it
from the abstract for this meeting or from some later
from the abstract for this meeting or from some later
publication. I'm not clear about that
publication. I'm not clear about that
Q But his concern was that we were
Q But his concern was that we were
presenting -- the NAPP was presenting data without
presenting -- the NAPP was presenting data without
presenting the data on controlled --
presenting the data on controlled --
A Clear
A Clear
Q -- exposures with glyphosate and other
Q -- exposures with glyphosate and other
pesticides?
pesticides?
A Yes.

```
 A Yes.
```

```
exposures, have both those data in there?
 And if you look at the tables -- on the
bottom of those tables, they have ORA and ORB. So
ORA is the unadjusted numbers and ORE is the adjusted
numbers. Do you see that?
 A Yes.
 Q And so by presenting the unadjusted data,
NAPP was able to present data that it could report as
being statistically significant with respect to
glyphosate and non-Hodgkin lymphoma, correct?
 A Where on this table it says it's adjusted
for --
 Q Yes.
 A -- 2,4-D, diazinon and malathion.
 Q Right, that's ORB, correct?
 There's ORA and there's ORB, and you
present, unlike in June 2015 when you controlled for
other exposures and just presented the controlled
data, in this presentation you've now added in a
presentation of the uncontrolled odds ratios,
correct?
 A Oh, yes. If that's your point, yes. I
thought you were saying it was only presenting ORA.
Well, it presents both
 Q It presents both. And by presenting the
```

uncontrolled data, you therefore were able to present NAPP data to IARC that had a numerical number that was statistically significant, correct, with respect to glyphosate?

A That is the case, yes.
Q And unlike the June 2015 data we looked at, the June 2016 presentation does not provide any odds ratios that exclude proxy respondents and relied solely on the more reliable self-reported data, correct?

A Suggested for use of proxy respondents.
Q It does not - it does not present data solely for self-respondent data, though, correct?

A It's suggested for use of proxy -. proxy respondents.

Q I understand. My question is, it does not present data solely from self-reported --

A That --
Q -. correct?
A That adjustment does literally the same thing.

Q Weil, we know from the June 2015 data that when self-responded only data from the NAPP is used, the result is virtually null, with odds ratio of 1.04 for glyphosate and non-Hodgkin lymphoma,

```
correct?
 A Yes.
 Q But that information is no longer in the
presertation in 2%:6; thet's been -- correct?
 A It's adjusted for proxy respondents
 Q That data point, 1.04, showing a null
result from the most reliable exposure data for
glyphosate and non-Hodgkin lymphoma is no longer in
the presentation
 MR. MILLER: Objection. Asked and
answered. He said it's been adjusted.
 MR. LASKER: Okay. Now we have two
witnesses, but I will ask the question --
 MR. MILLER: No, you don't have two
wirnesses.
 THE WITNESS: Just say it again
 MR. MILLER: You have one lawyer who is
harassing one witness. He said it had been adjusted.
BY MR. LASKER:
 Q Dr. Blair --
 A say it again.
 Q -- the data with the 1.04 odds ratio that
was in the presentation in June 2015 that showed a
complete null result of ever versus never use for
glyphosate and non-Hodgkin lymphoma, is that 1.04
```

```
data point in this presentation?
 MR. MILLER: Objection. Asked and
answered.
 Go ahead, Doctor.
 THE WITNESS: I don't actuaIly know
whether it is, but there are a lot of data points
that are less than 1.0.
 You know, so is the one you're mentioning
in there, I -- I would have to pour through this
You may be right, but I'm saying there are a lot of
others in here that are less than 1.0
BY MR. LASKER:
 Q It's fair to say, Dr. Blair, that the
NAPP has presented different data, and presented
different data now in June 2016 for this IARC meeting
than it had presented in June 2015, correct?
 A Yes. And that's because analyses move
along and you do different things
 Q Okay. And this presentation in June 2016
was made -- and one of the authors, by the way, or
one of the listed authors on this June 2016
presentation is Dr. Weisenburger, correct?
 A Yes
 Q And Dr. Weisenburger as of this time we
know was already serving as an expert witness for
```

```
plaintiffs, correct?
 A Probably, yeah.
 Q Let's mark as the next exhibit in line an
e-mail you received from Dr. Weisenburger on
August -- in August 2016.
 (Blair Exhibit No. }35\mathrm{ was marked for
 identification.)
BY MR. LASKER:
 Q And this is Exhibit }35
 MR. MILLER: 35.
 MR. LASKER: 35.
 MR. MILLER: Got it
BY MR. LASKER:
 Q And again, so the record is clear, at the
time Dr. Weisenburger wrote this e-mail to you in
August 2016, he was serving as an expert witness for
plaintiffs in this litigation, correct?
 A I .. I don't know that, but you must have
the dates.
 Q Well, we can go back to this. He had
sent you an e-mail in .- in May 2016. I think that
was Exhibit 30 if you want to refer back.
 A No, that's --
 Q May 2016.
 A I'm just saying you asked me point blank
```

```
all these dates --
 Q Okay.
 A -- and immediately I do it, you start
fumbling through the paper. Just say, No, we got an
e-mail, and got it, and then we will move on. Okay?
 Q Well, I was trying to find the e-mail to
help refresh your recollection.
 A No, you weren't.
 Q Dr. Blair -- Dr. Blair, in May of 2016,
you had an e-mail that made it clear to you that
Dr. Weisenburger was serving as an expert for
plaintiffs in this litigation, correct?
 A Yes.
 Q Okay. So in August of - - let me get my
dates correct -- in August of 2016, you certainly
were aware of the fact that Dr. Weisenburger was
serving as an expert witness for the plaintiffs in
this litigation, correct?
 A Yes.
 Q And in his e-mail to you, he is pressing
for publication of the NAPP data as it had been most
recently presented at the IARC meeting, correct?
 A Yes.
 Q Dr. Weisenburger says, quote: It is
important to get our U.S.-Canadian paper on this
```


# Blair, Aaron Earl Ph.D. (In Re Roundup Prods. Liability Lit.) 3/20/2017 12:00:00 PM 

```
submitted soon as to be considered by the European
authorities in their review of glyphosate. Correct?
 A Yes. To be --
 MR. MILLER: You read the quote wrong.
 MR. LASKER: I'm sorry. I will read it
again.
 THE WITNESS: Yeah.
BY MR. LASKER
 Q I will read it again. The earlier
e-mail, and that's --
 A Yes. Okay. I'm sorry.
 No, it's okay, it's down in the bottom.
Only just "European authorities" was not in the line
you were reading and I was trying to follow.
 Q To be fair --
 A But it's down below. It's okay.
 Q To be fair, the e-mails below are between
Christopher Portier and Dr. Weisenburger, correct?
 A Yes. Yes.
 Q And Christopher portier is also an expert
witness for plaintiffs, correct?
 A I don't -- maybe I know that. But I
don't know
 Q I will represent to you that he has
because he's subpoenaed already for plaintiffs in
```

```
and get data published at ..
 A Absolutely.
 Q -- whatever time when you decide to do
so.
 A Absolutely.
 Q And prior to the IARC working group
meeting, you had data from the North American Pooled
Project, you had data from the Agricultural Health
Study, and you decided, for whatever reason, that
that data was not going to be published at that time,
and therefore was not considered by IARC, correct?
 A No. Again, you foul up the process.
What we decided was the work that we were doing on
these different studies were not yet -- were not yet
ready to submit to journals. Even after you decide
to submit them to journals for review, you don't
decide when it gets published.
 Q You submit --
 A. But first you have to decide is it ready
for submission; that the -- ail the authors are
satisfied with the analysis and interpretation, and
that's the process these papers are in.
 Q You submitted AHS data for pesticides in
2014, correct?
 A I -- again, I don't know what you're
```

258

```
this litigation
```

    A Okay
    Q So the first e-mail is between Chris
    Portier and Dennis weisenburger, two plaintiffs'
experts in the litigation, talking about the EU's
review of glyphosate, correct?
A Yes.
Q And then Dr. Weisenburger turns to you
and sends an e-mail saying, quote: It seems
important to get our U.S.-Canadian paper on this
submitted soon so it can be considered in this
review. Correct?
A. Correct.
Q And he is talking about the NAPP paper
that was now being --
A I -- I assume so. I'm sure that's the
case, yeah.
Q So -- and again, as one of the
investigators on the NAPP, you and Dr. Weisenburger
have the ability to publish data or not publish data
as you -- as you choose, correct?
A No. Dr. Weisenburger and $I$ and the many
other authors on the paper make the decision when
papers are ready for submission for publication.
Q So you certainly have the ability to try

```
from 2015 to 2016, they're now talking about how can
we get this published, aren't they?
 MR. MILLER: Object to the form of the
question.
 THE WITNESS: Well, that's not the words
I would use to describe what they're trying to do,
but that is okay.
 MR. LASKER: Let's take a brief break. I
may be done.
 THE VIDEOGRAPHER: Okay. The time is
3:10 p.m. We're going off the record.
 (Recess.)
 THE VIDEOGRAPHER: The time is 3:16 p.m.,
and we're back on the record.
BY MR. LASKER:
 Q Dr. Blair, I need you to turn to another
issue briefly. What is the Ramazzini Institute?
 A It's not an institute. It's an
association, a professional association.
 Q Have you ever done work for the Ramazzini
association?
 A No.
 Q Have you ever collaborated with the
Ramazzini association with respect to any scientific
research that you can recall?
```

```
and keep this moving.
 THE VIDEOGRAPHER: The time is 3:18 p.m.
We're going off the record.
 (Recess.)
 THE VIDEOGRAPHER: The time is 3:22 p.m.,
March 20th, 2017, and we are on the record with
video 4.
 REDIRECT EXAMINATION
BY MR. MILLER:
 Q Good aftermoon, Dr. Blair.
 A Afternoon.
 Q Again, I'm Michael Miller, and I started
out today asking questions, and I'm going to follow
up in response to the questions from Monsanto's
attorneys, ckay?
 A Okay.
 Q Okay. Now, you and I never met each
before today, have we?
 A I don't think so.
 Q No. I'm about your age. I'm not sure -.
yeah, our memories are what they are. But we've
never met each other, right?
 A Right.
 Q Okay. And we've never talked on the
phone, right?
```

```
 264
 A No, I don't think so.
 Q Okay. And to the extent you talked to
one lady lawyer out of Denver that asked you to be an
expert for plaintiffs, you said you would rather not
do that, right?
 A Right
 Q You wanted to stay impartial and neutral,
didn't you?
 A That's the way I look at it, yes.
 Q Your science is what s important to you?
 A Yes.
 Q Okay. Now, let's get over some of the
substance that was brought up by Monsanto's
attorneys
 One of the issues that he talked about,
and he showed you Exhibit 26, was an issue that
someone at IARC had e-mailed you about after -- is it
fair to say after IARC issued its report that
probably -- that glyphosate probably caused
non-Hodgkin lymphoma, there was quite a bit of
ruckus, if you will, about all that, wasn't there?
 MR. LASKER: Objection to form.
 THE WITNESS: Yes.
BY MR. MILIER:
 Q Okay. And one of the issues was that
```

262
A Not that I -- I don't think so. I -- I'm a member of it. I don't think I've ever done anything with them.

Q So you're -- you're a member. Does that mean you've gone to meetings?
A. I've been to one meeting.

Q Okay. Have you had any discussions with
anyone at Ramazzini regarding glyphosate?
I don't remember it, but $I$ guess it's possible.

MR. LASKER: Thank you, Doctor. I have no further questions.

I do have to .- just before I forget, there was one document that $\ldots$ and we can do this after you are done, but $I$ am remembering now, so I want to do it. There was one document that you used in your direct examination that was an e-mail that's confidential and under the protective order. So just that document, and it was really like maybe two or three questions about that document, we will designate as "Confidential" under the protective order.

```
 MR. MILLER: That is fair. Okay.
 MR. LASKER: And that's that.
 MR. MILLER: Great. Let's switch seats
```

```
there was this negative AHS study that you've been
talking about a lot with Monsanto's lawyers, right?
 A Yes.
 Q And there were the -- the positive
studies on non-Hodgkin Iymphoma, right?
 A Yes.
 Q So the issue is we're weighing the
positive case-control studies, more than a few of
them that the jury has heard of by now, that show the
association statistically significant between
glyphosate and non-Hodgkin lymphoma, and the negative
study, AHS, which really didn't show a statistically
significant association, right?
 A Correct.
 Q And you, Dr. Blair, are one of the
authors of that AHS study, right?
 A Yes.
 Q Yet when it came time to vote as a
volunteer scientist on the International Agency for
the Research for Cancer, you voted unanimously with
16 of your peers that there was a probable
association between glyphosate and non-Hodgkin
lymphoma, right?
 A Well, I voted that way. I think it was
unanimous. I don't actually remember.
```

                265
    266
    Q I understand. I understand.
    And you're not the only author of the AHS
    study that -- that thinks there is an association
between glyphosate and non-Hodgkin lymphoma, are you,
sir?
MR. LASKER: Objection to form.
THE WITNESS: I actually don't know the
answer to that
MR. MILLER: What's our next number
exhibit?
MR. LASKER: 36
MR. MILLER: Thank you.
All right. 36.
(Blair Exhibit No. 36 was marked for
identification.)
BY MR. MILLER
Q And I might not be pronouncing this
right, but Michael Alavanja?
A Alavanya (phonetic)
Q Excuse me. Michael Alavanja is one of
the authors of the AHS study, isn't he?
A He is
Q No. 36. All right. Here is an article
that Dr. Alavanja wrote that came out . . let's make
sure we get the date right -- in 2013? Yes, okay.

```
Which was about -- well, which was the same year as
you had your AHS data, right, that you talked about
so much --
 MR. MILLER: Excuse me, here's a copy for
counsel.
 MR. LASKER: Thank you.
BY MR. MILLER:
 Q And here's a copy for you, Dr. Blair.
 .- the same year that you had that ..
that AHS study, right?
 A Yes, this paper is in the same time
frame, '13.
 MR. LASKER: And I'm going to object to
form. Questioning a fact witness about a paper that
he is not an author of. Lack of foundation
BY MR. MILLER:
 Q And here's what he says on page 5 in his
table about glyphosate --
 MR. LASKER: Where are you?
 MR. MILLER: Table 5.
 MR. LASKER: What page is it?
 MR. MILLER: Let's count them out. Let's
count them out. One, two --
 MR. LASKER: That's not going to work. I
thought there was a page number on the bottom.
```

    268
    MR. MILifer: No, sir, I don't have one.
    When you have -- when you have Table 5 , let me know,
and we will get back to work here
MR. LASKER: Table 5?
BY MR. MILLER:
Q But this author of the AHS study in the
same year that you have -
MR. LASKER: I'm sorry. Is this the
glyphosate on the middle of the page?
MR. MILLER: Table 5. Are you .- when
you've found Table 5, I'm going to ask my question.
Are you ready, Counsel?
MR. LASKER: Okay
MR. MILLER: Okay
BY MR. MILLER:
Q Table 5, this author of the AHS in the
same year that this so-called new data comes out in
2013 says: "Glyphosate is positively associated with
non-Hodgkin lymphoma. That's the epidemiologic
evidence."
Do you see that, sir?
MR. LASKER: Objection to form.
Incomplete reading of the exact line that you're
looking at
BY MR. MILLER:

```
 Q You can answer, Doctor
 A. All right. I'm actually trying to find
it. Is it on the first page of the table or the
second?
 Q I tell you what, it's easier if we all
look at the screen.
 A Oh, oh, sorry. All right.
 Q I said Table 5, Dr. Alavanja says
"epidemiologic evidence." Do you see that, sir?
 A Yes
 Q And he lists ..
 A Yeah. Okay.
 MR. LASKER: 47. Reference Windstar
BY MR. MILLER:
 Q And he says: "Glyphosate positively
associated with non-Hodgkin lymphoma."
 MR. LASKER: Objection to form.
 THE WITNESS: That's what he says.
BY MR. MILLER:
 Q Yes, sir. And following up on counsel's
questions, you certainly never wrote a letter to
Dr. Alavanja, your co-author, and said, Gee, you're
wrong when you say that glyphosate is positively
associated with non-Hodgkin lymphoma, right?
```

    MR. LASKER: Misrepresenting a document
    Objection to form.
BY MR. MILLER:
Q You can answer
A I did not.
Q Okay. And I think -- well, the jury is
going to hear a lot about this, but I want to ask
you, this AHS study was a cohort study, right?
A Yes.
Q And these other studies, the case-
control studies upon which the positive association
with non-Hodgkin lymphoma, it's a different kind of
epidemiological study, right, as compared to a cohort
study?
A Yes
Q And that one of the problems - all
studies have problems and no studies are perfect. Is
that fair?
A Fair.
Q Okay. One of the problems of cohort
studies is they've got to be powered up enough to
find statistically significant information that we as
scientists can rely upon, right?
A True for all studies, yes
Q Sure. But if they're not powered up
enough, the information comes back and it's not

# Blair, Aaron Earl Ph.D. (In Re Roundup Prods. Liability Lit.) 3/20/2017 12:00:00 PM 

```
is looking again scientifically at this issue of
glyphosate and non-Hodgkin lymphoma, right?
A It's one of the pesticides that can be
looked at, yes.
study that had the problems of loss to follow-up that
was not statistically significant, the abstract for
the NAPP study shows statistically significant
information, right, sir?
MR. LASKER: Objection to form, misstates
the document.
 THE WITNESS: I -- I've seen a lot of
stuff. I sort of generally know what studies I've
been involved with show. I feel uncomfortable giving
a "yes" or "no" answer without the evidence in front
of me to look at. I think that's correct.
BY MR. MILIER:
 Q Totally fair, Doctor. And let me then
show you that statistically significant information,
and we can look at it together, and I have a --
and we can look at it together, and I have a --
 MR. MILLER: Of course. Of course, you
can.
 MR. LASKER: What's the date of --
 MR. MIHLER: 37.
is looking again scientifically at this issue of glyphosate and non-Hodgkin lymphoma, right?
A It's one of the pesticides that can be
1
*
```

```
 Q And unlike the voluminous data in the AHS
```

```
 Q And unlike the voluminous data in the AHS
```

            273
    274
MR. LASKER: What is the date on this
one?
(Exhibit No. 37 was marked for
identification.)
By Mr. MILLER:
Q All right. So here we are, Doctor.
Statistically significant information from a study
that you authored with others. And this is an
Statistically significant information from a study
that you authored with others. And this is an
abstract, right, sir?
A Yes.
Q Explain to the jury what an abstract is.
A Different scientific associations have
meetings of their members, and at those meetings
there will be verbal presentations, and you get
accepted to be on the program by submitting an
abstract to decide who gets to be on the program.
And these are the abstracts. This is one of those
abstracts.
Q Sure.
A It's not a full paper, but it's a - a
synopsis of some work someone has done they're
willing to talk about.
Q All right, sir. And it's presented at
the International Society for Environmental
Epidemiology. Right, sir?
276
275

273
275

```
 A Yes.
```

    A Yes.
    Q And that was at their 2015 conference,
Q And that was at their 2015 conference,
right, sir?
right, sir?
A I think so, yes.
A I think so, yes.
Q All right, sir. And so the jury
Q All right, sir. And so the jury
understands, it was an evaluation of glyphosate,
understands, it was an evaluation of glyphosate,
which is the active ingredient in Roundup, right?
which is the active ingredient in Roundup, right?
A Yes.
A Yes.
Q And the risk of non-Hodgkin lymphoma --
Q And the risk of non-Hodgkin lymphoma --
A Yes.
A Yes.
Q -- major histological subtypes in the
Q -- major histological subtypes in the
North American Pooled Project, right?
North American Pooled Project, right?
A Correct.
A Correct.
Q And you are one of the authors, Aaron
Q And you are one of the authors, Aaron
Elair from the United States Cancer Institute, right?
Elair from the United States Cancer Institute, right?
A Yes.
A Yes.
Q And Demis Weinberger -- I'm sorry,
Q And Demis Weinberger -- I'm sorry,
Weisenburger from the City of Hope Hospital. Right?
Weisenburger from the City of Hope Hospital. Right?
A Yes.
A Yes.
Q And among many others, right?
Q And among many others, right?
A A number of others.
A A number of others.
Q Yes, sir.
Q Yes, sir.
And what you scientists found
And what you scientists found
statistically significant and presented to the
statistically significant and presented to the
International Society for Environmental Epidemiology

```
International Society for Environmental Epidemiology
```

```
was several findings, results. Cases who ever use
glyphosate had elevated non-Hodgkin lymphoma risk
glyphosate had elevated non-Hodgkin lymphoma risk
significant. Right?
 A Yes.
 Q And as a scientist, statistical
significance is important, ism't it?
 A Yes
 Q The highest risks were found for other
subtypes, "other" meaning other types of non-Hodgkin
lymphoma?
 A It means if we looked at several
different subtypes, and the one that's sort of the
catchall category was the one that had a
statistically significant elevation.
Q An odds ratio of 1.9 are almost a
doubling of the risk, right?
 Q And that shows as dose-dependent
*
```

```
 A Correct.
```

    A Correct.
    Q Statistically significant?
    Q Statistically significant?
    A Yes.
    A Yes.
    Q All right. Subjects who used glyphosate
    Q All right. Subjects who used glyphosate
    for greater than five years had an increased odds
for greater than five years had an increased odds
for greater than five years had an increased odds
for greater than five years had an increased odds
A Yes.

```
 A Yes.
```

274
MR. LASKER: What is the date on this
20
11
12
12
13
5
18
19
20
4
5

276

# Blair, Aaron Earl Ph.D. (In Re Roundup Prods. Liability Lit.) 3/20/2017 12:00:00 PM 

```
response, right?
 That is -- you did say "subtype," right?
 Yes, sir.
 Yeah, okay. Yes.
 And dose-dependant response is strong
evidence of causality is what the preamble to the
IARC tells us, right?
 A Yes.
 MR. LASKER: Objection to form.
Objection to the line of questioning to the extent
that plaintiffs now apparently are using or trying to
use Dr. Blair as an expert witness. Beyond the scope
of the litigation.
 MR. MILLER: Did you get the answer?
 THE REPORTER: YES.
BY MR. MILLER:
 Q Okay. "Compared to non-handlers, those
who handled glyphosate for greater than two days/year
had significantly elevated odds of non-Hodgkin
lymphoma overall, odds ratio of 2.66."
 Was that statistically significant
Doctor?
 A Yes.
 Q And it goes on to tell us about various
subtypes of non-Hodgkin lymphoma, right?
```

```
 A. Correct.
 Q Scientists follow protocols, right?
 A Correct
 Q Do what you say, say what you do.
 MR. LASKER: Object to form
 THE WITNESS: Well, you want to make sure
that the analysis is complete and the interpretation
is the best you can make it.
BY MR. MILLER
 Q You are not as quite as old as I, but do
you remember paul Harvey?
 A I do
 Q "The rest of the story," as he liked to
say.
 Monsanto's lawyer showed you Exhibit 34,
a PowerPoint by Dr. -- is it Patchwa?
 MR. LASKER: Pahwa.
 THE WITNESS: Pahwa.
BY MR. MILLER
 Q I'm sorry, I didn't mean to mispronounce
it. My apologies.
 we will get this thing where you can look
at it
 (Counsel conferring.)
BY MR. MILLER:
```

280

```
 Q So ne showed you this, which is
Exhibit 34, Erom the doctor .-
 MR. MILLER: Well, I know it is. I know
it is.
 Counsel conferring
BY MR. MILLER:
 Q Exhibit i6 is a detailed evaiuation of
glyphosate using the risk of non-Hodgkin lymphoma in
the North American Pooled Project presented in June
of 2015. Do you see that?
 A Yes.
 Q Okay. What counsel didn't show you was
in that PowerPoint there was in fact a statistically
significant increased risk for non-Hodgkin lymphoma
with use of glyphosate, right, sir?
 MR. LASKER: Objection to form.
 THE WITNESS: FOr some subtypes
BY MR. MILLER
 Q And that's for the diffuse B-cell --
 A Yep.
 Q -- and others?
 A And other.
 Q Okay. For others, it was over double the
risk and statistically significant, right?
 MR. LASKER: Objection to form,
```


# Blair, Aaron Earl Ph.D. (In Re Roundup Prods. Liability Lit.) 3/20/2017 12:00:00 PM 

```
```

mischaracterizes the document.

```
```

mischaracterizes the document.
THE WITNESS: Yes.
THE WITNESS: Yes.
BY MR. MILLER:
BY MR. MILLER:
Q Also in that PowerPoint about this North
Q Also in that PowerPoint about this North
American Pooled Project was the frequency, that is
American Pooled Project was the frequency, that is
the number of days a year, of glyphosate handling and
the number of days a year, of glyphosate handling and
NHL risk. Do you see that, sir?
NHL risk. Do you see that, sir?
A Yes.
A Yes.
Q And what they're telling us is here that
Q And what they're telling us is here that
there was overall almost a doubling of the risk
there was overall almost a doubling of the risk
statistically significant if you handled a glyphosate
statistically significant if you handled a glyphosate
sor greater than two days; is that right, sur?
sor greater than two days; is that right, sur?
A Yes.
A Yes.
Q And for diffuse B-cell, it was 2.49
Q And for diffuse B-cell, it was 2.49
statistically significant, right?
statistically significant, right?
A Correct.
A Correct.
Q What does the trend test tell us?
Q What does the trend test tell us?
A It's a measurement across the different
A It's a measurement across the different
exposure categories and whether or not that trend
exposure categories and whether or not that trend
line is statistically significant.
line is statistically significant.
Q Okay. What is the difference between
Q Okay. What is the difference between
proxy and self-respondents?
proxy and self-respondents?
A Proxy would be someone else reporting for
A Proxy would be someone else reporting for
the subject in the study where it's often the spouse
the subject in the study where it's often the spouse
or child or brother or sister.

```
```

or child or brother or sister.

```
```

1
you. It was a question and answer that was prepared
by IARC.
Do you remember generally speaking to him
about this document?
284
of not finding that bias because in fact when you
compared self-respondents only, you got remarkably
similar to proxy and self-respondents, 1.98 and 2.05 ,
right?
MR. LASKER: Objection to form,
incomplete discussion of the document.
THE WITNESS: Yes.
BY MR. MILIER:
Q Okay. I want to -- I want to go back to
Exhibit 27 that - that Monsanto's counsel showed
25

```
that aren't correct, and seize upon the topic of the
day and falsely report things in such numbers that
gives you a false positive. But the thing about
case-control studies is it can go in both directions.
 Q And you did not find a problem with
self-reporting in the case-control studies when you
reviewed this for IARC. Fair enough?
 MR. LASKER: Objection to form.
 THE WITNESS: Well, we did some
methodologic aspects to our studies to see if there
was case response bias.
BY MR. MILLER:
 Q And what did you find?
 A We did not find case response bias.
 Q You did not find a problem. Right?
 A With case response bias.
 Q Okay. So -- and case response bias was
the allegation of bias against the case-control
studies, isn't it?
 MR. LASKER: Objection to form.
 MR. LASKER: Objection to form.
BY MR. MILLER:
 Q And you didn't find it?
 A We did not find it.
 Q And this PowerPoint supports the position
```

```
 A (No response.)
 Q Sir?
 A Yeah.
 Q Do you generally remember speaking to
Monsanto's lawyer about this document?
 A Yeah.
 Q Okay.
 A Sorry.
 Q That's all right. It's a long day.
We're doing the best we can.
Let's go to page 2 of this document
```

16
16
17
25

```
Q Because the person who got non-Hodgkin
```

Q Because the person who got non-Hodgkin

```
Q Because the person who got non-Hodgkin
```

by Iakc.

284

```
prepared by IARC in response to the allegations that
this -- well, let's just ask about it.
 This question and answer: "Several of
the epidemiological studies considered by the IARC
expert working group showed increased cancer rates in
occupational settings after exposure to glyphosate in
herbicides. Can this be attributed to glyphosate as
a single ingredient or could it be due to other ...
other chemicals in the formulations? And that was
the question.
 And the answer that IARC --
 MR. LASKER: Objection to form, beyond
the scope.
BY MR. MILLER:
 Q And the answer that IARC was, quote:
Real world exposures that people experience are to
glyphosate in formulated products. Studies of humans
exposed to different formulations in different
regions at different times reported similar increases
on the same type of cancer, non-Hodgkin lymphoma.
 That's what you saw, right, Doctor?
 MR. LASKER: Objection to form.
 THE WITNESS: Yes.
BY MR. MILLER:
 Q And one of the questions that IARC wanted
```

a formal answer to was the question posed by
Monsanto's attorneys as to whether the Agricultural
Health Study was the most powerful study, and IARC
said no. Isn't that right, Doctor?
MR. LASKER: Objection to form.
THE WITNESS: It's -- it's a powerful
study. And it has advantages. I'm not sure I would
say it was the most powerful, but it is a powerful
study.
BY MR. MILLER:
Q Sure. Unfortunately, not powered up
enough to get statistically significant information
in 2013.
MR. LASKER: Objection to form. In 2005
or 2013?
MR. MILLER: I said 2013.
MR. LASKER: 2013. Okay. Well,
that's --
THE WITNESS: I would not say it in that
way because it assumes that if you make the study
bigger, you will get the same answer. And that's
not --
BY MR. MILIER:
Q Oh.
A -- scientific.

```
 O Oh, I --
 A Whatever you find now with some study,
you make it bigger, the relative risk may go in
either direction.
 Q Understood.
 A So it's -.
 Q I understand.
 A Power is power, but it doesn't direct
where it's going to fall.
 Q Absolutely. And what you're looking to
get is enough power to get statistically significant
information -
 A Absolutely.
 MR. LASKER: Objection to form
 THE WITNESS: Yes.
BY MR. MILLER:
 Q Okay. Let's go back to see what IARC's
official position is on whether the AHS was the most
powerful study, and the answer provided is: "The
Agricultural Health Study has been described as the
most powerful study, but this is not correct."
 That's --
 MR. LASKER: Objection to Eorm. Can we
clarify which study you're talking about now?
BY MR. MILLER:
```

```
Q The official position of IARC, isn't it,
Doctor?
 A You're asking me if that is the official
position --
 Q Yes, sir.
 A -- of IARC?
 MR. LASKER: Objection to form.
 THE WITNESS: Yes, apparently so.
 MR. MILLER: All right, sir. All right
 (Counsel conferring.)
BY MR. MILLER:
 Q Remember counsel for Monsanto spent a
long time talking to you about the draft of the AHS
study that you have not released because -- you
explained to us, I guess, why. It -- it's still --
this still hasn't been published, has it?
 A Well, we published half of it. We
published on the insecticides.
 Q Sure.
 A But not on the herbicides
 Q I understand. But in this .. yes, sir.
I understand
 In this draft that counsel talked to you
about, he didn't show you the sentence, you write in
there --
```

288

Blair, Aaron Earl Ph.D. (In Re Roundup Prods. Liability Lit.) 3/20/2017 12:00:00 PM
MR. LASKER: Where are you?
MR. MILLER: On page 20, bottom of the
page.
BY MR. MILLER:
Q -- quote: Cautious interpretation of
these results is advised. Since the number of
exposed cases for each subgroup of NHL --
MR. LASKER: Objection to form. Where
are you?
BY MR. MILLER:
Q -- for each subgroup of NHL, in the AHS is
still relatively small.
MR. MILLER: It's pages 20 and 21.
EY MR. MILLER:
Q That's what you --
MR. LASKER: Objection to form.
BY MR. MILLER:
Q That's what you wrote, right, Doctor?
MR. LASKER: Objection to form,
mischaracterizing the document.
THE WITNESS: Well, this was in -- this
is in the document.
BY MR. MILlER:
Q Yes, sir.
A Right, it was in the document.
2 9 0
Q That's right.
A That's what that non-finished document
says.
Q Yes, I understand.
A Yes.
Q And the reason you caution people because
this is a draft document, isn't it, sir?
A Yes. Yeah.
MR. LASKER: Objection.
BY MR. MILLER:
Q And the data in this document only goes
to 2008, right, sir?
A I think that's correct.
Q I understand.
A I don't remember for sure.
Q And I think you've -- I think you've
already said as much, but we're looking at an old
interview that you did ..
MR. LASKER: Do you have a document for
me?
MR. MILlER: In a minute when I use one.
MR. LASKER: Okay.
BY MR. MILIER:
Q Recall by -- recall bias, it doesn't add
up to much. Isn't that basically your experience?

```

Monsanto - IARC / Glyphosate
```

Q That's what the panel unanimously
thought, right?
MR. LASKER: Objection to form.
THE WITNESS: Yes.
BY MR. MILLER:
Q Okay. Has anything you've been shown by
Monsanto's lawyers in the 3 hours and 40 minutes that
he questioned you changed the opinions that you had
at the IARC meeting about glyphosate and non-Hodgkin
lymphoma?
MR. LASKER: Objection to form, beyond
the scope
BY MR. MILLER:
Q You can answer.
A. No.
MR. MILLER: I didn't even use an hour.
Thank you for your time.
MR. LASKER: I have like three questions,
but I will ask them from here. We don't have to go
off.
MR. MILLER: Sure. Sure. If the doctor
is okay with it, I'm okay with it
THE WITNESS: That's fine.
RECROSS-EXAMINATION
BY MR. LASKER:
thought, right?
MR. LASKER: Objection to form.
THE WITNESS: Yes.
BY MR. MILLER:
Q Okay. Has anything you've been shown by
Monsanto's lawyers in the 3 hours and 40 minutes that
he questioned you changed the opinions that you had
at the IARC meeting about glyphosate and non-Hodgkin lymphoma?
MR. LASKER: Objection to form, beyond
the scope.
BY MR. MILLER;
Q You can answer.
A. No.
MR. MILLER: I didn't even use an hour.
Thank you for your time.
MR. LASKER: I have like three questions,
but I will ask them from here. We don't have to go off.
MR. MILLER: Sure. Sure. If the doctor
is okay with it, I'm okay with it.
THE WITNESS: That's fine.
RECROSS-EXAMINATION
BY MR. LASKER:

```
```

Q Dr. Blair. I fust want to clarify
something. I believe you said in response to one of
the questions from Mr. Miller that you don't look at
nonsignificant data. Is that what you said?
A Well, if I did, it's wrong.
Q Okay. Clearly, you do look at
nonsignificant data in evaluating the scientific
evidence, correct?
A Absolutely.
Q And epidemiological studies that do not
find a significant association are important studies
to consider in evaluating whether or not a substance
can cause or is associated with an illness, correct?
A Absolutely. They're -- all data are
useful to some extent.
Q And you were shown -- strike that.
Mr. Miller asked you about the
case-control studies and whether or not they found a
positive association. And just so the record is
clear, the North American Pooled Project analysis
that we've discussed a fair amount today is a pooling
of case-control studies, correct?
A Correct.
Q In fact, it's a pooling of all the
case-control studies in North America, correct?
O Dr. Blair. I fust want to clarify

```
```

```
 A I think so.
```

```
 A I think so.
 Q And as we discussed in our
 Q And as we discussed in our
presentation -- in our questions .-
presentation -- in our questions .-
 A Of non-Hodgkin lymphoma.
 A Of non-Hodgkin lymphoma.
 Q Exactly.
 Q Exactly.
 As we discussed in our questions and your
 As we discussed in our questions and your
As we discussed in our questions and you
As we discussed in our questions and you
for all the case-control studies in North America for
for all the case-control studies in North America for
non-Hodgkin lymphoma and that data is controlled for
non-Hodgkin lymphoma and that data is controlled for
exposures to other pesticides, there is no
exposures to other pesticides, there is no
statistically significant positive association
statistically significant positive association
between glyphosate and non-Hodgkin lymphoma, correct?
between glyphosate and non-Hodgkin lymphoma, correct?
 A Well, it depends on what you actually
 A Well, it depends on what you actually
look at. Overail, yes. Now, whether you look at
look at. Overail, yes. Now, whether you look at
categories, whether you look at subgroups, it's not
categories, whether you look at subgroups, it's not
that simplistic.
that simplistic.
 Q The yes/no, ever exposed versus exposed
 Q The yes/no, ever exposed versus exposed
analysis that was used in the meta-analyses, for
analysis that was used in the meta-analyses, for
example, that you relied upon that I prepared show
example, that you relied upon that I prepared show
that for all the case-control data in North America,
that for all the case-control data in North America,
when it's controlled for exposures to other
when it's controlled for exposures to other
pesticides, there is no statistically significant
pesticides, there is no statistically significant
positive association between glyphosate and
positive association between glyphosate and
non-Hodgkin lymphoma, correct?
non-Hodgkin lymphoma, correct?
 A I think that's right for ever/never
```

```
 A I think that's right for ever/never
```

```
exposure
 Q And Mr. Miller on redirect showed you
some presentation from the North American Pooled
Project, and the data that he showed you -- and let
me absolutely just go to this. This was plaintiffs
exhibit … or Exhibit 16, I'm sorry, and he went
through and showed certain data on .- he pointed out
certain numbers that were statistically significant
among the various evaluations that were presented in
this - I'm sorry -- June 10, 2016 presentation. Do
you recall that?
 A Yes.
 Q And those data points that he was
pointing to you was of the analysis that was not
controlled for exposures to other pesticides.
correct?
 A If you say so. I don't remember.
 \(Q\) Okay. So you don't know -- when you were
looking at it, you didn't know if that data was
controlled or not controlled. You were just reading
what the numbers were on the page.
 A Absolutely.
 MR. LASKER: I have no further questions.
 MR. MILLER: Just --
 MR. LASKER: On, that's the document.
\(\square\)
Q And Mr. Miller on redirect showed you some presentation from the North American Pooled Project, and the data that he showed you -- and let
24

Blair, Aaron Earl Ph.D. (In Re Roundup Prods. Liability Lit.) 3/20/2017 12:00:00 PM
```

    MR. MILLER: Just one.
            REDIRECT EXAMINATION
    BY MR. MILLER
Q So a person who ever used Roundup for one
time would be in the ever exposed group.
THE WITNESS: Yes.
MR. MILLER: Okay. Thank you for your
time.
MR. LASKER: No further questions. Thank
you, Dr. Blair.
MR. GREENE: Before we stop. Doctor, you
have the right to read your deposition, and even
though I know that the reporter does a very good job
as far as taking down everything that was said and
all the questions asked, knowing how you are with
respect to accuracy, I would suggest in this case you
may want to read.
THE WITNESS: I think I would like that.
MR. MILLER: Yeah, we'll send you a copy.
We'll send it to your counsel and --
MR. LASKER: The court reporter can send
it to him.
MR. MILLER: There is a certain amount of
time involved.
THE WITNESS: Sure.

```
MR. MILiER: Sure, absolutely, we'll-- 298
 THE WITNESS: I have one other request.
Can i have a card from everybody in this room?
 MR. MILLER: Sure. Absolutely.
 THE VIDEOGRAPHER: The time is \(3: 58\) p.m.
March 20th, 2017. Going off the record, concluding
the videotaped deposition.
 (Whereupon, at \(3: 58\) p.m. the
 deposition of AARON EARL BLAIR,
 Ph.D. was concluded.)
```

CERTIFICATE OF NOTARY PUBLIC
I, LESLIE ANNE TODD, the officer before whom the
foregoing deposition was taken, do hereby certify
that the witness whose testimony appears in the
foregoing deposition was duly sworn by me in
stenotype and thereafter reduced to typewriting under
my directior; that said deposition is a true record of
the :estimory given by said witness; that I afl neithey
counsel for, related to, nor employed by and the
parties to the action in which this deposition was
taren; and, further, that I am not a reiative or
employee of any counsel or attorney employed by the
parties hereto, nor financially or otherwise
interested in the outcome of this action.
LESLIE ANNE TODD
Notary Public in and for the
District of Columbia
My cormmission expires:
November 14, 2017

```

\title{
Pesticide exposure as risk factor for non-Hodgkin lymphoma including histopathological subgroup analysis
}

\author{
Mikael Eriksson \({ }^{1 *}\), Lennart Hardell \({ }^{\mathbf{2}}\), Michael Carlberg \({ }^{2}\) and Måns Ảkerman \({ }^{3}\) \\ \({ }^{1}\) Department of Oncology, University Hospital, Lund, Sweden \\ \({ }^{2}\) Department of Oncology, University Hospital. Orebro. Sweden \\ \({ }^{3}\) Department of Pathology, University Hospital, Lund. Sweden
}

\begin{abstract}
We report a population based case-control study of exposure to pesticides as risk factor for non-Hodgkin lymphoma (NHL). Mate and female subjects aged 18-74 years living in Sweden were included during December 1, 1999, to April 30, 2002. Controls were selected from the national population registry. Exposure to different agents was assessed by questionnaire. In total 910 (\(91 \%\)) cases and 1016 (\(92 \%\)) controls participated. Exposure to herbicides gave odds ratio (OR) 1.72, 95\% confidence interval (CI) 1.18-2.51. Regarding phenoxyacetic acids highest risk was calculated for MCPA; OR 2.81, \(95 \%\) Cl \(1.27-6.22\), all these cases had a latency period \(>10\) years. Exposure to glyphosate gave OR 2.02, 95\% CI 1.10-3.71 and with \(>10\) years latency period OR 2.26, 95\% CI 1.16-4.40. Insecticides overall gave OR \(1.28,95 \%\) CI \(0.96-1.72\) and impregnating agents OR \(1.57,95 \%\) Cl 1.07-2.30. Results are also presented for different entities of NHL. In conclusion our study confirmed an association between exposure to phenoxyacetic acids and NHL and the association with glyphosate was considerably strengthened.
© 2008 Wiley-Liss, Inc.
\end{abstract}

Key words: phenoxyacetic acids; MCPA; glyphosate; insecticides; impreganting agents; non-Hodgkin lymphoma

Non-Hodgkin lymphoma (NHL) is a heterogeneous group of lymphoid malignancies, where new classification systems based on immunohistochemistry, cytogenetics and evolving knowledge in clinical presentation and course has lead to modern classification systems. \({ }^{1}\) Today, it is therefore more adequate to discuss NHL as many different diseases, which share some features but also differ in several aspects.

Interest in the etiology of NHL has been strengthened by an observed substantial increase in the incidence of the disease from the 1960's to the 1980's as reported from most countries with reliable cancer registries. However, this increase has clearly leveled off in many countries since the early 1990 's, i.c., in Sweden, Denmark and the USA. \({ }^{2}\) The established risk factors for development of NHL include different immunosuppressive states, e.g., human immunodeficiency virus (HIV), autoimmune diseases as Sjögren's syndrome and systemic lupus erythematosus (SLE), immunodepressants used after organ transplantation and some inherited conditions, for review see e.g., Ref. 3. However, these causes may only explain a minority of cases, with a possible exception for HIV-related increases among younger persons in certain areas. \({ }^{4}\)

It has been shown that Epstein-Barr virus (EBV) plays an essential role in the pathogenesis of lymphomas after organ transplantation. \({ }^{5}\) A relation between lymphoma and elevated EBV-titers has been reported in a cohort. \({ }^{6}\) Normally, EBV-production is held back by active cellular and humoral immune mechanisms. In immunodeficiency states this balance is disrupted and EBV-infected B-cells begin to proliferate.

During the last decades, research on the etiology of NHL has been directed towards other potential causes such as pesticides, which may explain the impressive increase in the incidence. Today, it is also reasonable to consider the leveling off in incidence as a probable consequence of a reduced carcinogenic influence related to NHL. Futhermore, our emerging knowledge concerning the spectrum of NHL subgroups makes it reasonable to investigate causative agents for these different types of disease.

In 1981, we published results from a case-control study from Sweden, indicating statistically significant increased odds ratios
for NHL and Hodgkin lymphoma (HL) in persons who had been exposed to phenoxyacetic herbicides or impregnating chlorophenols. \({ }^{8}\) Our study was initiated by a case report. \({ }^{9}\) Some of these chemicals were contaminated by dioxins, of which 2,3,7,8-tetra-chlorodibenzo-p-dioxin (TCDD) has been recognised as a complete carcinogen by IARC. \({ }^{10}\) Furthermore, these and several other related chemicals are immunotoxic. \({ }^{11-15}\) Our results have been confirmed in some other studies, regarding phenoxyacetic herbicides from e.g., Kansas \({ }^{16}\) and Nebraska. \({ }^{17}\)

Furthermore, in 1999 we reported a new case-control study performed to evaluate more recent exposure to pesticides and other chemicals, and we could thereby confirm our earlier findings regarding a relation with phenoxyacetic herbicides that was related to latency period. \({ }^{18}\)

In that study, however, some newer compounds that are widely used today, such as the herbicide glyphosate, were still not very common. During the 1970 's certain chemicals, e.g., the phenoxy herbicide \(2,4,5\)-trichlorophenoxyacetic acid \((2,4,5-\mathrm{T})\), chlorophenols, and the insecticide dichlorodiphenyltrichloroethane (DDT), were prohibited due to health concerns. Later also the phenoxy herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) was banned in Sweden. Reporting of these agents is therefore nowadays much less likely. It is also probable that the risk pattern has been influenced by protective measures during the last decades.

To further evaluate the relation between exposure to pesticides and other chemicals, focusing also on newer types of compounds, we have performed a new case-control study in Sweden. In our study we have also evaluated exposures in relation to different histopathological subtypes according to the most recent classification. \({ }^{1}\)

\section*{Material and methods}

The study covered 4 out of 7 health service regions in Sweden, associated with the Lniversity Hospitals in Lund, Linköping, Örebro and Umeå, and was approved by the ethics committees. Data were collected during December 1, 1999, to April 30, 2002, which was the time period for diagnosis of the cases. Regarding recruitment of cases and controls collaboration was established with another research group, which at the same time performed a parallel study on NHL in Sweden and Denmark.

Cases
All consecutive patients aged \(18-74\) years with newly diagnosed NHL, identified through physicians treating lymphoma and through pathologists diagnosing the disease, were approached if their physician did not judge this as less appropriate by ethical rea-

\footnotetext{
Grant sponsor: FAS; Grant number: 2001-0224; Grant sponsors: Canceroch Allergifonden, Nyckelfonden, Orebro Cniversity Hospital Cancer Fund.
*Correspondence to: Deparment of Oncology, Lniversity Hospital, SE-221 85 Lund, Sweden. E-mail: mikael.eriksson@med.lu.se
Received 4 November 2007; Accepted after revision 20 February 2008
DOI 10.1002/ijc. 23589
Published online 11 July 2008 in Wiley InterScience (y
} wiley. com).
sons. This was done regardless of whether the person had accepted to participate in the parallel study with which we collaborated in the recruitment procedure. If they accepted to participate they were included as potential cases, and went through the data assessment procedure described below. No cases were excluded because of specific conditions potentially associated with NHL, but no cases with e.g., HIV or postransplantation NHL occurred. All the diagnostic pathological specimens were scrutinised by 1 out of 5 Swedish expert lymphoma reference pathologists, if they had not been initially judged by one of these 5 . About \(70 \%\) of all included cases were reviewed, whereas the remaining had been previously classified by one of the reference pathologists. If there was a disagreement from the original report the sample was reviewed by a panel of these pathologists. Therefore, some potential cases could later be excluded if a NHL diagnosis was not verified, and im those occasions all collected exposure information was disregarded. The pathologists also subdivided all NHL cases according to the WHO classification, \({ }^{1}\) to enable etiological analyses also for the different diagnostic NHL entities. Since all lymphoma treating clinics and all lymphoma pathologists in the involved regions were covered by the study, it may well be regarded as population based, although the possibility of some individuals not reported through the case ascertainment system used.

\section*{Controls}

From the population registry covering whole Sweden, randornly chosen controls living in the same health service regions as the cases were recruited during several occasions within the study period. The controls were frequency-matched in 10 years age and sex groups to mirror the age and sex distribution of the included cases, and to increase efficacy in the adjusted analyses. If they accepted to participate, they were included as controls.

\section*{Assessment of exposure}

All subjects who accepted to participate received a comprehensive questionnaire, which was sent out shortly after the subjects had been telephone interviewed by the other research group we had collaboration with as stated earlier. Their interview, however, did not focus on work environment or chemical exposure, but rather dealt with other life style factors and diseases. Our questionnaire included a total work history with in depth questions regarding exposure to pesticides, organic solvents and several other chemicals. For all pesticides not only numbers of years and numbers of days per year, but also approximate length of exposure per day were questioned. Since most work with pesticides was performed in an individualized manner, no job-exposure matrix was judged to be applicable. Futhermore, the questionnaire also included questions on e.g., smoking habits, medications, leisure time activities and proximity from home to certain industrial installations, but data on these factors are not included in this article.
Specially trained interviewers scrutinized the answers and collected additional exposure information by phone if important data were lacking, incomplete or unclear. These interviewers were blinded with regard to case/control status. All exposures during the same calendar year as the diagnosis and the year before were disregarded in the cases. Correspondingly, the year of enrolment and the year before were disregarded for the controls. As in our previous lymphoma studies we used a minimum criterion of one full day exposure to be categorized as exposed. \({ }^{8.18}\)

\section*{Statistical methods}

Unconditional logistic regression analysis (Stata/SE 8.2 for Windows; StataCorp, College Station, TX) was used to calculate odds ratios (OR) and \(95 \%\) confidence intervals (CI). Adjustment was made for age, sex and year of diagnosis (cases) or enrolment (controls). In the univariate analysis, different pesticides were analyzed separately and the unexposed category consisted of subjects that were unexposed to all included pesticides. When analyzing
table I - non-hodgkiv lymphoma cases divided on histopathological slibtypes according to who classification
\begin{tabular}{cc}
\multicolumn{1}{c}{ WHO diagnosis } & Number of cases \\
\hline B-cell lymphomas, total & 819 \\
Lymphocytic lymphoma/B-CLL (SLLL/CLLL) & 195 \\
Follicular, grade I-III (FL) & 165 \\
Diffuse large B-cell lymphoma (DLBCL) & 239 \\
Other specified B-cell lymphoma & 131 \\
Unspecified B-cell lymphoma & 89 \\
T-cell lymphomas & 53 \\
Unspecified non-Hodgkin lymphoma & 38 \\
Total & 910 \\
\hline
\end{tabular}
subgroups of NHL all controls were used in the separate analyses. In the dose-response calculations made for agents with at least 20 exposed subjects, median number of days of exposure among controls was used as cut-off. Latency period calculations and multivariate analyses included agents with statistically significant increased \(O R\), or with an \(O R>1.50\) and at least 10 exposed subjects.

\section*{Results}

In total, 1,163 cases were reported from the participating clinics. Ol these, 46 could not participate because of medical conditions, 88 died before they could be interviewed. Since these were primarily excluded by the reporting physicians we had no information on e.g., final WHO categories on these cases. Three NHL cases were not diagnosed during the study period, 1 lived outside the study area and 30 were excluded not being NHL (HL 20, acute lymphoblastic leukaemia 1 , other malignancy 7 and unclear diagnosis 2). Of the finally included 995 cases with NHL, 910 (\(91 \%\)) accepted to participate and answered the questionnaire. Of these, 819 were B-cell, 53 T-cell and 38 unspecified lymphomas, Table I.

Among the 1,108 initially enrolled controls 92 did not respond to the mail questionnaire, resulting in 1,016 (92 \%) controls to be included in the analyses.

The medium and median age in cases was 60 and 62 years, and in controls it was 58 and 60 years, respectively. Of the cases, 534 were males and 376 females, and of the controls the corresponding numbers were 592 and 424.

This report presents exposure data regarding different types of pesticides.

\section*{Herbicides}

Exposure to herbicides gave for all NHL OR 1.72 (\(95 \%\) CI 1.18-2.51), Table II. Exposure to phenoxyacetic acids yielded OR 2.04 (95\% CI \(1.24-3.36\)). This group was further subdivided in 3 categories; (i) 4-chloro-2-methyl phenoxyacetic acid (MCPA), which is still on the market and not known to be contaminated by dioxins; (ii) 2,4,5-T and/or 2,4-D which often were used together and were potentially contaminated with different dioxin isomers; (iii) other types. MCPA seemed to give the most pronounced increase in OR. Exposure to other herbicides, regardless if they also had been exposed to phenoxyacetic acids or not, also gave a statistically significant OR 1.82 (\(95 \% \mathrm{CI} 1.08-3.06\)). In this category the dominating agent was glyphosate, which was reported by 29 cases and 18 controls, which produced OR 2.02 (\(95 \%\) CI \(1.10-\) 3.71). If both phenoxyacetic acids and glyphosate were excluded, exposure to other herbicides (37 different agents reported, but no one by more than 6 subjects at most) gave a nonsignificant OR of 1.22 (\(95 \%\) CI 0.63-2.39).

Dose-response analyses regarding herbicides in total and glyphosate yielded an increased OR in the higher exposed group, Table II. For phenoxyacetic acids, however, no such association was demonstrated.

Regarding phenoxy herbicides and glyphosate an analysis was made taken the latency period for exposure into account. For the
latency period 1-10 years no exposed cases were found for MCPA and 2,4,5-T and/or 2,4-D. Regarding glyphosate OR 1.11 (\(95 \%\) CI \(0.24-5.08\)) was obtained. Latency period \(>10\) years yielded for MCPA OR 2.81 (\(95 \%\) CI 1.27-6.22), for 2,4,5-T and/or 2,4,-D OR 1.72 (\(95 \%\) CI \(0.98-3.19\)), and for glyphosate OR 2.26 (\(95 \%\) CI 1.164 .40).
When different NHL entities were analysed separately, the OR for the subtype small lymphocytic lymphoma/chronic lymphocytic leukaenia (SLL/CLL) was increased for both phenoxy herbicides and, especially, glyphosate, Table III. The entity diffuse large Bcell lymphoma (DLBCL) was significantly associated with exposure to phenoxyacetic acids, but not to other herbicides. On the other hand, the group follicular lymphoma was not clearly associated with phenoxyacetic acids, and only nonsignificantly with
\begin{tabular}{cccc}
\multicolumn{4}{c}{ TABLE II - EXPOSURE TO VARIOLS } \\
AERBICIDES \\
\hline Agents & Cases/controls & OR & CI \\
\hline Herbicides, total & \(74 / 51\) & 1.72 & \(1.18-2.51\) \\
\(\leq 20\) days & \(36 / 27\) & 1.58 & \(0.95-2.65\) \\
\(>20\) days & \(38 / 24\) & 1.87 & \(1.10-3.18\) \\
Phenoxyacetic acids & \(47 / 26\) & 2.04 & \(1.24-3.36\) \\
\(\leq 45\) days & \(32 / 13\) & 2.83 & \(1.47-5.47\) \\
\(>45\) days & \(15 / 13\) & 1.27 & \(0.59-2.70\) \\
MCPA & \(21 / 9\) & 2.81 & \(1.27-6.22\) \\
\(\leq 32\) days & \(15 / 5\) & 3.76 & \(1.35-10.5\) \\
\(>32\) days & \(6 / 4\) & 1.66 & \(0.46-5.96\) \\
\(2.4 .5-\mathrm{T}\) and/or 2,4-D & \(33 / 21\) & 1.61 & \(0.87-2.97\) \\
\(\leq 29\) days & \(21 / 11\) & 2.08 & \(0.99-4.38\) \\
\(>29\) days & \(12 / 10\) & 1.33 & \(0.57-3.13\) \\
Other & \(7 / 7\) & 1.21 & \(0.42-3.48\) \\
Herbicides except & \(38 / 26\) & 1.82 & \(1.08-3.06\) \\
phenoxyacetic acids & & & \\
\(\leq 24\) days & \(20 / 13\) & 1.91 & \(0.93-3.89\) \\
\(>24\) days & \(18 / 13\) & 1.73 & \(0.84-3.60\) \\
Glyphosate & \(29 / 18\) & 2.02 & \(1.10-3.71\) \\
\(\leq 10\) days & \(12 / 9\) & 1.69 & \(0.70-4.07\) \\
\(>10\) days & \(17 / 9\) & 2.36 & \(1.04-5.37\) \\
Other herbicides & \(18 / 18\) & 1.22 & \(0.63-2.39\) \\
\(\leq 32\) days & \(12 / 9\) & 1.64 & \(0.68-3.96\) \\
\(>32\) days & \(6 / 9\) & 0.80 & \(0.28-2.29\) \\
\hline
\end{tabular}

Number of exposed cases/controls, odds ratios (OR) and \(95 \%\) confidence intervals (CI). Agents with more than 20 exposed subjects were also divided in two groups based on median number of days among exposed controls. Adjustment was made for age, sex and year of diag. nosis or enrolment.
glyphosate. The category "other specified B-cell lymphoma" (e.g., mantle cell lymphoma, marginal zone lymphoma) was significantly associated with exposure to phenoxyacetic acids, and an increased risk was also indicated for glyphosate. T-cell lymphomas seemed to be associated with all types of herbicides, but no statistically significant ORs were found due to relatively few exposed subjects. The least numerous categories ("unspecified NHL") yielded high and statistically significant ORs for phenoxy herbicides and glyphosate.

\section*{Insecticides}

In our study no overall increased OR was demonstrated for exposure to insecticides, OR \(1.28(95 \%\) CI \(0.96-1.72)\), Table IV. The most reported insecticide DDT yielded OR 1.46 (\(95 \%\) CI 0.94-2.28). Increased risk was shown for mercurial seed dressing, OR 2.03 (95\% CI 0.97-4.28).

In the dose-response analysis, OR \(1.47(95 \% \mathrm{CI} 0.99-2.16)\) was found for the high category of insecticide exposure, Table IV. Similar trends were found for DDT and mercurial seed dressing.

Different NHL entities were analysed separately, Table V. Hereby, certain exposures seemed to be associated with subtypes of NHL. Thus, the group follicular lymphoma was associated with DDT, OR 2.14 (\(95 \%\) CI 1.05-4.40) and mercurial seed dressing, OR \(3.61(95 \%\) CI 1.20-10.9). Furthermore, exposure to DDT increased the risk also for T-cell lymphoma, OR 2.88 (\(95 \%\) CI 1.05-7.95).

\section*{Fungicides and rodenticides}

Exposure to fungicides was not a risk factor in our study, neither in total, OR 1.11 (\(95 \%\) CI 0.56-2.23), Table IV, nor for different subtypes of NHL, Table VI. Furthermore, there were no single substances among 24 reported that significantly differed between cases and controls. Also for rodenticides no increased risk was found, Table IV.

\section*{Impregnating agents}

Exposure to impregnating agents yleided a statistically signitcant OR 1.57 (\(95 \%\) CI 1.07-2.30), Table IV. In a dose-response calculation OR increased further in the high exposure group. Creosote showed a statistically significant OR for high exposure, OR 3.33 (\(95 \%\) CI 1.20-9.27).

Table VI presents results for different NHL entities. An increased risk for SLL/CLL was associated with exposure to impregnating agents in total, and most pronounced for creosote,

TABLE III - EXPOSLRE TO VARIOLS HERBICIDES DIVIDED ACCORDING TO DIFFERENT LYMPHOMA ENTITIES
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline I ymphoma entities & Herbicides. total & Phenoxyacetic acids \(¢ \mathrm{ph}\)) & MCPA & 2.4.5-T and/or 2.4-D & Herbicides except ph & Glyphosate & Other \\
\hline B-cell lymphomas, & 1.68 & 1.99 & 2.59 & 1.69 & 1.72 & 1.87 & 1.14 \\
\hline total \((\underline{n}=819)\) & 1.14-2.48 & 1.20-3.32 & 1.14-5.91 & 0.94-3.01 & 1.003-2.94 & 0.998-3.51 & 0.57-2.31 \\
\hline Lymphocytic & 2.27 & 2.11 & 2.57 & 1.93 & 2.56 & 3.35 & 1.39 \\
\hline \[
\begin{aligned}
& \text { lymphona/B-CLL } \\
& (n=195)
\end{aligned}
\]
(SLL/CLL) & 1.28-4.01 & 0.995-4.47 & 0.74-8.97 & 0.85-4.41 & 1.17-5.60 & 1.42-7.89 & 0.45-4.31 \\
\hline Follicular, grade]-III & 1.78 & 1.26 & \(-{ }^{1}\) & 1.21 & 2.32 & 1.89 & 1.48 \\
\hline (\(n=165\)) (FL) & 0.88-3.59 & 0.42-3.75 & & 0.35-4.22 & 0.96-5.60 & 0.62-5.79 & 0.42-5.23 \\
\hline Diffuse large B-cell & 1.44 & 2.16 & 3.94 & 1.65 & 1.20 & 1.22 & 1.00 \\
\hline lymphoma (\(n=239\)) (DLBCL) & 0.81-2.59 & 1.08-4.33 & 1.48-10.5 & 0.71-3.82 & 0.51-2.83 & 0.44-3.35 & 0.33-3.03 \\
\hline Other specified B-cell & 1.62 & 2.60 & 3.20 & 2.21 & 1.38 & 1.63 & 1.15 \\
\hline lymphoma (\(n=131\)) & 0.82-3.19 & 1.20-5.64 & 0.95-10.7 & 0.90-5.44 & 0.51-3.73 & 0.53-4.96 & 0.33-4.03 \\
\hline Unspecified B-cell & 1.09 & 1.14 & 1.35 & 0.88 & 1.52 & 1.47 & \[
0.71
\] \\
\hline lymphoma (\(n=89\)) & 0.41-2.89 & 0.33-3.95 & 0.16-11.2 & 0.20-3.92 & 0.44-5.27 & 0.33-6.61 & 0.09-5.53 \\
\hline T-cell lymphomas & 1.64 & 1.62 & 2.40 & 1.02 & 1.57 & 2.29 & 2.24 \\
\hline (\(n=53\)) & 0.55-4.90 & 0.36-7.25 & 0.29-20.0 & 0.13-7.95 & 0.35-6.99 & 0.51-10.4 & 0.49-10.3 \\
\hline Unspecified & 2.86 & 3.75 & 9.31 & 3.21 & 5.29 & 5.63 & 1.88 \\
\hline \begin{tabular}{l}
non-Hodgkin \\
lymphoma (\(n=38\))
\end{tabular} & \(1.001-8.18\) & 1.16-12.1 & 2.11-41.2 & 0.85-12.1 & 1.60-17.5 & 1.44-22.0 & 0.23-15.4 \\
\hline
\end{tabular}

\footnotetext{
Odds ratios (OR) and \(95 \%\) confidence intervals (CI). Adjustment was made for age, sex and year of diagnosis or enrolment.
\({ }^{1}\) No exposed cases
}

OR 2.91 (95\% CI 1.01-8.33). Regarding follicular lymphomas and DLBCL, increased risks were also noted after creosote exposure, and for the latter subtype this was also the case for all impregnating agents together. T-cell lymphomas were also associated with impregnating agents, and it seemed to be specifically chlorophenols. In the group of patients whose lymphomas were not possible to classify histopathologically, increased risks were indicated for all types of impregnating agents.
\begin{tabular}{cccc}
\multicolumn{4}{c}{ TABLE IV - EXPOSLRE TO VARIOLS OTHER PESTICIDES } \\
\hline Agents & Cases/controls & OR & CI \\
\hline Insecticides, lotal & \(112 / 101\) & 1.28 & \(0.96-1.72\) \\
\(\leq 40\) days & \(44 / 51\) & 1.03 & \(0.68-1.57\) \\
\(>40\) days & \(65 / 50\) & 1.47 & \(0.99-2.16\) \\
DDT & \(50 / 37\) & 1.46 & \(0.94-2.28\) \\
\(\leq 37\) days & \(20 / 19\) & 1.17 & \(0.62-2.22\) \\
\(>37\) days & \(30 / 18\) & 1.76 & \(0.97-3.20\) \\
Mercurial seed dressing & \(21 / 11\) & 2.03 & \(0.97-4.28\) \\
\(\leq 12\) days & \(7 / 6\) & 1.27 & \(0.42-3.83\) \\
\(>12\) days & \(14 / 5\) & 2.93 & \(1.04-8.25\) \\
Pyretrine & \(15 / 10\) & 1.74 & \(0.78-3.91\) \\
\(\leq 25\) days & \(8 / 5\) & 1.86 & \(0.60-5.75\) \\
\(>25\) days & \(6 / 5\) & 1.36 & \(0.41-4.51\) \\
Permetrine & \(9 / 9\) & 1.23 & \(0.48-3.14\) \\
Other insecticides & \(28 / 26\) & 1.25 & \(0.72-2.16\) \\
\(\leq 33\) days & \(9 / 14\) & 0.79 & \(0.34-1.85\) \\
\(>33\) days & \(18 / 12\) & 1.67 & \(0.79-3.51\) \\
Fungicides & \(16 / 18\) & 1.11 & \(0.56-2.23\) \\
\(\leq 37\) days & \(9 / 9\) & 1.29 & \(0.51-3.31\) \\
\(>37\) days & \(7 / 9\) & 0.94 & \(0.35-2.57\) \\
Impregnating agents & \(70 / 51\) & 1.57 & \(1.07-2.30\) \\
\(\leq 45\) days & \(27 / 25\) & 1.23 & \(0.71-2.16\) \\
\(>45\) days & \(43 / 24\) & 2.04 & \(1.21-3.42\) \\
Chlorophenols & \(40 / 36\) & 1.24 & \(0.77-1.98\) \\
\(\leq 33\) days & \(23 / 18\) & 1.46 & \(0.78-2.74\) \\
\(>33\) days & \(17 / 17\) & 1.08 & \(0.54-2.15\) \\
Arsenic & \(7 / 5\) & 1.63 & \(0.51-5.20\) \\
Creosole & \(19 / 10\) & 2.10 & \(0.96-4.58\) \\
\(\leq 39\) days & \(4 / 5\) & 0.87 & \(0.23-3.29\) \\
\(>39\) days & \(15 / 5\) & 3.33 & \(1.20-9.27\) \\
Tar & \(8 / 5\) & 1.84 & \(0.59-5.69\) \\
Other impregnating agents & \(27 / 20\) & 1.55 & \(0.85-2.81\) \\
\(\leq 7\) days & \(4 / 10\) & 0.44 & \(0.14-1.42\) \\
\(>7\) days & \(22 / 10\) & 2.55 & \(1.19-5.47\) \\
Rodenticides & \(5 / 4\) & 1.67 & \(0.44-6.29\) \\
\hline & & & \\
\hline
\end{tabular}

Number of exposed cases/controls, odds ratios (OR) and \(95 \%\) confidence intervals (CI). Agents with more than 20 exposed subjects were also divided in two groups based on median number of days among exposed controls. In some subjects, number of days was not known (excluded in dose-response calculations). Adjustment was made for age, sex and year of diagnosis or enrolment.

\section*{Multivariate analysis}

Since mixed exposure to several pesticides was more a rule than an exception, and all single agents were analyzed without adjusting for other exposure, a multivariate analysis was made to elucidate the relative importance of different pesticides. Criteria for agents to be included in this analysis are defined in Statistical Methods above. As seen in Table VII increased ORs were found but in general lower than in the univariate analysis.

\section*{Discussion}

This was a population based case-control study on NHL, which is a strength of the investigation. Only living cases and controls were included, which was of advantage in comparison with interviewing next-of-kins. The study covered all new cases of NHL during a specified time. Pathologists in Sweden that were experts in lymphoma diagnosis confirmed all diagnoses. Thus, a main advantage compared with the earlier studies was the possibility to study the different NHL entities, classified according to the recently developed WHO classification system. The histopathological subgroups may well be regarded as separate in etiology and pathogenesis, as well as they are known to be different regarding course, prognosis and best treatment.

The frequency matching on age groups, gender and health service regions increased the efficacy of the study and ensured exposure conditions for the controls representative for the population in the included geographical areas. We achieved a high response rate among cases and controls, which is another advantage. A motivating introduction letter that was sent out with the questionnaire and with reminders if needed may explain this.

Exposures were assessed by questionnaires with information supplemented over the phone. Thereby use of different pesticides could be checked by information in e.g., receipts and bookkeeping. However, no registries exist in Sweden on such individual use, which is a weakness in the assessnient of exposure. Exposure to pesticides may be difficult to assess, and some misclassification regarding quantity of exposure has probably occurred, but such misclassification would most probably be nondependent of case/ control status, and therefore only weaken any true risks. Use of protective equipment was not asked for which might have been a disadvantage of the study. However, such use would dilute the exposure and thus bias the result towards unity.

We have earlier published the results from 2 Swedish case-control studies on lymphomas, the first one on NHL and \(\mathrm{HL}^{8.19}\) and later on NHL. \({ }^{18}\) These studies showed an increased risk for lymphomas as a result of exposure to herbicides belonging to the class phenoxyacetic acids. In the first study we also found correlation with chlorophenols and organic solvents. Several other studies,

TABLE \(V\) - EXPOSLRE TO VARIOLS INSECTICIDES DIVTDED ACCORDING TO DEFERENT LYMPHOMA ENTITIES
\begin{tabular}{|c|c|c|c|c|c|}
\hline Lymphoma entities & Lnsecticides, total & DDT & Mercurial seed dressing & Pyyetrine & Other \\
\hline \multirow[t]{2}{*}{B-cell lymphomas, total \((n-819)\)} & 1.19 & 1.32 & 1.81 & 1.68 & 1.08 \\
\hline & 0.88-1.61 & 0.83-2.10 & 0.84-3.93 & 0.73-3.86 & 0.60-1.94 \\
\hline \multirow[t]{2}{*}{Lymphocytic lymphoma/B-CLL (\(n=195\))(SLL/CL1)} & 1.46 & 1.39 & 0.75 & 2.40 & 1.57 \\
\hline & 0.91-2.35 & 0.69-2.83 & 0.16-3.47 & 0.73-7.89 & 0.66-3.75 \\
\hline \multirow[t]{2}{*}{Follicular, grade I-III (\(n=165\)) (FL)} & 1.37 & 2.14 & 3.61 & 2.60 & 0.28 \\
\hline & 0.79-2.38 & 1.054 .40 & 1.20-10.9 & \(0.79-8.51\) & 0.04-2.11 \\
\hline \multirow[t]{2}{*}{Diffuse large B-cell lymphoma (\(n=239\)) (DLBCL)} & 1.23 & 1.24 & 2.20 & 1.25 & 1.31 \\
\hline & 0.78-1.93 & 0.61-2.49 & 0.79-6.12 & 0.34-4.61 & 0.58-2.97 \\
\hline \multirow[t]{2}{*}{Other specified B-cell lymphoma (\(n=131\))} & 1.32 & 1.33 & 2.39 & 1.49 & 1.42 \\
\hline & 0.77-2.27 & 0.57-3.10 & 0.73-7.81 & 0.326 .94 & 0.53-3.80 \\
\hline \multirow[t]{2}{*}{Unspecified B-cell lymphoma (\(n=89\))} & 0.42 & 0.23 & \({ }^{1}\) & --1 & 0.42 \\
\hline & 0.15-1.18 & 0.03-1.75 & & & 0.06-3.18 \\
\hline \multirow[t]{2}{*}{T-cell lymphomas (\(n=53\))} & 1.61 & 2.88 & 2.08 & 2.20 - & 1.59 \\
\hline & 0.72-3.60 & 1.05-7.95 & 0.25-17.1 & 0.27-17.8 & 0.36-7.02 \\
\hline \multirow[t]{2}{*}{Unspecified non-Hodgkin lymphoma (\(n=38\))} & 1.91 & 2.39 & 5.43 & 3.14 & 4.70 \\
\hline & 0.79-4.62 & 0.77-7.42 & 1.34-22.0 & 0.37-26.3 & 1.48-14.9 \\
\hline
\end{tabular}

\footnotetext{
Odds ratios (OR) and 95\% confidence intervals (Cl). Adjustment was made for age, sex and year of diagnosis or enrolment
\({ }^{1}\) No ex posed cases.
}

TABLE VI - EXPOSLRE TO FUNGICIDES AND IMPREGNATLNG AGENTS DIVIDED ACCORDING TO DIFFERENT LYAPHOMA ENTITIES
\begin{tabular}{|c|c|c|c|c|c|}
\hline Lymphoma entities & Fungicides & Impregnating agents, total & Chlorophenols & Creosote & Other \\
\hline \multirow[t]{2}{*}{B-cell lymphomas, total (\(n=819\))} & 1.01 & 1.41 & 1.12 & 2.09 & 1.51 \\
\hline & 0.48-2.09 & 0.95-2.11 & 0.69-1.84 & 0.94-4.64 & 0.82-2.78 \\
\hline \multirow[t]{2}{*}{Lymphocytic lymphoma/B-CLL (\(n=195\))} & 1.33 & 1.71 & 1.35 & 2.91 & 2.23 \\
\hline & 0.43-4.12 & 0.94-3.11 & 0.64-2.85 & 1.01-8.33 & 0.97-5.13 \\
\hline \multirow[t]{2}{*}{Follicular, grade I-ПI (\(n=165\))} & - \({ }^{1}\) & 1.49 & 0.91 & 2.56 & 1.80 \\
\hline & & 0.70-3.19 & 0.31-2.66 & 0.68-9.68 & 0.59-5.48 \\
\hline \multirow[t]{2}{*}{Diffuse large B-cell lymphoma (\(n=239\))} & 1.26 & 1.70 & 1.40 & 1.75 & 1.51 \\
\hline & 0.45-3.47 & 0.97-2.96 & 0.70-2.78 & 0.54-5.74 & 0.62-3.67 \\
\hline \multirow[t]{2}{*}{Other specified B-cell lymphoma (\(n=131\))} & 1.56 & 1.24 & 0.95 & 2.58 & 1.09 \\
\hline & 0.51-4.76 & 0.58-2.63 & 0.36-2.51 & 0.78-8.55 & 0.31-3.78 \\
\hline \multirow[t]{2}{*}{Unspecified B-cell lymphoma (\(n=89\))} & _ \({ }^{1}\) & 0.41 & 0.54 & --1 & 0.54 \\
\hline & & 0.10-1.75 & 0.12-2.32 & & 0.07-4.19 \\
\hline \multirow[t]{2}{*}{T-cell lymphomas (\(n=53\))} & \[
1.10
\] & 3.26 & 2.39 & - & \[
2.07
\] \\
\hline & 0.14-8.70 & 1.39-7.63 & \(0.78-7.28\)
2.02 & & \(0.45-9.53\)
1.40 \\
\hline Unspecified non-Hodgkin lymphoma (\(n=3\) 3) & - \(0.77-18.0\) & 0.88-7.19 & 2.02 \(0.56-7.31\) & 4.94
\(0.97-25.2\) & 0.17-11.2 \\
\hline
\end{tabular}

Odds ratios (OR) and \(95 \%\) confidence intervals (CI). Adjustment was made for age, sex, and year of diagnosis or enrolment.
\({ }^{1}\) No exposed cases.

TABLE VII - MULTIVARIATE ANALYSES INCLLUDLNG AGENTS ACCORDENG TO SPECIFIED CRITERLA. SEE TEXT
\begin{tabular}{lccccc}
\hline \multicolumn{1}{c}{ Agents } & \multicolumn{2}{c}{ Lnivariate } & & \multicolumn{2}{c}{ Multivanate } \\
\cline { 2 - 3 } & OR & CI & & OR & Cl \\
\hline MCPA & 2.81 & \(1.27-6.22\) & & 1.88 & \(0.77-4.63\) \\
\(2,4,5-\mathrm{T}\) and/or 2,4-D & 1.61 & \(0.87-2.97\) & & 1.24 & \(0.68-2.26\) \\
Glyphosate & 2.02 & \(1.10-3.71\) & & 1.51 & \(0.77-2.94\) \\
Mercurial seed dressing & 2.03 & \(0.97-4.28\) & & 1.58 & \(0.74-3.40\) \\
Arsenic & 1.63 & \(0.51-5.20\) & 1.17 & \(0.34-4.02\) \\
Creosote & 2.10 & \(0.96-4.58\) & & 1.70 & \(0.73-3.98\) \\
Tar & 1.84 & \(0.59-5.69\) & 1.39 & \(0.43-4.48\) \\
\hline
\end{tabular}

Odds ratios (OR) and \(95 \%\) confidence intervals (CI). Adjustment was made for age, sex and year of diagnosis or enrolment.
but not all, from different research groups have supported our results, as reviewed, \({ }^{20}\) and also confirmed later, e.g., Ref. 21.

Furthermore, other groups have demonstrated associations between NHL and other classes of pesticides, especially different types of insecticides, e.g., organophosphates, \({ }^{22}\) carbamate, \({ }^{23}\) lindane \({ }^{24}\) and chlordane, \({ }^{25}\) but also other groups of herbicides as atrazine. \({ }^{26}\) Some case-control studies have found associations between several classes of pesticides, e.g., Ref. 27 or merged groups of pesticides as in one recent study, \({ }^{2}\) which demonstrate a significantly increased risk for NHL associated with exposure to "nonarsenic pesticides." These authors discuss the fact that several pesticides are chemically related and may exert their effects on humans through a similar mechanism of action, which may explain the wide range of pesticides that have been related to NIFL over time in different countries and with different exposure conditions

Several factors urged for a third Swedish study on the relation between pesticides, other chemicals and NHL, and the present study also used a somewhat changed methodology, which also may be of interest.
Thus, the use of phenoxyacetic herbicides, which earlier were dominating both as weed killers in agriculture and against hard wood in forestry, have substantially decreased during the last decades. \(2,4,5-\mathrm{T}\), which was contaminated by TCDD, was prohibited in Sweden 1977, and 2,4-D was withdrawn from the market in 1990. MCPA, even if still used, has been largely substituted by other agents, among which glyphosate has been clearly dominating. This change of herbicide practice along with successively strengthened protection instructions has prompted our new study, reflecting also later years of exposure.
Furthermore, the changing trend of the incidence of NHL in many countries with reliable cancer registries, e.g., Sweden, with a substantial and steady increase during the 1960's through 1980's but a leveling off or even slight decrease after that, makes it im-
portant to find etiological factors contributing to this shift in trend Chlorinated compounds in the environment, which have been regulated during the 1970 's and \(1980^{\prime}\) s, may at least partly explain this trend, as discussed by us. \({ }^{2}\) Phenoxyacetic herbicides with potential contaminating dioxins are examples of such substances. However, the prohibition of common environmental pollutants as polychlorinated biphenyls (PCB) and the followimg decline in the environment is probably more important to explain the levelmg off of the incidence. \({ }^{2}\)

In contrast to our 2 former case-control studies on NHL, this study included both genders and only consecutive living cases and living controls. In our earlier studies we have only studied male lymphoma cases, making the results of this study more representative for the whole population. To facilitate comparisons with our earlier results we also made additional analyses of herbicide exposure by gender. Only few women were exposed and separate analyses for both sexes still yielded an increased risk for NHL. Thus, in the total material herbicide exposure gave \(\mathrm{OR}=1.72 .95 \% \mathrm{CI}\) 1.18-2.51 (\(n=74\) cases, 51 controls), whereas for men only OR \(=1.71,95 \% \mathrm{CI}=1.152 .55(n=68\) cases, 47 controls) and for women only \(\mathrm{OR}=1.82,95 \% \mathrm{CI}=0.51-6.53(n=6\) cases, 4 controls) were calculated.

In our study lymphocytic lymphoma/B-CLL was significantly associated with herbicides with highest OR for glyphosate but also creosote. Follicular lymphoma was significantly associated with DDT and mercurial seed dressing, diffuse large B-cell lymphoma with MCPA, and T-cell lymphoma with DDT and impregnating agents overall. Unspecified NHL was significantly associated with MCPA, glyphosate and mercurial seed dressing. It should be noted that several ORs were increased for herbicides; insecticides and impregnating agents but the calculations were hampered by low numbers of exposed cases and controls.

Our earlier results of exposure to phenoxyacetic herbicides as a risk factor for NHL were confirmed in our study. As in our previous lymphoma studies exposure to MCPA seemed to yield the highest OR among the different phenoxyacetic acids. This is of interest because MCPA is known not to be contaminated by dioxins, as 2,4D and \(2,4,5-\mathrm{T}\). At the same time MCPA is the only phenoxyacetic acid still in wider use in Sweden and many other countries.

Glyphosate is a broad-spectrum herbicide, which inhibits the formation of amino acids in plants. \({ }^{29}\) The US Environmental Protection Agency \({ }^{30}\) and the World Health Organization \({ }^{31}\) have concluded that glyphosate is not mutagenic or carcinogenic. Since then, however, some experimental studies indicate genotoxic, hormonal and enzymatic effect in mammals, as reviewed. \({ }^{32}\) Of particular interest is that glyphosate treatment of human lymphocytes in vitro resulted in increased sister chromatid exchanges, \({ }^{23}\) chromosomal aberrations and oxidative stress. \({ }^{34.35}\)

Glyphosate was associated with a statistically significant increased OR for lymphoma in our study, and the result was strengthened by a tendency to dose-response effect as shown in Table II. In our fonner study \({ }^{18}\) very few subjects were exposed to glyphosate, but a nonsignificant OR of 2.3 was found. Furthermore, a meta-analysis combining that study with an investigation on hairy-cell leukaemia, a rare NHL variant, showed an OR for glyphosate of 3.04 (\(95 \%\) CI 1.08-8.52) \({ }^{36}\) Recent findings from other groups also associate glyphosate with different B -cell malignancies such as lymphomas and nyyeloma. \({ }^{32,37,38}\)
Glyphosate has succeeded MCPA as one of the most used herbicides in agriculture, and many individuals that used MCPA earlier are now also exposed to glyphosate. This probably explains why the multivariate analysis does not show any significant ORs for these compounds.
Exposure to insecticides was associated with a slightly increased OR, Table IV. In some other studies on the relation between pesticides and NHL, insecticides seem to be of some importance as causative agents. \({ }^{27,37,38}\) Especially, different organophosphates were indicated as risk factors in those studies, with a Canadian study \({ }^{37}\) showing statistical significant ORs for malathion and diazinon. In our study, only few subjects were exposed to different organophosphates, but we found a nonsignificant OR of 2.81 (\(95 \% \mathrm{CI} 0.54-14.7\)) for malathion based on 5 exposed cases and 2 controls, not shown in Table.
The organochlorine DDT has shown suggestive but rarely significant association with NHL in some studies. \({ }^{8.19 .38-40}\) Our study showed a moderately but not significant increased OR for exposure to DDT.

Fungicides were not associated with the risk for NHL in our study, but few subjects were exposed to a wide range of different agents. In some earlier studies increased risks have also been noted for this group of pesticides. \({ }^{16,18}\)

Exposure to impregnating agents produced a significant OR with a dose-response relation, Table IV. The highest risk was found for high exposure to creosote, which gave a significant OR. This finding was in contrast to our previous results on NHL, \({ }^{18}\) but another \(S\) wedish study also found an association between creosote and NHL. \({ }^{+1}\) Chlorophenols have been the most common group of impregnating agents in Sweden, but were banned in 1977. In our first NHL study, reflecting exposures mainly during the time these substances were used, we found a strong association with NHL. As in the present study, however, no association was found in our second study on NHL. \({ }^{18}\)

In conclusion, this study, which mirrors pesticide exposure during later years than in our previous studies, confirmed results of an association between exposure to phenoxyacetic herbicides and NHL. Futhermore, our earlier indication of an association between glyphosate and NHL has been considerably strengthened.

\section*{Acknowledgements}

Ms. Iréne Larsson participated in the data collection and Mr. Matz Eriksson performed interviews. We thank cytologist Ms. Edneia Tani and pathologists Dr. Christer Sundström, Dr. Göran Roos, Dr. Anna Porwit-MacDonald and Dr. Åke Öst for extensive review of the tumor material.

\section*{References}
1. Jaffe ES, Harris NL, Stein H, Vardiman JW. World Health Organization classification of tumours. Pathology and genetics. Tumours of haematopoetic and lymphoid tissues. Lyon: IARC Press, 2001.
2. Hardell L, Eriksson M. Is the decline of the increasing incidence of non-Hodgkin lymphoma in Sweden and other countries a result of cancer preventive measures? Environ Health Perspect 2003;111: 17045.
3. Hardell L, Axelson O. Environmental and occupational aspects on the etiology of non-Hodgkin`s lymphoma. Oncol Res 1998; 10:1-5.
4. Pluda JM, Venzon DJ, Tosato G, Lietzau J, Wyvill K, Nelson DL, Jaffe ES, Karp JE, Broder S, Yarchoan R. Parameters affecting the development of non-Hodgkin's lymphoma in patients with severe human immunodeficiency virus infection receiving antiretroviral therapy. J Clin Oncol 1993;11:1099-107.
5. Patton DF, Wilkowski CW, Hanson CA, Shapiro R, Gajl-Peczalska KJ, Filipovich AH, McClain KL. Epstein-Barr virus-determined clonality in posttransplant lymphoproliferative disease. Transplantation 1990;49:1080-4.
6. Lehtinen T, Lumio J, Dillne: J, Hakama M, Kneky P, Lehtinen M, Teppo L, Leinikki P. Increased risk of malignant lymphoma indicated by elevated Epstein-Barr virus antibodies--a prospective study. Cancer Causes Control 1993;4:187-93.
7. Potter M. Pathogenetic mechanisms in B-cell non-Hodgkin's lymphomas in humans. Cancer Res 1992;52:5522S-5528S.
8. Hardell L, Eriksson M, Lenner P, Lundgren E. Malignant lymphoma and exposure to chemicals, especially organic solvents, chlorophenols and phenoxy acids: a case-control study. Br J Cancer 1981;43:169-76.
9. Hardell L. Malignant lymphoma of histiocytic type and exposure to phenoxyacetic acids or chlorophenols. Lancet 1979;1:55-6.
10. International Agency for Research on Cancer. Polychlorinated dibenzo-para-dioxins. IARC Monogr Eval Carcinog Risks Hum 1997;69:333-343.
11. Vos JG, Moore JA, Zinkl JG. Effect of 2,3,7,8-tetrachlorodibenzo-pdioxin on the immune system of laboratory animals. Environ Health Perspect 1973;5:149-62.
12. Exon JH, Talcott PA, Koller LD. Effect of lead, polychlorinated biphenyls, and cyclophosphamide on rat natural killer cells, interleukin 2, and antibody synthesis. Fundam Appl Toxicol 1985;5:158-64.
13. \(\mathrm{Lu} \mathrm{YC}, \mathrm{Wu} \mathrm{YC}\). Clinical findings and immunological abnormalities in Yu-Cheng patients. Environ Health Perspect 1985;59:17-29.
14. Kerkvliet N1, Brauner JA. Mechanisms of 1,2,3,4,6, 7,8-heptachlorodi-benzo-p-dioxin (HpCDD)-induced humoral immune suppression: evidence of primary defect in T-cell regulation. Toxicol Appl Pharmacol 1987;87:18-31.
15. Faustini A, Settimi L, Pacifici R, Fano V, Zuccaro P, Focastiere F. Immunological changes among farmers exposed to phenoxy
herbicides: preliminary observations. Occup Environ Med 1996;53: 583-5.
16. Hoar SK, Blair A, Holmes FF, Boysen CD, Robel RJ, Hoover R, Fraumeni JF, Jr. Agricultural herbicide use and risk of lymphoma and soft-tissue sarcoma. JAMA 1986;256:1141--7.
17. Zahm SH, Weisenburger DD, Babbit PA, Saal RC, Vaught JB, Cantor KP, Blair A A casecontrol study of non-Hodgkin's lymphona and the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) in eastem Nebraska. Epidemiology 1990;1:349-56.
18. Hardell L, Eriksson M. A case-control study of non-Hodgkin lymphoma and exposure to pesticides. Cancer 1999;85:1353-60.
19. Hardell L, Eriksson M, Degerman A. Exposure to phenoxyacetic acids, chlorophenols, or organic solvents in relation to histopathology, stage, and anatomical localization of non-Hodgkin's lymphoma. Cancer Res 1994;54:2386-9.
20. Hardell L, Eriksson M, Axelson O, Flesch-Janys D. Epidemiological studies on cancer and exposure to dioxins and related compounds. In: Schecter A, Gasiewicz T, eds. Dioxins and health. Hoboken, NJ: John Wiley \& Sons, 2003. p 729-64.
21. Miligi L, Costantini AS, Veraldi A, Benvenuti A, Vineis P. Cancer and pesticides: an overview and some results of the Itatian multicenter case-control study on hematolymphopoietic malignancies. Ann X Y Acad Sci 2006;1076:366-77.
22. WaddeIl BL, Zahm SH, Baris D, Weisenburger DD, Holmes F, Burmeister LFF, Cantor KP, Blair A. Agricultural use of organophosphate pesticides and the risk of non-Hodgkin's lymphoma among male farmers (United States). Cancer Causes Control 2001;12:509 17.
23. Zheng T, Zahm SH, Cantor KP, Weisenburger DD, Zhang Y, Blair A. Agricultural exposure to carbamate pesticides and risk of non-Hodgkin lymphoma. 1 Occup Environ Med 2001;43:641-9.
24. Purdue MP, Hoppin JA, Blair A, Dosemeci M, Alavanja MC. Occupational exposure to organochlorine insecticides and cancer incidence in the agricultural health study. Int J Cancer 2007; 120:642-9.
25. Colt JS, Davis S, Severson RK, Lynch CF, Cozen W, Camann D. Engels EA, Blair A, Hartge P. Residential insecticide use and risk of non-Hodgkin's lymphoma. Cancer Epidemiol Biomarkers Prev 2006;15:251-7.
26. Rusiecki JA, De Roos A, Lee WJ, Dosemeci M, Lubin JH, Hoppin JA, Blair A, Alavanja MC. Cancer incidence among pesticide applicators exposed to atrazine in the Agricultural Health Study. J Natl Cancer lnst 2004;96:1375-82.
27. Fritschi L, Benke G, Hughes AM, Kricker A, Tumer J, Vajdic CM, Grulich A, Milliken S, Kaldor J, Arnstrong BK. Occupational exposure 10 pesticides and risk of non-Hodgkin's lymphoma. Am J Epidemiol 2005;162:849-57.
28. van Balen E, Font R, Cavalle N, Font L, Garcia-Villanueva M, Benavente Y, Brennan P, de Sanjose S. Exposure to non-arsenic pesticides is associated with lymphoma among famers in Spain. Occup Environ Med 2006;63:663 8.
29. Steinrucken HC, Amrhein N . The herbicide glyphosate is a potent inhibitor of 5-enolpyruvyl-shikimic acid-3-phosphate synthase. Biochem Biophys Res Commun 1980;94:1207-12.
30. US EPA. U.S. Environmental Protection Agency Registration Eligibility Decision (RED) Glyphosate. EPA-R-93-014. Washington DC: US Environmental Protection Agency, 1993.
31. World Health Organization. International programme on chemical safety. Glyphosate. Environmental health criteria 159. Geneva: WHO, 1994.
32. De Roos AJ, Blair A, Rusiecki JA, Hoppni JA, Svec M, Dosemeci M, Sandler DP, Alavanja MC. Cancer incidence among glyphosateexposed pesticide applicators in the Agricultural Health Study Environ Health Perspect 2005;113:49-54.
33. Bolognesi C, Bonatti S, Degan P, Gallerani E, Peluso M, Rabboni R, Roggieri P, Abbondandolo A. Genotoxic activity of glyphosate and its technical formulation Roundup. J Agric Food Chem 1997;45:1957-62.
34. Lioi MB, Scarfi MR, Santoro A, Barbieri R, Zeni O, Di Berardino D, Ursini MV. Genotoxicity and oxidative stress induced by pesticide exposure in bovine lymphocyte cultures in vitro. Mutat Res 1998; 403:13-20.
35. Lioi MB, Scarfi MR, Santoro A, Barbieri R, Zeni O, Salvemini F, Di Beardino D, Ursini MV. Cytogenetic damage and induction of pro-
oxidant state in human lymphocytes exposed in vitro to gliphosate, vinclozolin, atrazine, and DPX-E9636. Environ Mol Mutagen 1998;32:39 46.
36. Hardell L, Eriksson M, Nordstrom M. Exposure to pesticides as risk factor for non-Hodgkin's lymphoma and hairy cell leukemia: pooled analysis of two Swedish case-control studies. Leuk Lymphoma 2002; 43:1043-9.
37. McDuffie HH, Pahwa P, McLaughlin JR, Spinelli JJ, Fincham S, Dosman JA, Robson D, Skinnider LF, Choi NW. Non-Hodgkin's lymphoma and specific pesticide exposures in men: cross-Canada study of pesticides and health. Cancer Epidemiol Biomarkers Prev 2001;10: 1155-63.
38. De Roos AJ, Zahm SH, Cantor KP, Weisenburger DD, Holmes FF, Burmeister LF, Blair A. Integrative assessment of multiple pesticides as risk factors for non-Hodgkin's lymphoma among men. Occup Environ Med 2003;60:E11.
39. Tatham L, Tolben P, Kjeldsberg C. Occupational risk factors for subgroups of non-Hodgkin's lymphoma. Epidemiology 1997;8:551 8.
40. Rothman N, Cantor KP, Blair A, Bush D, Brock JW, Helzlsouer K, Zahm SH, Needham LL, Pearson GR, Hoover RN, Comstock GW, Strickland PT. A nested case-control study of non-Hodgkin lymphoma and serum organochlorine residues. Lancet 1997;350:240-4.
41. Persson B, Dahlander AM, Fredriksson M, Brage HN, Ohlson CG, Axelson O. Malignant lymphomas and occupational exposures. Br J Ind Med 1989;46:516-20.

\title{
Exposure to Pesticides as Risk Factor for Non-Hodgkin's Lymphoma and Hairy Cell Leukemia: Pooled Analysis of Two Swedish Case-control Studies
}

\author{
LENNART HARDELL \({ }^{\mathrm{a}, \mathrm{b}} *\). MIKAEL ERIKSSON \({ }^{\mathrm{c}}\) and MARIE NORDSTRÖM \({ }^{\text {a }}\) \\ \({ }^{a}\) Department of Oncology, Örebro University Hospital, S. 70185 Örebro, Sweden; \({ }^{\text {b }}\) Department of Natural Sciences, Örebro University, S-701 82 Orebro, Sweden, 'Department of Oncology, University Hospital, S-221 85 Lund. Sweden
}
(In final form 30 October 2001)

\begin{abstract}
Increased risk for non-Hodgkin's Iymphoma (NHL) following exposure to certain pesticides has previously been reported. To further elucidate the importance of phenoxyacetic acids and other pesticides in the etiology of NHL a pooled analysis was performed on two case-control studies, one on NHL and another on hairy cell teukemia (HCL), a rare subtype of NHL. The studies were population based with cases identified from cancer registry and controls from population registry. Data assessment was ascertained by questionnaires supplemented over the telephone by specially trained interviewers. The pooled analysis of NHL and HCL was based on 515 cases and 1141 controls. Increased risks in univariate analysis were found for subjects exposed to herbicides (OR 1.75 , Cl \(95 \% 1.26-2.42\)), insecticides (OR 1.43, Cl 95\% 1.08-1.87), fungicides (OR 3.11, CI 95\% 1.56-6.27) and impregnating agents (OR 1.48. \(\mathrm{Cl} 95 \% 1.11-1.96\)). Among herbicides, significant associations were found for glyphosate (OR 3.04, CI 95\% 1.08-8.52) and 4-chloro-2-methyl phenoxyacetic acid (MCPA) (OR 2.62, CI 95\% 1.40-4.88). For several categories of pesticides the highest risk was found for exposure during the latest decades before diagnosis. However, in multivariate analyses the only significantly increased risk was for a heterogeneous category of other herbicides than above.
\end{abstract}

Keywords: Non-Hodgkin's lymphoma: Hairy cell leukemia: Pesticides: Phenoxyacetic acids: Glyphosate; Impregnating agents

\section*{INTRODUCTION}

Non-Hodgkin's lymphoma (NHL) is one of the malignant diseases with the most rapidly increasing incidence in the western world [1]. In Sweden, the mean age-adjusted incidence increased yearly by \(3.6 \%\) in men and \(2.9 \%\) in women during the time period 1958-1992 [2]. Hairy cell leukemia (HCL) was first described in 1958 and is regarded as a rare subgroup of NHL. HCL is more common in men with 23 male and 9 female patients reported to the Swedish Cancer Register in 1999 for the whole country [3].

The etiology of NHL is regarded to be multifactorial with different environmental exposures being part of it. Certain immunodefective conditions are established risk factors such as immunosuppressive medication after organ transplantation [4,5] and HIV-infection [6]. Also viral
genesis, especially regarding Epstein-Barr virus (EBV) and endemic African Burkitt lymphoma has been indicated [7].

Regarding chemicals, exposure to phenoxyacetic acids, chlorophenols and organic solvents were associated with increased risk for NHL in Swedish studies [8-10]. In subsequent studies exposure to phenoxyacetic acids, particularly 2,4 -dichlorophenoxyacetic acid (2,4-D), was associated with an increased risk for NHL [11,12]. These associations have been reviewed by us giving reference also to other studies [13].

We have now performed one case-control study on NHL, which did not include HCL [14], and another on HCL, specifically [15]. Both these studies focused interest especially on exposure to pesticides. In the NHL study, we found increased risks for subjects exposed to herbicides or fungicides. Among herbicides, phenoxyacetic acids

\footnotetext{
*Corresponding author. Tel.: +46-19-602-15-46. Fax: +46-19-101768. E-mail: lennar.hardell@orebroll.se
}

TABLE I Number of exposed cases and controls, odds ratio (OR) and 95\% confidence interval (Cl) for exposure to pesticides and organic solvents
\begin{tabular}{lccc}
\hline Agent & Number of exposed cases/controls & OR & CI \\
\hline Herbicides & \(77 / 103\) & 1.75 & \(1.26-2.42\) \\
Phenoxyacetic acids & \(64 / 90\) & 1.65 & \(1.16-2.34\) \\
MCPA & \(21 / 23\) & 2.62 & \(1.40-4.88\) \\
\(2,4-D+2,4,5-T\) & \(48 / 70\) & 1.48 & \(0.99-2.20\) \\
Glyphosate & \(8 / 8\) & 3.04 & \(1.08-8.52\) \\
Other & \(15 / 13\) & 2.90 & \(1.34-6.37\) \\
Insecticides & \(112 / 184\) & 1.43 & \(1.08-1.87\) \\
DDT & \(77 / 138\) & 1.27 & \(0.92-1.73\) \\
Mercurial seed dressing & \(20 / 33\) & 1.40 & \(0.77-2.47\) \\
Pyrethrins & \(13 / 27\) & 1.16 & \(0.57-2.25\) \\
Fungicides & \(18 / 17\) & 3.11 & \(1.56-6.27\) \\
Impregnating agents & \(104 / 162\) & 1.48 & \(1.11-1.96\) \\
Chlorophenols & \(66 / 106\) & 1.37 & \(0.98-1.92\) \\
Pentachlorophenol & \(64 / 101\) & 1.40 & 1.75 \\
Arsenic & \(8 / 10\) & 1.54 & 1.35 \\
Creosote & \(22 / 35\) & 1.16 & \(0.99-1.98\) \\
Other & \(40 / 67\) & \(250 / 492\) & \(0.86-4.54\) \\
Organic solvents & & \(0.88-2.66\) \\
\hline
\end{tabular}
dominated. One subclass of these, 4-chloro-2-methyl phenoxyacetic acid (MCPA), turned out to be significantly associated with NHL. For several categories of herbicides, we observed that only exposure during the latest decades before diagnosis of NHL was associated with an increased risk for NHL. In the HCL study, we found increased risk for exposure to different categories of pesticides [15]. However, due to comparatively low number of study subjects, it was not meaningful to make further analyses of the tumor induction period.

Thus, the risk patterns for NHL and HCL in these studies, performed by the same methodology, showed similarities with respect to pesticides. Since the NHL study included patients with many different variants of NHL, it seemed motivated also to include HCL, as nowadays being regarded as a NHL subgroup, in a pooled analysis regarding risks in relation to pesticide exposure. The purpose was to enlarge the study size thereby allowing more precise risk estimates.

\section*{MATERIALS AND METHODS}

\section*{Cases}

The NHL study encompassed male cases aged \(\geq 25\) years with NHL diagnosed during 1987-1990 and living in the four most northern counties of Sweden and three counties in mid-Sweden [14]. They were recruited from the regional cancer registries and only cases with histopathologically verified NHL were included, in total 442 cases. Of these cases 192 were deceased.

From the national Swedish Cancer Registry, 121 male patients with HCL diagnosed during 1987-1992 were identified from the whole country [15]. One case later turned out to have been diagnosed in 1993, but was included in the study. Only living cases were included.

\section*{Controls}

For living NHL cases two male controls matched for age and county were recruited from the National Population Registry.

For each deceased case two deceased controls matched also for year of death were identified from the National Registry for Causes of Death. For deceased subjects interviews were performed with the next-of-kin.

Similarly, four male controls matched for age and county were drawn to each case of HCL from the National Population Registry.

\section*{Assessment of Exposure}

In both studies a similar questionnaire was mailed to the study subjects or next-of-kin for deceased individuals. A complete working history was asked for as well as exposure to different chemicals. If the information was unclear a trained interviewer supplemented the answers over the phone, thereby using written instructions. Years and total number of days for exposure to various agents were assessed. Also names of different agents were carefully asked for. If necessary, the Swedish Chemical Inspectorate was contacted to obtain information on the chemical composition of different brands of pesticides and other agents. A minimum exposure of one working day (8 h) and a tumor induction period of at least one year were used in the coding of chemicals. Thus, total exposure less than one day as well as exposure within one year prior to diagnosis (corresponding time for the matched control) were disregarded. The questionnaires were blinded as to case or control status during the interviews and coding of data.

\section*{Statistical Analysis}

Conditional logistic regression analysis for matched studies was performed with the SAS statistical program (SAS Institute, Cary, NC). Thereby odds ratios (OR) and

TABLE II Exposure to different types of herbicides with dose-response calculations. High exposure is defined as > median number of days for exposed subjects. Range of exposure in days given within parenthesis
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Agent} & \multirow[b]{2}{*}{Total OR (CI)} & \multirow[b]{2}{*}{Median number of days} & \multicolumn{2}{|c|}{OR (Cl)} \\
\hline & & & Low & High \\
\hline Herbicides & 1.75 (1.26-2.42) & \(33(1-709)\) & 1.74 (1.10-2.71) & 1.79 (1.15-2.79) \\
\hline Phenoxyacetic acids & 1.65 (1.16-2.34) & 33 (1-709) & 1.65 (1.01-2.66) & 1.67 (1.02-2.69) \\
\hline MCPA & 2.62 (1.40-4.88) & 25 (1-491) & \(1.94(0.79-4.55)\) & 3.61 (1.49-9.05) \\
\hline 2,4-D \(+2,4,5-\mathrm{T}\) & 1.48 (0.99-2.20) & 30 (1-709) & 1.87 (1.08-3.20) & 1.20 (0.68-2.08) \\
\hline Other & 2.90 (1.34-6.37) & 11 (1-220) & 2.26 (0.76-6.77) & 3.37 (1.08-11) \\
\hline
\end{tabular}

95\% confidence intervals (CI) were obtained. Both univariate and multivariate analyses were done. In this pooled analysis adjustment was made for study, study area and vital status. When risk estimates for different pesticides were analyzed only subjects with no pesticide exposure were taken as unexposed, whereas subjects exposed to other pesticides were disregarded.

\section*{RESULTS}

The questionnaire was answered by 404 cases (\(91 \%\)) and 741 controls (\(84 \%\)) in the NHL study. Regarding HCL 111 cases (\(91 \%\)) and 400 controls (\(83 \%\)) participated. In the following results are given for the pooled analysis containing 515 cases and 1141 controls.

An increased risk was found for exposure to herbicides, insecticides, fungicides and impregnating agents, Table 1. Regarding specific agents OR was highest for glyphosate and MCPA.

For herbicides dose-response calculations were also performed by comparing high and low dose exposures divided by the median exposure time in days, Table II. Exposure to MCPA gave a dose-response effect. Also for the group constituting of other herbicides than phenoxyacetic acids the risk was highest in the group with high exposure.

For herbicides in total and phenoxyacetic acids as a group the highest risks were seen when first exposure occurred \(10-20\) years before diagnosis, Table III. This was also the case for insecticides and impregnating agents. Within the latter group, however, an induction period of 20-30 years gave the highest risk for both creosote and pentachlorophenol.

Time to diagnosis from last exposure to different agents was also used in the calculation of risk estimates, Table IV. For phenoxyacetic acids the OR was highest for exposure \(1-10\) years prior to diagnosis whereas no increased risk was seen for those with last exposure \(>20\) years from the time of diagnosis.

TABLE III Exposure to phenoxyacetic acids, insecticides, impregnating agents and organic solvents. Calculations are made with exposure divided according to time span from first exposure to diagnosis (induction period)
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Agent} & \multicolumn{4}{|c|}{Induction period, years} \\
\hline & 1-10 OR (CI) & \(>10-20\) OR (Cl) & \(>20-30\) OR (CI) & \(>30\) OR (CI) \\
\hline Herbicides & \[
\begin{gathered}
1.00 \\
(0.05-11)
\end{gathered}
\] & \[
\begin{gathered}
2.32 \\
(1.04-5.16)
\end{gathered}
\] & \[
\begin{gathered}
1.63 \\
(0.87-2.98)
\end{gathered}
\] & \[
\begin{gathered}
1.70 \\
(1.12-2.58)
\end{gathered}
\] \\
\hline Phenoxyacetic acids & -* & \[
\begin{gathered}
2.88 \\
(1.11-7.72)
\end{gathered}
\] & \[
\begin{gathered}
1.54 \\
(0.85-2.76)
\end{gathered}
\] & \[
\begin{gathered}
1.50 \\
(0.94-2.37)
\end{gathered}
\] \\
\hline MCPA & -* & \[
\begin{gathered}
5.36 \\
(1.57-21)
\end{gathered}
\] & \[
\begin{gathered}
0.89 \\
(0.20-3.03)
\end{gathered}
\] & \[
\begin{gathered}
3.77 \\
(1.49-9.99)
\end{gathered}
\] \\
\hline \(2,4-\mathrm{D}+2,4,5-\mathrm{T}\) & -+ & \[
\begin{gathered}
2.87 \\
(0.81-11)
\end{gathered}
\] & \[
\begin{gathered}
1.87 \\
(0.98-3.53)
\end{gathered}
\] & \[
\begin{gathered}
1.15 \\
(0.67-1.93)
\end{gathered}
\] \\
\hline Insecticides & \[
\begin{gathered}
1.20 \\
(0.25-4.70)
\end{gathered}
\] & \[
\begin{gathered}
2.84 \\
(0.95-8.54)
\end{gathered}
\] & \[
\begin{gathered}
2.19 \\
(1.14-4.17)
\end{gathered}
\] & \[
\begin{gathered}
1.31 \\
(0.96-1.77)
\end{gathered}
\] \\
\hline DDT & \[
-\dagger
\] & \[
\begin{gathered}
2.64 \\
(0.61-11)
\end{gathered}
\] & \[
\begin{gathered}
1.63 \\
(0.80-3.26)
\end{gathered}
\] & \[
\begin{gathered}
1.17 \\
(0.82-1.65)
\end{gathered}
\] \\
\hline Impregnating agents & \[
\begin{gathered}
1.20 \\
(0.37-3.49)
\end{gathered}
\] & \[
\begin{gathered}
2.27 \\
(1.15-4.49)
\end{gathered}
\] & \[
\begin{gathered}
1.89 \\
(1.07-3.30)
\end{gathered}
\] & \[
\begin{gathered}
1.23 \\
(0.85-1.75)
\end{gathered}
\] \\
\hline Chlorophenols & - + & \[
\begin{gathered}
1.91 \\
(0.82-4.44)
\end{gathered}
\] & \[
\begin{gathered}
1.90 \\
(0.98-3.65)
\end{gathered}
\] & \[
\begin{gathered}
1.13 \\
(0.73-1.71)
\end{gathered}
\] \\
\hline Pentachlorophenol & - + & \[
\begin{gathered}
1.91 \\
(0.82-4.44)
\end{gathered}
\] & \[
\begin{gathered}
2.13 \\
(1.07-4.25)
\end{gathered}
\] & \[
\begin{gathered}
1.13 \\
(0.73-1.72)
\end{gathered}
\] \\
\hline Creosote & -* & \[
\begin{gathered}
0.88 \\
(0.04-7.27)
\end{gathered}
\] & \[
\begin{gathered}
5.33 \\
(1.26-27)
\end{gathered}
\] & \[
\begin{gathered}
1.34 \\
(0.69-2.49)
\end{gathered}
\] \\
\hline Organic solvents & \[
\begin{gathered}
1.51 \\
(0.65-3.37)
\end{gathered}
\] & \[
\begin{gathered}
1.38 \\
(0.84-2.24)
\end{gathered}
\] & \[
\begin{gathered}
1.46 \\
(1.00-2.12)
\end{gathered}
\] & \[
\begin{gathered}
1.02 \\
(0.79-1.30)
\end{gathered}
\] \\
\hline
\end{tabular}

\footnotetext{
* No exposed cases, one exposed control.
\(\dagger\) No exposed subjects.
}

TABLE IV Exposure to phenoxyacetic acids, impregnating agents and organic solvents. Calculations are made with exposure divided according to time span from last exposure to diagnosis
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Agent} & \multicolumn{4}{|c|}{Time span, last exposure-diagnosis, years} \\
\hline & 1-10 OR (CI) & \(\geq 10-20\) OR (Cl) & \(>20-30 \mathrm{OR}(\mathrm{CI})\) & \(>30\) OR (CI) \\
\hline & 1-10 OR (Cl) & & & 1.84 \\
\hline \multirow[t]{2}{*}{Herbicides} & \[
2.53
\] & \[
\begin{gathered}
1.68 \\
(0.88-3.14)
\end{gathered}
\] & \[
(0.66-2.19)
\] & (0.95-3.51) \\
\hline & \((1.38-4.64)\)
3.22 & \((0.88-3.14)\)
2.06 & 1.01 & 1.26 \\
\hline Phenoxyacetic acids & \[
\begin{gathered}
3.22 \\
(1.59-6.65)
\end{gathered}
\] & (1.03-4.09) & (0.54-1.81) & (0.57-2.62) \\
\hline \multirow[b]{2}{*}{MCPA} & (1.59.52 & 2.33 & \({ }_{0}^{0.92}\) & \\
\hline & \[
(1.58-7.99)
\] & (0.56-9.09) & \((0.13-4.39)\)
1.04 & 1.41 \\
\hline \multirow[t]{2}{*}{\(2.4-\mathrm{D}+2,4.5-\mathrm{T}\)} & \[
\begin{gathered}
4.31 \\
(1.12-21)
\end{gathered}
\] & \[
\begin{gathered}
1.85 \\
(0.90-3.78)
\end{gathered}
\] & (0.54-1.94) & (0.65-2.92) \\
\hline & \((1.12-21)\)
2.37 & (0.90-87 & 1.45 & 1.46
\((0.94-2.24)\) \\
\hline Insecticides & \[
(1.40-4.02)
\] & (0.48-1.53) & (0.85-2.41) & \((0.94-2.24)\)
1.20 \\
\hline \multirow[t]{2}{*}{DDT} & \[
1.45
\] & \[
\begin{gathered}
1.13 \\
(0.62-1.97)
\end{gathered}
\] & \[
(0.83-2.50)
\] & (0.69-2.02) \\
\hline & \[
\binom{0.65-3.10}{192}
\] & \((0.62-1.97\)
0.79 & 1.67 & 1.19 \\
\hline Impregnating agents & \[
(1.30-2.82)
\] & (0.40-1.46) & \((0.88-3.11)\)
1.36 & \[
\begin{gathered}
(0.61-2.21) \\
0.84
\end{gathered}
\] \\
\hline Chlorophenols & -† & \[
\begin{gathered}
1.52 \\
(1.02-2.25)
\end{gathered}
\] & (0.61-2.86) & (0.32-1.96) \\
\hline \multirow[t]{2}{*}{Pentachlorophenol} & \multirow[t]{2}{*}{- \(\dagger\)} & 1.59 & \[
\begin{gathered}
1.28 \\
(0.58-2.67)
\end{gathered}
\] & \[
\begin{gathered}
0.81 \\
(0.29-2.01)
\end{gathered}
\] \\
\hline & & (1.06-2.37) & (0.58-2.67) & (0.29-2.01) \\
\hline \multirow[t]{2}{*}{Creosote} & 2.56 & \[
\begin{gathered}
0.93 \\
(0.13-4.17)
\end{gathered}
\] & (0.36-3.43) & (0.60-3.75) \\
\hline & (0.85-7.67) & & 1.39 & 0.99 \\
\hline Organic solvents & \[
\begin{gathered}
1.17 \\
(0.91-1.50)
\end{gathered}
\] & \[
\begin{gathered}
1.00 \\
(0.66-1.50)
\end{gathered}
\] & (0.84-2.25) & (0.56-1.69) \\
\hline
\end{tabular}
* one exposed case, one exposed control.
+ No exposed case or control.

Furthermore, exposure to phenoxyacetic acids during different decades from the 1940 s was analyzed. Increased risk was found during recent decades, Table V.
No statistically significant increased risk was found for the whole group of organic solvents in this pooled analysis, but when the solvents were subgrouped according to specific substances there were increased risks for vanolen (\(\mathrm{OR}=1.91, \mathrm{CI}=1.03-3.49 ; n=20\) cases) and aviation fuel (\(\mathrm{OR}=3.56 . \mathrm{CI}=1.03-12 ; n=6\) cases).

Multivariate analysis of exposure to phenoxyacetic acids, insecticides, fungicides and impregnating agents is presented in Table VI. An increased risk persisted for exposure to herbicides, fungicides and impregnating agents, however not statistically significant.

A separate multivariate analysis was performed on exposure to herbicides. Lower risk estimates were obtained although all herbicides still constituted risk factors for NHL, Table VII.

TABLE V Exposure to phenoxyacetic acids during different decades. Note that one subject may occur during several decades
\begin{tabular}{lccc}
\hline Decade & Cases/controls & OR & Cl \\
\hline 1940 s & \(4 / 6\) & 1.46 & \(0.37-5.23\) \\
1950 s & \(35 / 53\) & 1.44 & \(0.91-2.26\) \\
1960 s & \(43 / 58\) & 1.68 & \(1.10-2.55\) \\
1970 s & \(32 / 33\) & 2.37 & \(1.42-3.95\) \\
1980 s & \(16 / 33\) & 3.25 & \(1.53-7.07\) \\
\hline
\end{tabular}

\section*{DISCUSSION}

The cases in this study were identified by using the Swedish Cancer Registry, which is composed by six regional registries. In Sweden, the reporting of malignant diseases to the Cancer Registry is compulsory, which makes it likely that most incident cases in the study area were identified. Controls were selected from the National Population Registry and, in order to minimize recall bias, deceased controls were used for deceased cases in one of the studies [14] which were the basis for this analysis. In the other only living cases were included [15]. Recall bias is always a matter of concern in a case-control study with self-reported exposures. Farmer as occupation did not increase the risk in this pooled analysis \((\mathrm{OR}=1.19\). \(\mathrm{CI}=0.95-1.49\)) which indicates that the risk increase for pesticides was not explained merely by misclassification of exposure. All interviews and coding of data were performed blinded as to case or control status in order to minimize observational bias.

TABLE V1 Multivariate analysis of exposure to pesticides
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Agent} & \multicolumn{2}{|r|}{Univariate} & \multicolumn{2}{|r|}{Multivariate} \\
\hline & OR & Cl & OR & Cl \\
\hline Herbicides & 1.75 & 1.26-2.42 & 1.39 & 0.96-2.02 \\
\hline Insecticides & 1.43 & 1.08-1.87 & 1.07 & 0.78-1.45 \\
\hline Fungicides & 3.11 & 1.56-6.27 & 2.02 & 0.97-4.23 \\
\hline Impregnating agents & 1.48 & 1.11-1.96 & 1.30 & 0.98-1.72 \\
\hline
\end{tabular}

TABLE VIl Multivariate analysis of exposure to herbicides. Odds ratios (OR) and \(95 \%\) confidence intervals (Cl) are given
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Agent} & \multicolumn{2}{|r|}{Univariate} & \multicolumn{2}{|r|}{Multivariate} \\
\hline & OR & Cl & OR & Cl \\
\hline MCPA & 2.62 & 1.40-4.88 & 1.67 & 0.77-3.57 \\
\hline 2,4-D - 2.4,5-T & 1.48 & 0.99-2.20 & 1.32 & 0.88-1.96 \\
\hline Glyphosate & 3.04 & 1.08-8.52 & 1.85 & 0.55-620 \\
\hline Other herbicides & 2.90 & \(1.34-6.37\) & 2.28 & 102-5.15 \\
\hline
\end{tabular}

This study was a pooled analysis of two case-control studies, one on NHL [14] and the other on HCL [15] to provide larger numbers, which would allow more detailed analyses regarding the timing of exposure and adjustment of multiple exposures. This method was justified since HCL is a type of NHL and similar methods and questionnaires were used in both studies. Also the findings regarding pesticide exposure were relatively homogenous for both studies. The smaller HCL study had a somewhat higher prevalence of exposure and therefore has in this pooled analysis more weight than one would expect.

Conditional logistic regression analysis was performed since both studies in this pooled analysis were matched. Heterogeneity in findings was averaged after stratification by study. Since the NHL study included also deceased cases and controls adjustment was made for vital status. Finally, in the HCL study the whole Sweden was included as study base whereas in the NHL study only parts of Sweden were included. Thus, adjustment was made for geographical area for cases and controls, i.e. county.
In the multivariate analysis exposure to herbicides, fungicides and impregnating agents increased the risk although OR was lower than in the univariate analysis. Significantly increased risk remained only for the heterogeneous group of "other herbicides". The results in multivariate analysis must be interpreted with caution since exposure to different types of pesticides correlate. Multivariate analysis is mainly useful to estimate the risk factors that seem to be most important.

Several previous studies have associated exposure to phenoxyacetic acids, primarily 2,4-D and 2,4,5-trichlorophenoxyacetic acid (\(2,4,5-\mathrm{T}\)), with an increased risk for NHL [8-12,16-18]. Conceming MCPA data are sparse although in our first study on NHL. we found an increased risk \([9,10]\).

In this pooled analysis, most subjects were regarding herbicides exposed to phenoxyacetic acids, mostly the combination of 2,4-D and 2,4.5-T. 2,4-D was withdrawn from the Swedish market in 1990 and \(2,4,5-\mathrm{T}\) was prohibited in 1977. Also MCPA, the phenoxy herbicide still commonly used in Sweden, increased the risk for NHL. Glyphosate is the herbicide now mostly used in Sweden. In this study, exposure to glyphosate was a risk factor for NHL. Thus, regarding herbicides lymphomagenesis seems not to be depending on contaminating dioxins, i.e. \(2,3,7,8-\mathrm{TCDD}\) in \(2,4,5-\mathrm{T}\). A contributing effect of such exposure cannot be excluded, although not
supported by mortality results in a cohort of workers exposed to \(2,3,7,8\)-TCDD [19]. IARC classified recently \(2,3,7,8-\mathrm{TCDD}\) as a human carcinogen, Group I [20].

In the univariate analysis exposure to insecticides, mostly DDT, increased the risk for NHL. In the multivariate analysis no risk was found. This is in accordance with our previous results \([9,10]\) and a pooled analysis of three case-control studies concluded that DDT is not a risk factor for NHL [21]. Furthermore, analysis of serum DDT/DDE has not given a clear association with NHL [22,24.25].

Regarding fungicides an increased risk for NHL has previously been reported from USA [11]. Our result with increased risk for NHL needs to be further studied since the finding was based on few subjects exposed to several types of fungicides.

Chlorophenols. which are chemically related to phenoxyacetic acids and have been used as e.g. wood preservatives, were banned in Sweden in 1978. An increased risk for NHL was found in this pooled analysis, but also for exposure to arsenic and creosote. Both chlorophenols and creosote have been associated with NHL [26,27]

An association between exposure to organic solvents and NHL has been described [9,10,28-30]. However, such an association was not confirmed now although an influence of tumor induction period can not be ruled out, c.f., below. Another possibility might be that solvents used during later years are less toxic than previously, e.g. water based, and that they are more cautiously handled [31].

To further elucidate mechanisms in lymphomagenesis analysis of tumor-induction period (latency) and also time from last exposure to diagnosis was performed. Thereby the cortesponding year for diagnosis was used for the matched control. For 2,4-D, 2,4.5-T and chlorophenols no subject had first exposure during \(1-10\) years prior to diagnosis due to restrictions in the use of these chemicals in Sweden during that time period. For fungicides such calculations were not meaningful due to low number of exposed subjects.

The highest risk for exposure to herbicides, insecticides and impregnating substances was found for last exposure \(1-10\) years prior to diagnosis. Correspondingly, in general the lowest risks were found for the longest tumor induction periods.

Do these results cast further light on the etiology of NHL? Certainly, exposure to some chemicals is of significance in lymphomagenesis. Furthermore, bearing in mind that several of these chemicals are immunotoxic, e.g. certain pesticides and chlorophenols \([27,32,33]\) and immunosuppression is an established risk factor for NHL [34] such toxicity might be of importance for chemical agents.

Viruses have been associated with lymphomas in animals \([35,36]\) and more specifically EBV for humans [7,37]. Virus proliferation in lymphocytes is held back by the immune system and immunosuppression may be followed by development of both B-cell and T-cell
lymphoma in animals [38-39]. For renal transplant patients treated with immunosuppressive drugs the risk for NHL is highest during the first years after transplantation and then declines [40].

Timing of exposure in relation to risk of NHL, particularly in regard to higher risk for recent exposures, seemed to be an interesting result regarding lymphomagenesis. Several interpretations are possible such as chance finding, late stage in lymphomagenesis, type of exposure or interaction with other factors. Certainly immunmodulation by pesticides \([32,33]\) is one hypothesis which should be more elaborated on, possibly with interaction with latent virus infection such as EBV. This might explain the short tumor induction period. In fact, results from the included HCL-study showed interaction between EBV-infection and exposure to such chemicals [41,42]. Additionally, polychlorinated biphenyls [22,24,25] and chlordanes [23,24], chemicals that are immunotoxic \([43,44]\), have been associated with an increased risk for NHL

The etiology of NHL is multifactorial and further studies should consider immunotoxic effects by the studied chemicals as well as tumor induction period and interaction with virus infection, e.g. EBV.

\section*{Acknowledgements}

The authors thank Michael Carlberg, MSc, who participated in the statistical calculations. Contract grant sponsors: The Swedish Cancer Research Fund, the Swedish Medical Research Council, Örebro County Council Research Committee and Orebro Medical Centre Research Foundation.

\section*{References}
[1] Rabkin, C.S., Devesa, S.S., Hoar Zahm, S. and Gail, M.H. (1993) "Increasing incidence of non-Hodgkin's lymphoma", Semin. Hematol. 30, 286-296.
[2] Nordström, M. (1996) "Increasing incidence of non-Hodgkin's lymphomas in Sweden 1958-1992", Oncol. Rep. 3, 645-649
[3] Anonymous (2001). Cancer Incidence in Sweden 1999. The National Board of Health and Welfare. Stockholm, Sweden.
[4] Penn, I., Hammond. W., Brettschneider. I. and StartzI, T.E. (1969) "Malignant lymphomas in transplantation patients", Transplant. Proc. 1, 106-112.
151 Kinlen. L.J., Sheil, A.G.R., Peto, J. and Doll, R. (1979) "Colloborative L'nited Kingdom-Australiasian study of cancer in patients treated with immunosuppressive drugs", Br: Med. J. 2, 1461-1466.
[6] Ziegler, J.L.. Beckstead, J.A., Volberding. P.A., Abrams, D.J., Levine, A.M., Lukes, R.J., Gill. P.S., Burkes, R.L., Meyer, P.R., Metroka, C.E., Mouradian, J., Moore, A., Riggs, S.A., Butler, J.J., Cabanillas, FC. Hersh, E., Newell, G.R., Laubenstein, L.J., Knowles, D., Odanjnyk, C., Raphael, B., Koziner, B., Urmacher, C. and Clarkson, B. (1984) "Non-Hodgkin's lymphoma in 90 honosexual men: relationship to generalized lymphadenopathy and acquired immunodeficiency syndrome", N. Engl. J. Med. 311, 565-570.
[7] Evans, A.S. and Mueller. N.E. (1990) "Viruses and canecr: causal associations", Ann. Epidentiol 1, 71-92
[8] Hardell, L. (1979) "Malignant lymphoma of histiocytic type and exposure to phenxoyacetic acids or chlorophenols". Lancet 1. 55-56.

19] Hardeli, L., Eriksson, M., Lenner. P. and Lundgren, E. (1981) "Malignant lymphoma and exposure to chemicals, especially organic solvents. chlorophenols and phenoxy acids: a case-control study", Br. J. Cancer 43, 169-176.
[10] Hardell, L., Eriksson, M. and Degerman, A. (1994) "Exposure to phenoxyacetic acids, chlorophenols, or organic solvents in relation to histopathology, stage, and anatomical localization of nonHodgkin's lymphoma", Cancer Res. 54, 2386-2389.
[11] Hoar, S.K., Blair. A., Holmes. F.F., Boysen, C.D., Robel, R.J., Hoover. R. and Fraumeni. Jr. J.F. (1986) "Agricultural herbicide use and risk of lymphoma and sofi-tissue sarcoma", JAMA 256. 1141-1147.
[12] Hoar Zahm, S., Weisenburger, D.D., Babbitt, P.A., Saal, R.C., Vaught. J.B., Cantor, K.P. and Blair, A. (1990) "A case-control study of non-Hodgkin`s lymphoma and the herbicide 2.4-dichlorophenoxyacetic acid (2.4-D) in Eastern Nebraska", Epidemiology 1, 349-356.
[13] Hardell, L., Eriksson, M., Axelson. O. and Hoar Zahm, S. (1994) "Cancer epidemiology", In: Schecter, A.,, ed, Dioxins and Health (Plenum Press, New York), pp 525-547
[14] Hardell, L. and Eriksson, M. (1999) "A case-control study of nonHodgkin lymphoma and exposure to pesticides", Cancer 85, 1353-1360.
[15] Nordstrom. M. Hardell. L., Magnuson, A. Hagberg, H. and RaskAndersen, A. (1998) "Occupational exposures, animal exposure and smoking as risk factors for hairy cell leukaemia evaluated in a casecontrol study", Br. J. Cancer 77. 2048-2052.
[16] Kogevinas, M., Kauppinen, T., Winkeimann, R., Johnson, E.S., Benazzi, P.A. and Buneo de Mesquita, B.H. (1995) "Soft tissue sarcoma and non-Hodgkin's lymphoma in workers exposed to phenoxy herbicides, chlorophenols, and dioxins: two nested casecontrols studies". Epidenuology 6, 396-402
[17] Becher, H., Flesch-Janys, D., Kauppinen, T., Kogevinas, M., Steindorf, K., Manz, A. and Wahrendorf, J. (1996) "Cancer monality in German male workers exposed to phenoxy herbicides and dioxins". Canser Causes Comrol 7. 312-321.
[18] Fontana, A., Picoco, C., Masala, G., Prastaro, C. and Vineis, P. (1998) "Incidence rates of Iymphomas and environmental measurements of phenoxy herbicides: ecological analysis and case-control sludy". Arch. Environ. Health 53, 384-387
(19) Steenland, K., Piacitelli, L., Deddens. J., Fingerhut, M. and Chang. L.I. (1999) "Cancer, heart disease, and diabetes in workers exposed to 2.3.7.8-tetrachlorodibenzo-p-dioxin". J. Natl Cancer Inst. 91. 779-786.
[20] International Agency for Research on Cancer (1997). IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Vol. 69, Polychlorinated Dibenzo-para-Dioxins and Polychlorinated Dibenzofurans. Lyon, France.
(21) Baris, D., Hoar Zahm, S., Cantor, K. and Blair, A. (1998) "Agricultural use of DDT and risk of non-Hodgkin's lymphoma pooled analyses of three case-control studies in the United States", Occup. Environ. Med. 55, 522-527.
[22] Hardell, L.. van Bavel, B., Lindström, G., Fredrikson, M., Hagberg. H.. Liljegren, G., Nordström, M. and Johansson, B. (1996) "Higher concentrations of specific polychlorinated biphenyl congeners in adipose tissue from non-Hodgkin's lymphoma patients compared with controls without a malignant disease", Int. J. Oncol. 9, 603-608
[23] Hardell, L., Liljegren. G., Lindström, G.. Van Bavel, B., Broman, K., Fredrikson, M.. Hagberg, H., Nordström, M. and Johansson, B. (1996) "Increased concentrations of chlordane in adipose tissue from non-Hudgkin's lymphoma patients compared with controls without a malignant disease", Int. J. Oncol. 9, 1139-1142.
[24] Hardell, L., Eriksson, M., Lindström, G., van Bavel, B., Linde, A., Carlberg, M. and Liljegren, G. (2001) "Case-control study on concentrations of organohalogen compounds and titers of antibodies to Epstein - Barr virus antigens in the etiology of nonHodgkin lymphoma", Leuk. Lymph. 42(4), 619-629.
[25] Rothman, N., Cantor, K.P., Blair, A., Bush. D., Brock, J.W.. Helzlsouer, K., Zahm, S.H., Needham. L.L., Pearson, G.R., Hoover, R.N., Comstock, G.W. and Strickland, PT. (1997) "A nested casecontrol study of non Hodgkin lymphoma and senum organochlorine residues", Lancet 350, 240-244
[26] Persson, B.. Dahlander, A.M.. Fredriksson, M., Noordlind-Brage. H., Ohison, C.G. and Axelson, O. (1989) "Malignant lymphomas and occupational exposures", Br. J. Ind. Med. 46, 516-520.
[27] Hardell, L. and Axelson, O. (1998) "Environmental and occupational aspects on the etiology of non-Hodgkin's lymphoma", Oncol. Res. 10, 1-5.
[28] Vianna, N.J. and Polan, A. (1979) "Lymphomas and occupational benzene exposure", Lancet ii, 1394-1395.
[29] Olsson, H. and Brandt, L. (1988) "Risk of non-Hodgkin's lymphoma among men occupationally exposed to organic solvents", Scand. J. Work. Environ. Health 14, 246-251.
[30] Yin, S.N., Hayes, R.B., Linet, M.S., Le, G.L., Dosemeci, M., Travis. L.B., Zhang, Z.N., Li, D.G., Chow, W.H., Wacholder, S. and Blot, W.J. (1996) "An expanded cohort study of cancer among benzeneexposed workers in China", Environ. Health Perspect. 104(Suppl. 6), 1339-1341.

131] Axelson, O. and Hogstedt, C. (1994) "The healuh effects of solvents", In: Zenz, C.. Dickerson, O.B. and Horvath, Jr, E.P., eds, Occupational Medicine (St Louis, Mosby), pp 764-778.
[32] Faustini, A., Sertimi, L., Pacifici, R., Fano, V., Zuccaro, P. and Forastiere, F. (1996) "Immunological changes among farmers exposed to phenoxy herbicides: preliminary observations", Occup. Environ. Med. 53, 583-585.
[33] Stiller-Winkler, R., Hadnagy, W., Leng, G., Straube, E. and Idel, H. (1999) "Immunological parameters in humans exposed to pesticides in the agricultural environment", Toxicol. Lett. 107, 219-224.
[34] Scherr, P.A. and Mueller, N.E. (1996) "Non-Hodgkin's lymphoma", In: Shottenfeld, D. and Fraumeni, Jr., J.F., eds, Cancer Epidemiology and Prevention (Oxford Liniversity Press, New York), pp 920-945.
[35] Kaplan, H.S. (1978) "From experimental animal models to human lymphoid tissue neoplasia: search for viral etiology. Recent Results", Cancer Res. 64, 325-336.
[36] Armenian, H.K. and Hamaden, R.R. (1983) "Epidemiology of nonHodgkin's lymphoma", In: Lilienfeldt. A.M.,. ed, Reviews In Cancer Epidemiology (Elsevier, New York) 2, pp 141-169.
[37] Lehtinen, T., Lumio, J., Dillner. J., Hakamma, M., Knekt, P., Lehtinen, M.. Teppo, L. and Lenkki, P. (1993) "Increased risk of malignant lymphoma indicated by elevated Epstein-Bart virus antibodies-a prospective study", Cancer Causes Control 4, 187-193.
[38] Manzari, V., Gismondi, A., Barillari, G., Morrone, S., Modesti. G., Albonici, L., De Marchis, L., Fazio, V., Gradilone, A., Zani, M., Frati, L. and Santoni, A. (1987) "HTLV-V: a new human retrovirus isolated in a TAC-negative T-cell lymphoma/leukemia", Science 238, 1581-1583.
[39] Potter, M. (1992) "Pathogenetic mechanisms in B-cell nonHodgkin's lymphoma in humans", Cancer Res. 52(Suppl), \(5522 \mathrm{~s}-5528 \mathrm{~s}\).
[40] Newstead, C.G. (1998) "Assessment of risk of cancer after renal transplanatation", Lancet 351, 610-611
[41] Nordström, M., Näsman, Å., Linde, A., Schloss, L. and Hardell, L. (1999) "Elevated antibody levels to Epstein-Barr virus antigens in patients with hairy cell leukaemia compared to controls in relation to exposure to pesticides, organic solvents, animals and exhausts", Oncol. Res. 11, 539-544
[42] Nordström, M., Hardell, L., Näsman, Å., Wingfors, H., Hardell, K., Lindström, G. and Linde, A. (2000) "Concentrations of organochlorines related to levels of antibodies to Epstein-Barr virus antigens as risk factors for hairy cell leukemia", Environ. Health Perspect. 108, 441-445.
[43] Lu, Y.C. and Wu, Y.C. (1985) "Clinical findings and immunological abnormalities in Yu-Cheng patients", Environ. Health Perspect. 59, 17-29.
[44] McConnachie, P.R. and Zahalsky, A.C. (1992) "Immune alterations in humans exposed to the termiticide technical chlordane", Arch. Environ. Health 47, 295-301.

\section*{UNITED STATES DISTRICT COURT \\ NORTHERN DISTRICT OF CALIFORNIA}

IN RE: ROUNDUP PRODUCTS LIABILITY LITIGATION

MDL No. 2741
Case No. 16-md-02741-VC

This document relates to:
ALL ACTIONS

REBUTTAL EXPERT WITNESS REPORT
OF
BEATE RITZ, M.D., Ph.D.

\section*{Introduction}

This rebuttal report will address: 1) the draft manuscript[s] of the unpublished Agricultural Health Study (AHS) dated February 6, 2013 (Exhibit 19A to the deposition of Dr. Aaron Earl Blair taken March 20, 2017) and March 15, 2013 (Exhibit 19B to the deposition of Dr. Aaron Earl Blair taken March 20, 2017); 2) epidemiology issues raised by Defendant's experts Dr. Lorelei A. Mucci, Dr. Jennifer S. Rider and Dr. William Fleming; 3) the North American Pooled Project ("NAPP") study.

\section*{The Draft Manuscripts of the Unpublished AHS}

The draft manuscripts of the unpublished AHS provide analyses of 333 NHL cases within the AHS cohort (DeRoos 2005) that followed individuals from through December 2008 for cancer incidence. The draft manuscripts also purport to give new exposure data collected in the second phase interview of the AHS between 1998 and 2004, together with the original data collected at enrollment of the cohort between 1993 and 1997.

The main problem with these draft AHS manuscripts are the authors' attempts to impute and 'guestimate' exposure for glyphosate or glyphosate-based formulations ("GBFs", including Roundup). The problems arise because there has been a dramatic increase in the use of and exposure to glyphosate or GBFs in the mid-1990s (Aspelin and Grube 2016; Grube et al 2016; Coupe and Capel 2015; Thelin and Stone 2016; Service. USDoANAS 2016; Benbrook 2015). The authors failed to address this major issue in their draft manuscripts of unpublished AHS data. While under some, limited circumstances it is an acceptable epidemiological approach to impute or 'guestimate' certain unavailable data, one must be extremely careful when imputing/guestimating a critical piece of data, such as exposure or outcome of interest. In the case of the draft AHS manuscripts, the guestimation was conducted to answer the question as to whether or not the cases and controls were even exposed to the products being studied. In the instance of the draft AHS manuscripts, the imputation/guestimation failed, in part, because the draft manuscripts could not accurately account for the major change in the use of GBFs, including Roundup \({ }^{\circledR}\). The validity of the results of such an imputation/guestimation become extremely questionable because when applied, the study authors need to assume glyphosate/GBF use was based on historical use, and do
not apply the increased use for any person who did not report their pesticide use, i.e. the non-responders. Consequently, such imputation/guestimation is unable to fully contemplate major changes in the professional agricultural environment as seen with the use of glyphosate/GBFs. Further, this change was not captured in the original reporting by AHS participants and generates a unique problem for glyphosate/GBFs compared with all other pesticide exposure assessments performed in this prospective study. After registration in the U.S. in 1974, glyphosate/GBFs were mainly used to kill weeds before planting of crops or spraying for weed control in pastures and non-crop areas, with 6-8 million pounds applied by U.S. farmers and ranchers in 1987 [Grube 2016]. The dramatic change in glyphosate/GBF use began in 1996, the first year genetically engineered, glyphosate -tolerant crops were planted commercially in the U.S. Specifically, in 1996, Monsanto first introduced genetically engineered, glyphosate resistant soybeans (Roundup \({ }^{\circledR}\) Ready) to the commercial market, followed by cotton and canola in 1997, corn in 1998, and alfalfa and sugar beets in 2005. Prior to the introduction of genetically modified seeds, glyphosate/GBFs accounted for only \(3.8 \%\) of the total volume of herbicide active ingredients applied in agriculture, while this changed to \(180-185\) million pounds by 2007 [EPA reports; Coupe 2015]. This substantial increase established glyphosate/GBFs as \(53.5 \%\) of total agricultural herbicide use in 2009 according to USGS [Thelin and Stone 2016]; annual farm-sector glyphosate/GBF usage further increased to approximately 240 million pounds in 2014 [based on average annual crop use reported by the NASS; Service. USDoANAS 2016, Benbrook 2015. The original AHS enrollment (Dec 1993-Dec 1997) preceded this tremendous increase in agricultural use of glyphosate/GBFs. Thus, this increase in use was never captured for members of the AHS cohort who did not respond to follow-up interviews in phase 2 (1999-2003) or phase 3 (2005-2010) of the AHS, as set forth below.

Importantly, the second phase of the AHS was plagued by low response: i.e. it generated no more than a \(64 \%\) response rate among AHS cohort members who were private applicators contacted in 1998-2004 (or a 36\% non-response). This is an extremely low response rate when usage increased this much and this fast (furthermore, concerning future glyphosate/GBF analyses in AHS, only \(46 \%\), less than half, of all private applicators responded to the third phase 2005-2010 interviews). Thus, one-third
of all cohort subjects never reported their actual exposures or changes in exposures after enrolment interviews were conducted, even though use of glyphosate/GBFs started to change dramatically.

The AHS researchers knew that such a large non-response rate would raise questions about the validity of certain results of their study, so they were forced to come up with a method to address this problem. Otherwise, these studies would be questioned by peer reviewers and unlikely to be published. The AHS researchers attempted to address the loss of active participants with a method called 'imputation' to avoid having large amounts of missing exposure data - for those who did not respond - or generating selection bias (cohort studies may be affected by selection bias due to 'differential' loss to follow-up among the exposed or unexposed cases and controls) (Heltsche, et al. 2012). The method the authors used was a "data driven imputations of exposures"; or, in other words, a 'guestimation' of what exposures would have been in those who did not respond and report. This procedure assumes that it is sufficient to use the data in hand to predict/guestimate all future exposure in AHS participants who did not respond; i.e. that the past and current exposures and characteristics of the participants who responded to multiple interviews over time would accurately predict the use of those who did not respond. For glyphosate/GBFs with a use pattern change as dramatic as described above, it is a flawed approach to predict who would or would not start using Roundup \({ }^{\circledR}\) Ready crops after baseline, and likewise to predict the use of glyphosate/GBFs. This is because this imputation method assumes that those who did not respond had similar pesticide use and exposure pattern as those who did respond whether or not they developed NHL (this is called the 'missing at random assumption'). This assumption - if wrong - may cause enough exposure misclassification (undifferential with regard to disease status) for a large proportion of AHS participants to bias effect estimates towards the null of not finding any associations. An alternative to imputation for non-responders is to restrict the analyses to include only data from those cohort members who actually responded. However, this can cause strong selection bias if the response to the follow-up questionnaires depends on participant characteristics and health status. This is not an issue for assessing effects for exposures measured at enrollment on cancer when outcomes are being obtained through linkage with registries (i.e. cases are almost always found), but it is an issue for assessing effects of time varying
exposures especially when there are considerable changes in exposure that may affect future cancer occurrence. It has been stated in published AHS studies that response to follow-up interviews depended on education and age and on some farming practices including personal pesticide use and a number of health conditions (see for example Rinsky, et al. 2017). Methods have been developed to address selection bias and the most recent paper by Rinsky et al. 2017 for the AHS group addresses the need for bias correction in the AHS and shows how to implement such methods to assess and correct this bias in a quantitative manner. This paper concludes that as long as exposure and disease are not strongly associated with response during follow-up (i.e. to respond to interviews) resulting bias would be small. However, for bias to be assessed and bias correction to work, one needs accurate data for exposure as well as variables identified as predictors of response and disease status. Given that glyphosate/GBF exposure patterns changed dramatically after enrollment and that updated exposure information was only available for responders, this method does not work for glyphosate/GBF exposure in the AHS (in fact the authors state that "farming activities after enrollment may be strongly associated with response to later interviews"). Possibly severe selection bias in estimating these time varying glyphosate/GBF exposures cannot be avoided or corrected in the described way and will continue to affect future glyphosate/GBF exposure and NHL association studies in the AHS.

Another important issue relates to the outcome assessment, i.e. the diagnosis of NHL: how to address the influence of the recent ICD re-classification of NHL subtypes on the AHS results. The issue of disease classifications becomes apparent when we examine the Alavanja 2014 paper supplement that shows major changes by redistributing NHL according to subtypes and newly adding more than 100 cases of NHL cancers from multiple myeloma and chronic lymphocytic leukemia. Most importantly, these changes in outcome classification also affect the pesticide exposure distributions among NHL cases. For example, in the draft manuscript of the unpublished 2013 AHS study, 173 NHL cases were considered unexposed to DDT (in dose-response analyses) while only 152 NHL cases in the published 2014 manuscript are considered unexposed to DDT. But, DDT exposures were assessed with the same method and same data in both manuscripts; the change between the two papers was the disease classification used. Importantly, this resulted in increased risk estimates for

DDT and a statistically significant trend by lifetime years of exposure not seen in the draft manuscript of the unpublished 2013 AHS (according to the supplemental table of the published manuscript, a significant trend would not be seen when using the old ICD classification even though additional years of follow-up added cases (old ICD classification p-trend=0.32; new ICD classification p trend=0.02). This proves that the results presented in the draft manuscript of the unpublished AHS are not a good substitute for glyphosate/GBF exposures related effect estimates with additional followup. Furthermore, it contradicts the statement made by Dr. Mucci in her expert report that the draft manuscript of the unpublished AHS results from 2013 are good enough to be included in a meta-analysis; i.e. that: "One minor weakness is that the updated analysis on glyphosate and other herbicides has not been published to date, although the findings on insecticides, fungicides, and fumigants were published" and "concern [about including the results form an unpublished study] is minimized since the methodology is the same as those studies that have undergone peer review." (page 35, Mucci). Thus, the results and conclusions from the draft manuscript of the unpublished 2013 AHS cannot be considered fit for inclusion into a meta-analysis nor are they of the same quality as peer-reviewed and published manuscripts that are included in meta-analysis.

Other reasons for the draft manuscripts of the unpublished 2013 AHS results for NHL overall, or NHL subtypes with glyphosate/GBF exposures may also relate to the very high and almost ubiquitous exposure to glyphosate/GBFs in this cohort. Effects for ubiquitous exposures are difficult or even impossible to estimate since, in order to see effects, we rely on exposure contrasts (i.e. we need both exposed and unexposed subjects; or low and high exposures). In other words, when everyone smokes heavily, we cannot estimate the effect of smoking on lung cancer; or, if the exposure contrast is too small, it is impossible to estimate an incremental increase in risk for the exposure, i.e. we need enough of a difference in exposure to see a difference in effect.

Also, the high frequency of co-exposures in those listed as unexposed to glyphosate/GBFs might be yet another problem if these co-exposure chemicals indeed cause NHL. As the 2005 DeRoos paper shows, exposures to potentially carcinogenic pesticides 2,4 D, alachlor and atrazine were very high among both glyphosate/GBF exposed and unexposed AHS participants at baseline. If these chemicals indeed cause NHL, we would expect them to increase the baseline rate of NHL in the glyphosate/GBF
unexposed such that an incremental increase due to glyphosate/GBF exposure would require a much larger sample size to be estimable. This is because we are estimating relative increases in risk of cancer. Now, assume we are interested in estimating the risk of lung cancer from smoking and find in our population among non-smokers 4 lung cancers \(/ 100,000\) and in smokers 20/100,000; we can use these rates to estimate a (20/4=) 5 fold risk increase for lung cancers due to smoking in this population. Now imagine that we examine smoking in an occupational cohort of miners and that radon exposure adds 10 extra cases of lung cancer per \(\mathbf{1 0 0}, \mathbf{0 0 0}\) miners i.e. no matter whether they smoke. Thus, we would see in non-smoking miners a rate of (\(10+4=\)) \(14 / 100,000\) lung cancers (the reference group) to which we compare the rate in smokers of \((10+20=) 30 / 100,000\) and estimate a (30/14=) 2.14-fold increase in risk for smoking and lung cancer in miners, i.e. a relative risk much smaller than we estimated in nonminers (5 fold). Statistically, I need less power to be able to estimate a larger relative risk increase than a smaller one i.e. a 5 -fold compared with a 2.14 fold risk increase.

Finally, as is the case for most farmer focused studies, the AHS has to address multiple pesticide exposure scenarios and decide whether it is appropriate to adjust for 'proxies' i.e. co-exposures that are not risk factors for the outcome but related to the exposure of interest. This generates the necessity to distinguish between true confounding co-exposures (pesticides that truly cause NHL and are also associated with glyphosate exposures) and co-exposures that solely act as 'proxy measures' for glyphosate/GBFs but do not cause NHL. For the latter, one should not adjust since this would lead to over-adjustment and introduce major bias. There is no analytical or statistical fix for this problem.

\section*{Differences Between the Draft Manuscripts of the Unpublished AHS Data and the Peer-Reviewed NAPP Study}

There are other problems with the draft manuscripts of the unpublished AHS data which tend to be typical of a non-peer reviewed unpublished study and clearly show why we as both academics and epidemiologists do not normally rely upon such non-peer reviewed unpublished information. As an example, if one looks at page 25 of the February 6, 2013 draft manuscripts of the unpublished AHS, the authors note in
footnote two: "Numbers do not sum to totals (333 cases, 714,770 person-years) due to missing data," with similar comments about "missing data" on page 27. The missing data references continue in the draft manuscript dated March 15, 2013 - see e.g. pages 30 and 45 . Furthermore, the comments of certain "unknown" authors are equally telling as to the problems with this draft manuscript of the unpublished AHS. See e.g. page 19 of the March 15, 2013 draft manuscript: "Although this is a large prospective study, there are limitations...need to add a paragraph of exposure assessment. Discuss the information on our exposure scale in relation to the monitoring work. Discuss the likely magnitude of misclassification and its likely impact on the estimates of RR."

For the above-stated reasons, it is not appropriate from an epidemiologically perspective to rely on the data contained in the two draft manuscripts of the unpublished AHS which I have reviewed, or on its conclusions. Furthermore, as I was an external advisor for the AHS for more than a decade, I certainly would have pointed out the above-mentioned significant problems if this data had gotten closer to publication. My reliance on the NAPP report is appropriate because the data contained in the NAPP study has been presented at meetings, both in poster and published abstract form, and thus HAS been peer-reviewed, making reliance on the NAPP appropriate.

\section*{Statistical Power and Meta or Pooled Analyses}

I would like to briefly comment on the issue of statistical power, since both defense experts Drs. Rider and Mucci misrepresented a major issue when discussing this point or the epidemiology studies in their reports. While the reports are correct in pointing out that statistical power of a study does not only depend on the number of cases and controls but - in addition - on exposure prevalence, they failed to acknowledge or describe a basic fact i.e. that statistical power does not increase linearly with exposure prevalence. Rather the highest power is generally achieved at a \(50: 50\) split of exposed and unexposed - this is why most clinical treatment trials employ this type of treatment allocation. In other words, we cannot estimate effects at the extremes of the exposure distribution i.e. with everyone either exposed or unexposed we cannot study an exposure. As an example: we cannot estimate the effect of smoking on lung cancer in a population in which everyone smokes heavily - in such a population one might have to conclude that lung cancer is a genetic disorder i.e. the only difference
between cases and controls is their genetic/biologic susceptibility to smoke. Thus, the ability to estimate effects in a population with either very low or very high exposure is restricted in terms of statistical power; i.e. it requires more and more subjects to be enrolled in such studies to estimate an effect for the exposure. The latter is the case in the AHS study, rather than becoming the 'statistically most powerful study' nearly universal exposure to glyphosate/GBFs will make it impossible to estimate some of its effects.

In terms of meta-analysis and pooled analysis, Dr. Rider, in her expert report, stated that "Given the potential threats to internal validity in the case-control studies, a meta-analysis that attempts to summarize all of the published data could be misleading. In addition, the published meta-analyses of glyphosate and NHL do not include the unpublished data from the AHS or the findings from the NAPP, which plaintiffs' experts agree should be incorporated. These studies would effectively reduce the summary effect estimate in the meta-analyses and render that point estimate no longer statistically significant [this refers to the Delzell and Chang meta-analysis]." (page 4, Rider). First, the internal validity issues Dr. Rider attributes to population-based case control studies are questionable, because: a) recall bias has not been shown to affect pesticide studies, and is unlikely to affect one specific agent only in studies that assess multiple pesticides; b) similarly, the issue of confounding control as raised by both defense experts is clearly out of step with the current thinking in epidemiology. This methodology, used by both Drs. Rider and Mucci, is not the methodology that is currently accepted by epidemiologists, especially those who study and analyze complex exposures. For example, multiple exposures have to be cautiously addressed in terms of what is or isn't a risk factor for the outcome or should be considered a confounder. We have to consider prior knowledge, and just claiming that something is a confounder is not enough. Rather, the question would be how strong a confounder we would need to change the results we observe and in what direction this change would be [not all confounding changes the estimates away from the null]; and what variables would qualify as confounders (most of the adjustments for a number of moderately strong risk factors including previous cancer history - in McDuffie et al. - did not change the effect estimates for the pesticides by much [for example: for dicamba basic adjustment for age and province resulted in an OR of 1.92 (1.39-2.66) while additional adjustment for all
other risk factor for NHL including history of cancer resulted in an OR of 1.88 (1.322.68); for Mecoprop basic adjustment for age and province resulted in an OR of 2.23 (1.38-3.07) while additional adjustment for all risk factor for NHL including history of cancer resulted in an OR of 2.33 (1.58-3.44) - i.e. minimal changes in both directions towards and away from the null); c) selection bias is not a concern in properly conducted population-based studies. Furthermore, this issue has been addressed adequately in the Canadian studies. Even more importantly, the AHS has the potential for severe selection and exposure misclassification biases due to the necessity of active follow-up for exposure assessment and time varying exposures, an issue which has not been addressed in the reports of Dr. Rider or Dr. Mucci. Dr. Rider contradicts herself and Dr. Mucci when stating that the data summary (meta-analysis) should include the unpublished studies (AHS and NAPP) since the AHS is a cohort study with a methodology in design and analysis very different from the case control studies and hence should be considered on its own merits; while the NAPP study summarizes previous data that, if included in the meta-analysis without excluding the primary studies; such an estimate would "double-up" on those studies. Importantly, the statement that "Any limitations of both the study design and statistical analysis of included studies carry forward through the resuits of the meta-analysis" (page 18, Rider) is only partially correct i.e. this statement assumes that each study has exactly the same bias and moreover that all are biasing the results in the exact same direction - which is highly unlikely in practice.

\section*{Fleming Report}

As the President Elect of the International Society for Environmental Epidemiology, a sub-discipline of Epidemiology that specifically concentrates among its members those with expertise in examining a wide range of spatial and temporal patterns in exposures and disease, I object strongly to the naïve use of both temporal cancer rates and spatial cancer patterns in Dr. Fleming's report in order to draw conclusions about NHL causes specifically whether or not glyphosate/GBF exposures cause NHL. Our discipline uses maps and graphs extensive because they are very important tools for the purpose of visualizing data i.e. to show general patterns of disease or exposure rates over time and/or space. However, the first thing I teach my
students in environmental epidemiology is that using these tools to claim that a very specific exposure (pesticide) does or does not cause a chronic disease is highly unscientific and unnecessarily invalidates the good use of these tools. For example, the pretty graphs and maps shown by Dr. Fleming cannot tell us anything about the influence of the AIDS epidemic over the years on NHL rates or about other time varying influences. Specifically, if glyphosate/GBFs are not the only agents capable of causing NHL - which defense experts seems to agree to since they are worried about confounding risk factors - and we accept that for example DDT and lindane - pesticides widely used in the 1950 to \(70^{\text {th }}\) - may also cause NHL, how could any of these graphs/ maps depict the influence of complex waxing and waning causal exposures over time, some of them increasing and some decreasing and therefore influencing rates in different directions? The spatial map by Fleming includes all races and both sexes, thus, it seems that he assumes that NHL rates in men and women or immigrant Hispanic laborers in central California can be easily compared with all San Francisco inhabitants including white males and that factors such the AIDS epidemic can be ignored; i.e. that we can simply compare age adjusted rates from San Francisco populations to those in central California populations and deduce whether or not glyphosate/GBF alone is the singie agent causing NHL. Again, this is not only scientifically untenable but simply wrong.

\section*{Conclusion}

I hold the above opinions to a reasonable degree of scientific certainty. Furthermore, as previously stated in my earlier expert report, I hold the opinion, to a reasonable degree of scientific certainty that glyphosate and GBFs including Roundup, cause non-Hodgkin's lymphoma. I reserve my right to supplement or amend this report as additional materials become available.

Beate Ritz, M.D., Ph.D.
Date: August 18, 2017

\section*{References}

Alavanja MC, Hofmann JN, Lynch CF, Hines CJ, Barry KH, Barker J, Buckman DW, Thomas K, Sandler DP, Hoppin JA, Koutros S, Andreotti G, Lubin JH, Blair A, Beane Freeman LE. Non-hodgkin lymphoma risk and insecticide, fungicide and fumigant use in the agricultural health study. PLoS One. 2014 Oct 22;9(10):e109332. doi: 10.1371/journal.pone.0109332. eCollection 2014.

Aspelin A, Grube AH. Pesticide Industry Sales and Usage: 1996 and 1997 Market Estimates, Office of Pesticide Programs, U.S. Environmental Protection Agency, Washington, D.C.; 1999. http://1.usa.gov/20qXcOb. Accessed o3 February 2016.

Benbrook C. Trends in the use of glyphosate herbicide in the U.S. and globally. Environmental Sciences Europe. 2015;28(3). http://dx.doi.org/10. 1186/s12302-016-0070-o. Accessed o3 February 2016

Coupe RH, Capel PD: Trends in pesticide use on soybean, corn and cotton since the introduction of major genetically modified crops in the United States. Pest Manag Sci 2015.

De Roos AJ, Blair A, Rusiecki JA, Hoppin JA, Svec M, Dosemeci M, Sandler DP, Alavanja MC. Cancer incidence among glyphosate-exposed pesticide applicators in the Agricultural Health Study.Environ Health Perspect. 2005 Jan;113(1):49-54.

Grube A DD, Kiely T, Wu L. Pesticides Industry Sales and Usage, 2006 and 2007 Market Estimates, United States Environmental Protection Agency, EPA 733-R-11-001, 34 p. 2011. http://1.usa.gov/1VN2QDo. Accessed o3 February 2016.

Heltshe SL, Lubin JH, Koutros S, Coble JB, Ji BT, Alavanja MC, Blair A, Sandler DP, Hines CJ, Thomas KW, Barker J, Andreotti G, Hoppin JA, Beane Freeman LE. Using multiple imputation to assign pesticide use for non-responders in the follow-up questionnaire in the Agricultural Health Study. J Expo Sci Environ Epidemiol. 2012 Jul;22(4):409-16. doi: 10.1038/jes.2012.31. Epub 2012 May 9.

Myers JP, Antoniou MN, Blumberg B, Carroll L, Colborn T, Everett LG, Hansen M, Landrigan PJ, Lanphear BP, Mesnage R, Vandenberg LN, vom Saal FS, Welshons WY, Benbrook CM. Concerns over use of glyphosate-based herbicides and risks associated with exposures: a consensus statement. Environmental Health (2016) 15:19

Rinsky JL, Richardson DB, Wing S, Beard JD, Alavanja M, Beane Freeman LE, Chen H, Henneberger PK, Kamel F, Sandler DP, Hoppin JA. Assessing the Potential for Bias From Nonresponse to a Study Follow-up Interview: An Example From the Agricultural Health Study.
Am J Epidemiol. 2017 May 9. doi: 10.1093/aje/kwxo98. [Epub ahead of print]

Service. USDoANAS: Agricultural Chemical Usage - Field Crops and Potatoes. https://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.
do? documentID=1001. Accessed o3 February 2016.(multiple years).
Thelin GP, Stone WW. Estimation of annual agricultural pesticide use for counties of the conterminous United States, 1992-2009: U.S. Geological Survey Scientific
Investigations Report 2013-5009, 54 p. http://on.doi.gov/ 1TEeEJD. Accessed o3 February 2016.

Defendant's Expert Report of Dr. William Fleming
Defendant's Expert Report Dr. Lorelei A. Mucci,
Defendant's Expert Report of Dr. Jennifer S. Rider
Exhibits 19A and 19B to Deposition of Dr. Aaron Earl Blair, taken March 20, 2017.

\title{
Pesticides and Other Agricultural Risk Factors for Non-Hodgkin's Lympho
}

\title{
among Men in Iowa and Minnesota
}

\author{
Kenneth P. Cantor, \({ }^{1}\) Aaron Blair, George Everett, Robert Gibson, Leon F. Burmeister, Linda M. Brown, Leonard Schuman, and Fred R. Dick
}

Environmental Epidemiology Branch, Epidemiolosy and Biostaristics Program, National Cancer Institute, Executive Plaza North, Berhesda, Maryland 20892 (K. P. C., A. B., L. M. B.J; Departments of Preventive Medicine /G. E., L. F. B.) and Pathology (F. R. D.J, University of Iowa, lowa City, lowa 52242; Department of Epidemiology. University of Minnesota, Minneapolis, Minnesota (R. G., L. S.J; and Department of Internal Medicine, Orlando Regional Medical Center, Orlando, Florida [G. E.]

\begin{abstract}
Datia from an in-person interview study of 622 white men with newly diagnosed mon-Hodelicin's lymphoma and 1245 popnlation-based controls in Iown and Minnesota were msed to mensure the risk associated with faraing occupation and specific aericutaral exposures. Men who ever farmed were at slightly elevited risk of mon-Hodqkin's lymphoma (odds ratio \(=1.2,95 \%\) coafidence interval \(=1.0-1.5\)) that was mot linked to specific crops or particular arimals. Elevated risks were found, with odds ratio gemerally 1.5 -fold or greater, for persomal hamaling mixing, or application of several pesticide rroups and for ladividual insecticides, inctading carbaryh chlordane, dichlorodipheayltrichloroethane, diazinom, dichlorros, Hindane, malathion, nicotime, and toxaphene. Associations were generally stromger for first mee prior to 1965 than more recently, and when protective clothing or equipment was mot med. Small risks were associated with the mee of the phenoxyacetic acid herbicide 2,4 dichlorophemoxyacetic sect, ter the risks dill mot limerease with htency or failare to mse protective equipment. Expobure to mamerous pesticides poses problems of interpreting risk associnted with a particular chemical, and multiple comperisons increase the chances of fabs-positive findings. In comernast, mondifferemtial exposme mischasification due to inaccurate recall can bias risk eatbanates toward the mall and mask poaitive associncions. In the face of these merholological and statistical basuen, the comsistency of several findinga, both whinin this study and with observations of others, surgests an limportant role for several insecticides in the etiology of noo-Hodgkin's ly ynphoma among farmers.
\end{abstract}

\section*{INTRODUCTION}

While farmers generally have low rates of morbidity and mortality, they appear to be at excess risk of selected cancers, particularly some of the hematopoietic tumors (1). Some studies suggest that the elevated risk of \(\mathrm{NHL}^{2}\) and leukemia among farmers may be associated with exposure to pesticides and other agricultural chemicals (2). To further evaluate these associations, we conducted parallel population-based case-control interview studies of men newly diagnosed with non-Hodgkin's lymphoma and leukemia in the states of Minnesota and Iowa. Findings for leukemia are reported elsewhere (3).

\section*{METHODS}

Case Selection. All newly diagnosed cases of non-Hodgkin's lymphoma among men aged 30 or older were ascertained from lowa State Heath Registry records and a special surveillance of Minnesota hospital and pathology laboratory records. In lowe, the diagnosis period for eligibility was March 1981 to October 1983, and in Minnesota,

\footnotetext{
Received 11/6/91; sccepted 2/19/92.
The costs of publication of this article were defrayed in part by the payment of page charges. This wricle must therefore be hereby marked atvertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
' To whom requests for repriats should be sddressed, at Environmental Epidemiology Branch, National Cancer Institute, 443 Executive Plaza North, Bethesde MD 20892.
\({ }^{2}\) The abbreviations used are: NHL, nom-Hodgkin's lymphoms; DDT, dichlorodiphenyttrichloroethane; CLL, chronic bmphocytic leukemis; OR. odds ratio; CI, 95\% confidence interval; 2,4-D, 2,4-dichlorophenoxyacetic acid; 2,4,5-T, 2,4,5-trichlorophenoxysuetic scid.
}

October 1980 to September 1982. In Iowa, all cases who resided in the state were eligible. In Minnesota, eligibility was restricted to cases who resided in places other than the cities of Minneapolis, St. Paul, Duluth, or Rochester at the time of diagnosis.
Pathology Review. A review panel of 4 experienced regional pathologists confirmed diagnoses and classified NHL cases as to morphological type using the Working Formulation for classification of NHL (4). NHL subtype was designated when at least 3 panelists agreed on a specific diagnosis, either at the initial review or a supplementary review conducted for more difficult cases. The case was considered "unclassifiable" if the pathology panel could not come to consensus on NHL sublype, or if the tissue sample was not adequate to differentiate among subtypes. The NHL subtypes were collapsed into categories as follows: follicular (combining small cleaved cell, mixed cell, and large cell follicular cases); diffuse (combining small cleaved cell, mixed cell, and large cell diffuse cases); small lymphocytic; and "other NHL" (combining large cell immunoblastic, lymphoblastic, small noncleaved, other, and unclassified NHL cases). Additional details regarding histopathology review procedures are presented elsewhere \((5,6)\).

Control Selection. A population-based control group of white men without a hematopoietic or lymphatic cancer was randomly selected and frequency-matched to NHL and leukemia cases by 5 -year age group, vital status at time of interview, and state of residence. The sources of controls were: (a) random digit dialing for living subjects under age 65 at diagnosis, using the Waksberg method \((7,8)\) (data from the 1980 United States Census report that 96 and \(97 \%\) of lowa and Minnesota househoids, respectively, had telephones); (b) a \(1 \%\) random listing from Medicare files provided by the Health Care Financing Administration for living subjects aged 65 and older [United States citizens 65 years of age and older are eligible for Medicare insurance and over \(98 \%\) have been estimated to be in the roster (9)]; and (c) state death certificate files for deceased subjects.

Data Collection. Interviews were conducted during the period of August 1981 to May 1984. A trained interviewer administered an inperson structured interview, taking \(45-60 \mathrm{~min}\), to the subject, or the spouse, other close relative, or friend of deceased or incompetent subjects. We asked about sociodemographic characteristics, medical history, smoking habit, occupational history, residential history, familial history of cancer, and other known and suspected risk factors. In addition, we requested a detailed farming and pesticide use history of all subjects who had worked on a farm at least 6 months since age 18. For each famm that the respondent had worked, we recorded the years of farming activity, the total acreage, the number and types of livestock, and the crops grown, with average acreage for each and the number of years they had been grown on that farm. We also asked for a detailed history of pesticide use. Pesticide lists for the questionnaire were developed with the assistance of local agricultural experts. We named 23 specific insecticides used on animals, 34 insecticides applied to crops, 38 herbicides, and 16 fungicides. For each pesticide, we asked if it had ever been used; the first and last year of use; the method of application (aerial, surface application, incorporated into soil, other); whether the respondent had personally applied, mixed, or handled it, and the use of protective equipment.

Reapoese Retes. Seven hundred eighty presumptive NHL cases were ascertained, and 694 (\(89 \%\)) were interviewed. After pathology review of interviewed cases, 622 were confirmed as NHL (438 living cases with direct interviews, 184 deceased or incompetent cases with proxy interviews). Among the \(\mathbf{7 2}\) cases that could not be confirmed, 26 were

FARMING AND NON-HODGKIN'S LYMPHOMA

Table 1 Characteristics of cases and controls from a sfudy of now-Hodgkin's
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{2}{|c|}{Cases} & \multicolumn{2}{|c|}{Controls} \\
\hline & No. & (\%) & No. & (\%) \\
\hline \multicolumn{5}{|l|}{Type of NHL} \\
\hline Follicular & 195 & (31) & & \\
\hline Diffuse & 198 & (32) & & \\
\hline Small lymphocytic & 85 & (14) & & \\
\hline Other & 144 & (23) & & \\
\hline \multicolumn{5}{|l|}{Type of interview} \\
\hline Direct & 438 & (70) & 820 & (66) \\
\hline Surrogate & 184 & (30) & 425 & (34) \\
\hline \multicolumn{5}{|l|}{State of residence} \\
\hline lowa & 293 & (47) & 603 & (48) \\
\hline Minnesota & 329 & (53) & 642 & (52) \\
\hline \multicolumn{5}{|l|}{Age} \\
\hline \(<45\) & 73 & (12) & 134 & (11) \\
\hline 45-64 & 230 & (37) & 430 & (35) \\
\hline 65+ & 319 & (51) & 681 & (55) \\
\hline \multicolumn{5}{|l|}{Hair dye use (ever)?} \\
\hline No & 574 & (92) & 1194 & (9) \\
\hline Yes & 48 & (8) & 51 & (4) \\
\hline \multicolumn{5}{|l|}{Lymphopoietic cancer diagmosed in any firss degree relative?} \\
\hline No & 557 & (90) & 1154 & (93) \\
\hline Yes & 54 & (9) & 66 & (5) \\
\hline \multicolumn{5}{|l|}{High risk occupation (ever)? \({ }^{\text {b }} 574\) (94) 1174} \\
\hline No & 524 & (84) & 1174 & (94) \\
\hline Yes & 98 & (16) & 71 & (6) \\
\hline \multicolumn{5}{|l|}{Used high risk materials at least monthly for a year or more?} \\
\hline No & 369 & (59) & 840 & (67) \\
\hline Yes & 253 & (41) & 405 & (33) \\
\hline \multicolumn{5}{|l|}{Cigarette smoting habit} \\
\hline Never smoked & 186 & (30) & 418 & (34) \\
\hline Past smoker & 243 & (40) & 486 & (39) \\
\hline Current smoker & 182 & (30) & 333 & (27) \\
\hline
\end{tabular}
\({ }^{4}\) Cases and controls numbered 622 and 1245, respectively. The number of respondents with missing values for selected characteristics is aot explicitly listed.
"Persons ever employed at an occupation yielding an odds ratio of 1.5 or greater in Mantel-Haenzsel analyses adjusted for age (2 strata) and state of residence.
' Persons using one or more materials yielding an odds ratio of 1.5 or greater, from a list of 43 items that included paints, benzene, other organic solvepts. resins, and others.
diagnosed as leukemia, and 46 with other conditions. Pathology review was not conducted on material of the persons who were not interviewed. A mong random digit dialing controls, the household screening response rate was \(87.5 \%\), yielding 474 eligible persons, of whom 415 (\(87.6 \%\)) agreed to participate, for a net response rate of 76.7\%. Among the 2 other control groups, \(79 \%\) of the eligible controls selected from the Health Care Financing Administration rolls participated, and \(77 \%\) of the eligible proxies for deceased controls provided complete interviews.

Statistical Analysis. The association between a variety of farm-related factors and risk of NHL was measured by the maximum likelihood estimate of the OR. ORs were adjusted for several known or suspected. NHL risk factors, using unconditional logistic regression analysis with case-control status as the response variable (10,11). OR for farmers who raised specific crops or animals, or were exposed to individual pesticides and families of pesticides, were calculated for all NHL and the NHL subtypes, comparing exposed persons to nonfarmers, except as noted. ORs for the histological subtypes of NHL were calculated using software for polychotomous logistic models developed by the Epidemiology and Biostatistics Program of the National Cancer Institute. Logistic models included the following potential confounding variables: vital status (alive, dead); state (lowa, Minnesota); age (<45, 45-64, 65+); cigarette smoking habit (never, past, current); lympho-
poietic cancer in a parent, sibling, or child (yes, no); nonfarming job related to NHL in this study (with OR of \(1.5+\)); exposure to hair dyes (yes, no); and exposure to one or more other substances associated with NHL in this study [with OR of 1.5+, as calculated by standard methods with adjustment for age and state of residence (12)]. Tests for trend in the logistic analysis were obtained by categorizing the exposure variable and treating the scored variable as a continuous variable.

\section*{RESULTS}

Study Population. Table 1 shows the distribution of the 622 cases and 1245 controls by type of NHL, type of interview, state of residence, age, hair dye use, having had a first degree relative with lymphopoietic cancer, employment in a high risk occupation (a priori), exposure to high risk materials (a posteriori), and cigarette smoking habit. Among the 622 respondent cases, the distribution of histological types was: 195 follicular (\(31.4 \%\)), 198 diffuse (\(31.8 \%\)), 85 small lymphocytic cell (\(13.7 \%\)), and 144 other and undefined lymphomas (\(23.2 \%\)).
We found elevated relative risks associated with certain occupational exposures and job classifications, hair dye use, as well as a history of familial cancer. These factors were entered as potential confounders in logistic regression models, as were variables for age, state of residence, and vital status of the study subject.

Farming. There was a small, but marginally significant increase in risk for all \(\mathrm{NHL}(\mathrm{OR}=1.2,95 \%, \mathrm{CI}=1.0-1.5)\) associated with ever living or working on a farm as an adult (Table 2). Fifty-seven \% of the cases and \(56 \%\) of controls reported some farm activity. When analyzed by NHL subtype, there was a small excess risk for each, but none was significant. Among subtypes, the highest observed risk for farming was found for small cell lymphocytic lymphoma (\(\mathrm{OR}=1.4, \mathrm{Cl}=\) 0.9-2.3).

No statistically significant trend by first and last year of farming activity, duration, or average yearly number of acres

\footnotetext{
*All OR relative to risk for subjects who were never farmers (266 cases, 547 controls). All ORs adjusted for vital status, age, state, cigarette smoking, family history of lymphopoietic cancer, high-risk occupations, and high-risk exposures in a logistic saalysis.
}
during farming years was observed for all NHL or any subtype (Table 2). However, we observed slightly higher risks among men who farmed after 1949 than those who stopped before 1950. Men who operated medium-size farms (120-199 acres or 200-319 acres) were at slightly higher risk for all NHL and for most NHL subtypes than men farming smaller or larger establishments.

There was no notable association of risk for all NHL associated with the cultivation of any major crop, nor with the husbandry of the major types of livestock (data not shown). The patterns of OR for the lymphoma histological subtypes, as related to particular crops and livestock, followed the overall pattern for farming in general, with elevated (mostly nonsignificant) OR for small lymphocytic lymphoma associated with corn (\(\mathrm{OR}=1.4, \mathrm{Cl}=0.9-2.4 ; 52\) cases), wheat (\(\mathrm{OR}=1.5, \mathrm{CI}\) \(=0.8-2.9 ; 21\) cases \()\), flax (\(\mathrm{OR}=2.3, \mathrm{CI}=1.0-5.0 ; 15\) cases \()\), barley (\(O R=1.5, \mathrm{Cl}=0.7-3.1 ; 15\) cases), and hay (\(O R=1.4\), \(\mathrm{Cl}=0.8-2.4 ; 31\) cases). Associations of other NHL subtypes with specific crops and livestock were weaker, as were associations of small lymphocytic lymphoma with specific types of livestock.

Among the 356 cases and 698 controls who had lived and worked on one or more farms as an adult, 323 cases (\(\mathbf{9 0 . 7 \%}\)) and 636 controls (\(91.4 \%\)) reported that they were farm operators on at least one farm. Operators usually plan and execute pest control activities, and are more likely than hired hands to have direct knowledge of the chemicals used.

Pesticide Use (Ever). Among farmers, 300 cases (\(84 \%\)) and 603 controls (\(86 \%\)) reported use of at least one pesticide (for all \(\mathrm{NHL}, \mathrm{OR}=1.2, \mathrm{Cl}=0.9-1.4\), relative to nonfarmers). The OR for use of one or more insecticides on livestock was 1.1 (CI \(=0.9-1.4)\); for crop insecticide use, \(1.2(\mathrm{CI}=0.9-1.5)\); for herbicide use, \(1.3(\mathrm{Cl}=1.0-1.6)\); and for fungicide use, 1.3 (CI \(=0.8-2.0\)).

Pesticide Families. Table 3 shows the numbers of cases and controls, OR, and CI for use of one or more members of the listed chemical families of pesticides, by broad grouping of livestock insecticides, crop insecticides, and herbicides. Classification of pesticides into chemical families was done by us. All OR shown are relative to nonfarmers, numbering 266 cases and 547 controls. Significant risk elevations were found for several livestock insecticide families: chlorinated hydrocarbons (\(\mathrm{OR}=\) 1.3), in particular the cyclodienes (\(O R=1.7\)); natural products \((\mathrm{OR}=1.5)\); and organophosphates \((\mathrm{OR}=1.5)\), in particular the halogenated aromatic organophosphates (\(O R=2.0\)). A mong insecticides used on crops, the chlorinated hydrocarbon family showed significant elevation in risk \((O R=1.4)\). Although based on small numbers, use of nonhalogenated organophosphates on crops was associated with a nonsignificant OR of 3.1. Use of insecticides on livestock or crops resulted in a significant increased risk of NHL associated with chlorinated hydrocarbons (\(O R=1.3\)) and organophosphates \((O R=1.5)\). No single family of herbicides was significantly associated with overall NHL risk.

The use, handling, or application of pesticides in selected chemical families was associated with elevated risk for several of the NHL morphological subtypes. Significantly elevated OR were found for diffuse NHL and: organophosphates used on crops (\(\mathrm{OR}=2.3, \mathrm{Cl}=1.4-3.8 ; 26\) cases, 101 controls); nonhalogenated aliphatic organophosphates for crops (\(\mathrm{OR}=2.2\), \(\mathrm{CI}=1.3-3.8 ; 24\) cases, 95 controls); cyclodiene chlorinated hydrocarbons used on livestock (\(\mathrm{OR}=2.2, \mathrm{CI}=1.1-4.5\); 11 cases, 42 controls); and triazine herbicides (\(\mathrm{OR}=1.6, \mathrm{Cl}=\)

Table 3 OR" \(^{\text {a }}\) and Cl for the use of pesticide groups in which at least one pesticide was handled by the responden?
Cases Controls OR CI
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Insecticides used on livestock} \\
\hline Carbamates & 6 & 15 & 0.8 & 0.3, 2.2 \\
\hline Chlorinated hydrocarbons & 112 & 198 & 1.3 & 1.0, 1.7 \\
\hline Cyctodienes & 34 & 42 & 1.7 & 1.0. 2.8 \\
\hline Natural products & 46 & 70 & 1.5 & 1.0, 2.2 \\
\hline Organophosphates & 68 & 101 & 1.5 & 1.0. 2.1 \\
\hline Halogenated aliphatics & 20 & 41 & 1.2 & 0.7, 2.0 \\
\hline Nonhalogenated aliphatics & 43 & 67 & 1.3 & 0.9.2.1 \\
\hline Halogenated aromatics & 21 & 23 & 2.0 & 1.1, 3.7 \\
\hline Nonhalogenated aromatics & 12 & 16 & 1.7 & 0.8, 3.6 \\
\hline \multicolumn{5}{|l|}{Insecticides used on crops} \\
\hline Carbamates & 41 & 80 & 1.2 & 0.8, 1.8 \\
\hline Chlorinated bydrocarbons & 96 & 157 & 1.4 & 1.0, 1.9 \\
\hline Cyelodienes & 57 & 111 & 1.2 & 0.8, 1.7 \\
\hline Arsenicals & 43 & 75 & 1.3 & 0.8, 2.0 \\
\hline Organophosphates & 60 & 101 & 1.3 & 0.9, 1.9 \\
\hline Nonhalogenated aliphatics & 56 & 95 & 1.3 & 0.9.1.9 \\
\hline Nonhalogenaled aromatics & 7 & 4 & 3.1 & 0.9, 11.0 \\
\hline \multicolumn{5}{|l|}{Insecticides used on crops and/or livestock} \\
\hline Carbamates & 43 & 85 & 1.1 & 0.8, 1.7 \\
\hline Chlorinated hydrocarbons & 150 & 262 & 1.3 & 1.0. 1.7 \\
\hline Cyclodienes & 70 & 124 & 1.3 & 0.9. 1.8 \\
\hline Organophosphates & 96 & 144 & 1.5 & 1.1. 2.0 \\
\hline Halogenated aliphatics & 21 & 41 & 1.2 & 0.7. 2.1 \\
\hline Nonhalogenated aliphatics & 78 & 119 & 1.4 & 1.0, 2.0 \\
\hline Nonhalogenated aromatics & 17 & 20 & 1.8 & 0.9, 1.8 \\
\hline \multicolumn{5}{|l|}{Herbicides} \\
\hline Amides & 59 & 114 & 1.2 & 0.8. 1.7 \\
\hline Benzoic acids & 53 & 98 & 1.3 & 0.9, 1.9 \\
\hline Carbamates & 24 & 50 & 1.1 & 0.7, 1.9 \\
\hline Dinitroaniline & 46 & 88 & 1.2 & 0.8. 1.8 \\
\hline Heterocyclics & 20 & 49 & 0.9 & 0.5, 1.6 \\
\hline Phenoxyacetic acids & 118 & 231 & 1.2 & 0.9.1.6 \\
\hline Triazines & 64 & 133 & 1.1 & 0.8, 1.6 \\
\hline Ureas & 5 & 18 & 0.6 & 0.2.1.6 \\
\hline
\end{tabular}
- OR relative to nonfarmers, numbering 266 cases and 547 controls. All ORs adjusted for vital status, age, state, cigarette smoking status, family history of lymphopoietic cancer, high-risk occupations, and high-risk exposures in a logistic analysis.
\({ }^{*}\) Individual pesticides were categorized into chemical families by the authors.
1.0-2.6; 25 cases, 133 controls). Small lymphocytic NHL was significantly associated with natural product insecticides used for livestock application (\(\mathrm{OR}=2.4, \mathrm{Cl}=1.1-5.2 ; 10\) cases, 70 controls) and halogenated aromatic organophosphates for livestock (\(\mathrm{OR}=5.2, \mathrm{CI}=1.9-14.3 ; 6\) cases, 23 controls). Other and unclassified forms of NHL were significantly linked to the chlorinated hydrocarbon insecticide family used for crops (OR \(=1.8, \mathrm{Cl}=1.1-3.0 ; 26\) cases, 157 controls); the cyclodienes (\(\mathrm{OR}=2.1, \mathrm{Cl}=1.0-4.7 ; 15\) cases, 111 controls) for crops; and halogenated aliphatic organophosphates used on livestock (OR \(=2.3, \mathrm{Cl}=1.0-5.3 ; 8\) cases, 41 controls). No significant associations with use, handling, or application of pesticide families were found for follicular NHL.

Selected Pesticides. Tables \(4-6\) show the numbers of cases and controls, with OR and CI for all NHL, from analyses of farmers who ever personally handled, mixed, or applied specific pesticides, and for farmers who first handled them prior to 1965 (1965 was chosen because it was 15-18 years prior to diagnosis, a reasonable minimal period for latency). Among livestock insecticides (Table 4), there were significantly elevated risks for ever handled, mixed, or applied for chlordane and lindane. Most other livestock insecticides had OR greater than 1.0. In general, first use prior to 1965 was associated with higher risk than ever use, and was significant for early reported use of chlordane, lindane, malathion, and nicotine. Among subjects who ever personally handled, mixed, or applied specific

FARMING AND NON-HODGKINS LYMPHOMA
Table 4 Animal insecticides: ORs and Cls for ever having handled specific animal insecticides, and handled prior 10 1965
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Insecticide} & \multicolumn{4}{|c|}{Ever handied} & \multicolumn{4}{|c|}{Hapdled prior to 1965} \\
\hline & No. of cases & No. of controls & OR & CI & No. of cases & No. of controls & OR & Cl \\
\hline Chlordane & 31 & 38 & 1.7 & 1.0. 2.9 & 22 & 22 & 2.2 & 1.2, 4.2 \\
\hline Coumaphos & 13 & 18 & 1.6 & 0.8, 3.5 & 3 & 5 & 1.5 & 0.3,6.3 \\
\hline DDT & 79 & 149 & 1.2 & 0.9, 1.7 & 68 & 123 & 1.3 & 0.9, 1.8 \\
\hline Dichlorvos & 20 & 38 & 1.2 & 0.7, 2.2 & 12 & 17 & 1.8 & 0.8, 3.9 \\
\hline Famphur & 10 & 14 & 1.7 & 0.7, 4.0 & 1 & 1 & 2.4 & 0.1, 39 \\
\hline Lindane & 55 & 90 & 1.4 & 1.0, 2.1 & 40 & 55 & 1.7 & 1.1, 2.7 \\
\hline Malathion & 43 & 67 & 1.3 & 0.9, 2.1 & 25 & 30 & 1.8 & 1.0, 3.3 \\
\hline Methoxychlor & 9 & 16 & 1.2 & 0.5, 2.7 & & & & \\
\hline Nicotine & 31 & 47 & 1.5 & 0.9, 2.5 & 28 & 36 & 1.8 & 1.0, 3.0 \\
\hline Rotenone & 12 & 23 & 1.0 & 0.5, 2.2 & & & & \\
\hline Toxaphene & 8 & 19 & 0.8 & 0.3, 2.0 & & & & \\
\hline Flyspray (NOS) & 185 & 394 & 1.1 & 0.9, 1.4 & 173 & 368 & 1.1 & 0.9. 1.4 \\
\hline
\end{tabular}
- OR relative to nonfarmers, numbering 266 cases and 547 controls. All ORs adjusted for vital status, age, state, cigarette smoking status, famity history of lymphopoietic cancer, high-risk occupations, and high-risk exposures in a logistic analysis.

Table 3 Crop insecticides: ORs and Cls for ever having handled specific insecticides, and handed prior to 1965*
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Insecticide} & \multicolumn{4}{|c|}{Ever handled} & \multicolumn{4}{|c|}{Handled prior to 1965} \\
\hline & No. of cases & No. of controls & OR & CI & No. of cases & No. of controls & OR & C1 \\
\hline Aldrin & 47 & 97 & 1.1 & 0.7, 1.7 & 34 & 59 & 1.3 & 0.8, 2.1 \\
\hline Carbofuran & 29 & 65 & 1.0 & 0.6, 1.7 & 28 & 63 & 1.0 & 0.6, 1.7 \\
\hline Carbaryl & 21 & 26 & 1.7 & 0.9, 3.1 & 7 & 4 & 3.8 & 1.1, 13.6 \\
\hline Chlordinve & 21 & 26 & 1.7 & 0.9, 3.2 & 12 & 16 & 1.6 & 0.7, 3.6 \\
\hline Copper scetoarsenate & 36 & 63 & 1.3 & 0.8, 2.0 & 30 & 54 & 1.2 & 0.7. 2.0 \\
\hline DDT & 57 & 75 & 1.7 & 1.2, 2.6 & 45 & 57 & 1.8 & 1.1, 2.7 \\
\hline Diazinon & 27 & 39 & 1.5 & 0.9, 2.5 & 14 & 12 & 2.6 & 1.2, 5.9 \\
\hline Dieldria & 17 & 26 & 1.4 & 0.7, 2.8 & 10 & 13 & 1.9 & 0.8, 4.4 \\
\hline Fonofos \({ }^{\text {b }}\) & 15 & 30 & 1.1 & 0.6.2.1 & & & & \\
\hline Heptachlor & 25 & 43 & 1.3 & 0.7, 2.2 & 14 & 25 & 1.3 & 0.6. 2.6 \\
\hline Lindane & 21 & 23 & 2.0 & 1.0, 3.7 & 14 & 15 & 2.2 & 1.0, 4.7 \\
\hline Malathion & 21 & 30 & 1.5 & 0.8, 2.7 & 11 & 9 & 2.9 & 1.1.7.4 \\
\hline Phorate & 21 & 48 & 1.0 & 0.6, 1.7 & 9 & 12 & 1.8 & 0.7, 4.5 \\
\hline Turbufos* & 15 & 36 & 0.9 & 0.5. 1.7 & & & & \\
\hline Toxaphene & 10 & 13 & 1.5 & 0.6, 3.5 & 6 & 5 & 2.4 & 0.7, 8.2 \\
\hline
\end{tabular}
- OR relative to nonfarmers, numbering 266 cases and 547 controls. All ORs adjusted for vital status, age, state, cigarette smokiag status, family history of lymphopoietic cancer, high-risk occupations, and high-risk exposures in a logistic annlysis.
*No reported use of fonofos or turtufos prior to 1965 .

Table 6 Herbicides: OR and C1 for ever having handled specific herbicides, and handled prior to 1965"
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Herticide} & \multicolumn{4}{|c|}{Ever handled} & \multicolumn{4}{|c|}{Handled prior to 1965} \\
\hline & No. of cases & No. of controls & OR & Cl & No. of cases & No. of controls & OR & Cl \\
\hline Alachlor & 57 & 109 & 1.2 & 0.8. 1.7 & & & & \\
\hline Atrazine & 59 & 108 & 1.2 & 0.9.1.8 & 19 & 32 & 1.3 & 0.7, 2.5 \\
\hline Bentazon & 18 & 45 & 0.9 & 0.5, 1.6 & & & & \\
\hline Butylate & 22 & 44 & 1.2 & 0.7, 2.1 & 1 & 6 & 0.5 & \[
0.1,4.3
\] \\
\hline Chloramben & 39 & 70 & 1.3 & 0.8. 2.0 & 16 & 19 & 2.0 & 1.0, 4.0 \\
\hline Cyanazine & 27 & 64 & 0.9 & 0.6, 1.5 & & & & \\
\hline 2,4-D & 115 & 227 & 1.2 & 0.9.1.6 & 86 & 153 & 1.3 & 0.9, 1.8 \\
\hline Dicamba & 28 & 57 & 1.2 & 0.7, 2.0 & 7 & 7 & 2.8 & 0.96. 8.1 \\
\hline Glyphosine & 26 & 49 & 1.1 & 0.7, 1.9 & & & & \\
\hline Metribuzen & 12 & 38 & 0.7 & 0.4, 1.4 & & & & \\
\hline Popechlor & 13 & 25 & 1.2 & 0.6. 2.5 & & & & \\
\hline \[
2,4,5-T
\] & 25 & 48 & 1.2 & 0.7,1.9 & 13 & 18 & 1.7 & 0.8, 3.6 \\
\hline Trinuralin & 45 & 87 & 1.2 & 0.8, 1.8 & 14 & 23 & 1.5 & 0.8, 3.1 \\
\hline
\end{tabular}
© OR relative to nomfamers, numbering 266 cases and 547 controls. All ORIs adjusted for vital status, age, state, cigarette smoking status, family history of lymphopoietic cancer, high-risk occupations, and hightrisk exposures in a lofistic analysis.
insecticides for application on crops (Table 5), significant risk elevations were observed for DDT and lindane; and for use prior to 1965, carbaryl, DDT, diazinon, lindane, and malathion. We also calculated the OR for pre-1965 personal handling, mixing, or application of specific insecticides that could have been used on either animals or crops. Elevated risk was found for carbaryl (\(O R=2.8, \mathrm{Cl}=1.0-7.7 ; 9\) cases), chlordane (OR \(=1.8, \mathrm{CI}=1.1-3.1 ; 30\) cases \() ; \mathrm{DDT}(\mathrm{OR}=1.4, \mathrm{Cl}=1.0-1.8\); 93 cases), dieldrin (\(\mathrm{OR}=2.2, \mathrm{Cl}=1.0-4.9 ; 13\) cases), lindane (\(\mathrm{OR}=1.7, \mathrm{Cl}=1.1-2.7 ; 47\) cases), and malathion \((\mathrm{OR}=1.8\), \(\mathrm{CI}=1.1-3.1\); 31 cases). No significant risk elevations were
observed for ever handling, mixing, or applying specific herbicides (Table 6). Among the berbicides marketed prior to 1965, use before 1965 of chloramben and dicamba was significantly associated with total NHL. The risk for ever having handled, mixed, or applied phenoxy acids was 1.2 for 2,4-D and for 2,4,5-T. For use and handling of these 2 chemicals prior to 1965, risks were 1.3 and 1.7 , respectively. Analyses restricting the "exposed" group to farmers who reported that they had not used protective equipment in the handling of specific pesticides were conducted for pesticides showing associations with NHL in previous analyses, either for ever handling the pesticide, or

Table 7 Pesticides ever handled with and without protective clothing or equipment: OR and CI for selected pesticides"
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Pesticide} & \multicolumn{4}{|c|}{Ever handied \({ }^{\text {d }}\)} & \multicolumn{4}{|c|}{Handied without protective equipment} \\
\hline & No. of cases & No. of controls & OR & Cl & No. of cases & No. of controls & OR & Cl \\
\hline \multicolumn{9}{|l|}{Animal insecticides} \\
\hline Chlordane & 31 & 38 & 1.7 & 1.0. 2.9 & 24 & 30 & 2.2 & 1.2, 4.2 \\
\hline DDT & 79 & 149 & 1.2 & 0.9, 1.7 & 72 & 127 & 1.3 & 0.9. 1.8 \\
\hline Lindane & 55 & 90 & 1.4 & 1.0. 2.1 & 45 & 67 & 1.6 & 1.0. 2.4 \\
\hline Malathion & 43 & 67 & 1.3 & 0.9.2.1 & 33 & 52 & 1.4 & 0.8. 2.2 \\
\hline Nicotine & 31 & 47 & 1.5 & 0.9,2.5 & 24 & 41 & 1.4 & 0.8, 2.3 \\
\hline \multicolumn{9}{|l|}{Crop insecticides} \\
\hline Carbaryl & 21 & 26 & 1.7 & 0.9.3.1 & 22 & 22 & 2.2 & 1.2,4.2 \\
\hline Chlordane & 21 & 26 & 1.7 & 0.9. 3.2 & 17 & 18 & 2.1 & 1.1, 4.3 \\
\hline DDT & 57 & 75 & 1.7 & 1.2, 2.6 & 48 & 54 & 2.0 & 1.3, 3.1 \\
\hline Diazinon & 27 & 39 & 1.5 & 0.9, 2.5 & 17 & 22 & 1.7 & 0.9, 3.2 \\
\hline Lindant & 21 & 23 & 2.0 & 1.0, 3.7 & 16 & 14 & 2.6 & 1.2, 5.5 \\
\hline Malathion & 21 & 30 & 1.5 & 0.8, 2.7 & 14 & 16 & 1.9 & 0.9.4.1 \\
\hline \multicolumn{9}{|l|}{Herbicides} \\
\hline Chloramben & 39 & 70 & 1.3 & 0.8, 2.0 & 31 & 44 & 1.7 & 1.1, 2.8 \\
\hline 2.4-D & 115 & 227 & 1.2 & 0.9.1.6 & 89 & 175 & 1.2 & 0.9.1.7 \\
\hline Dicamba & 28 & 57 & 1.2 & 0.7, 2.0 & 19 & 32 & 1.4 & 0.8, 2.5 \\
\hline 2,4.5-T & 25 & 48 & 1.2 & 0.7, 1.9 & 18 & 30 & 1.4 & 0.7, 2.5 \\
\hline
\end{tabular}
- OR relative to nonfarmers, numbering 266 cases and 547 controls. All ORs adjusted for vital status, age, state, cigarette smoking status, family history of lymphopoietic cancer, high-risk occupations, and high-risk exposures in a logistic analysis.
*Results for ever having used or handled these pesticides (with or withoul protective clothing or equipment) are from Tables 4, 5, and 6.

Table 8 Selected pesticides first used prior to 1965: OR and CI for residents of Iowa and Minnesola, respectively"
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Pesticide} & \multicolumn{4}{|c|}{lown} & \multicolumn{4}{|c|}{Minnesota} \\
\hline & No. of cases & No. of controls & OR & Cl & No. of cases & No. of controls & OR & Cl \\
\hline \multicolumn{9}{|l|}{Animal insecticides} \\
\hline Chlordane & 15 & 15 & 2.2 & 1.0. 4.8 & 7 & 7 & 2.2 & 0.8, 6.6 \\
\hline DDT & 27 & 67 & 0.9 & 0.5, 1.5 & 41 & 56 & 1.7 & 1.1, 2.7 \\
\hline Lindane & 33 & 47 & 1.5 & 0.9. 2.5 & 7 & 8 & 1.9 & 0.6, 5.5 \\
\hline Malathion & 16 & 21 & 1.5 & 0.7. 3.1 & 9 & 9 & 2.0 & 0.7, 5.3 \\
\hline Nicotine & 15 & 16 & 2.1 & 1.0, 4.6 & 13 & 20 & 1.4 & 0.7. 2.9 \\
\hline \multicolumn{9}{|l|}{Crop insecticides} \\
\hline Carbary! & 5 & 3 & 3.5 & 0.8,15.5 & 2 & ! & 4.9 & 0.4, 56 \\
\hline Chlordane & 8 & 13 & 1.3 & 0.5, 3.3 & 4 & 3 & 3.1 & 0.7.14.7 \\
\hline DDT & 28 & 40 & 1.5 & 0.9. 2.6 & 17 & 17 & 2.3 & 1.1. 4.8 \\
\hline Diazinon & 10 & 10 & 2.4 & 0.9,6.2 & 4 & 2 & 3.8 & 0.7, 22 \\
\hline Lindane & 9 & 13 & 1.4 & 0.6, 3.5 & 5 & 2 & 6.5 & 1.2, 35 \\
\hline Malathion & 6 & 6 & 2.1 & 0.6. 7.0 & 5 & 3 & 4.1 & 0.9, 18.6 \\
\hline \multicolumn{9}{|l|}{Herbicides} \\
\hline Chioramben & 7 & 10 & 1.6 & 0.6. 4.4 & 9 & 9 & 2.6 & 1.0.6.8 \\
\hline 2,4D & 51 & 96 & 1.2 & 0.8, 1.9 & 35 & 57 & 1.4 & 0.9. 2.3 \\
\hline Dicambe & 4 & 5 & 2.1 & 0.6,8.1 & 3 & 2 & 3.9 & 0.6, 24 \\
\hline 2.4.5-T & 9 & 16 & 1.2 & 0.5, 2.9 & 4 & 2 & 4.7 & 0.8. 26.4 \\
\hline
\end{tabular}
- OR relative to nonfarmers, numbering 120 cases and 255 controls in lowa, and 146 cases and 292 controls in Minmesota. All ORs adjusted for vital status, age, cigarette smoking status, family history of lymphopoietic cancer, high-risk occupations, and high-risk exposures in logistic analyses.
handling it prior to 1965, as well as for the 2 most commonly used phenoxyacetic acid herbicides (Table 7). Among insecticides used on livestock, all except one (nicotine) showed a stronger association among those who did not use protective equipment than for the entire exposed group. All of the crop insecticides showed stronger risk among farmers who did not use protective gear, as did 3 of 4 herbicides (the OR for 2,4-D remained the same).

We also calculated odds ratios for pre-1965 use and handling of selected pesticides separately for respondents from Iowa and Minnesota (Table 8). The pesticides with OR greater than 1.5 in both states were: the insecticides chlordane, lindane, and malathion applied to livestock; the insecticides carbaryl, DDT, diazinon, and malathion applied to crops; and the herbicides chloramben and dicamba. Findings from analyses of pre-1965 use of specific pesticides that included only direct respondents resembled results of OR calculations that included both direct and proxy respondents.

There was minimal evidence for confounding of results for any single pesticide by exposure to pesticides belonging to other chemical families. This was indicated by little change in OR when a variable for exposure to any of several pesticide families was added to logistic regression models for individual pesticides (fot use, handling, or applying prior to 1965) that had shown statistically significant results.

\section*{DISCUSSION}

We conducted this population based case-control study of NHL in 2 states with intensive agricultural activity to investigate risk factors for NHL among farmers. As compared with nonfarmers, farmers were at slightly elevated risk of NHL (OR \(=1.2\)), in agreement with some population surveys \((13,14)\) and other case-control studies of NHL or CLL (3, 15-25), based on mortality records or incident cases. Other population surveys have found no risk elevation for farmers (26-31); some case-
control studies have observed elevated, though nonsignificant, risk elevations (32-36); and others, null or slightly lower risk for NHL (37-41). Among the studies that have found statistically significant positive associations for NHL or CLL among farmers, the risk ratios have generally been in the range of 1.2 to 1.9. In this study, the cell type with the strongest association with farming was small lymphocytic lymphoma (OR \(=1.4\)), a NHL subtype morphologically similar to CLL. Farming occupation has been linked to CLL risk in several case-control studies, including the study parallel to this one (3) and others (21-23), with OR in the range of 1.4 to 1.8 .

We found no striking differences or trends in NHL risk by several measures of the time or intensity of farming, including first year farmed, total duration of farming, or average number of acres farmed. However, the association among men who were farming after 1949 was slightly stronger than for those who stopped earlier. In addition, the NHL risk among farmers of midsized farms (average farm size of 120-199, or 200-319 acres) was slightly higher (OR of 1.3 and 1.2) than for men who farmed more acreage (OR of 1.1). This is consistent with findings from Saskatchewan, where NHL risk was higher among farmers of \(<300\) acres than larger establishments (27). The findings that relate temporal period of farming and average farm size with NHL risk are consistent with associations with chemical pesticide use. There were increases in the use of agricultural chemicals after World War II (42, 43), and major usage occurred after 1950, increasing the opportunity for exposure among individuals who farmed more recently.

We observed no meaningful elevation or consistent trends in risk with average acreage of a number of major crops (including corn, wheat, and soybeans) or the average or maximum number of several types of livestock (including dairy cows, beef cattle, hogs, and chickens).

There were small elevations in risk for NHL among farmers who ever used pesticides, or who used pesticides belonging to very broad groups according to usage, including livestock insecticides, crop insecticides, herbicides, and fungicides. However, larger risks were observed when more specific definitions of pesticide exposure were used (i.e., chemical classes or specific chemicals); when risk was measured by whether a farmer had personally handled, mixed, or applied the pesticides; and among farmers who did not use protective clothing or equipment. Among chemical classes of insecticides used on livestock, we found statistically elevated risk for the grouped chlorinated hydrocarbons, natural products, and organophosphates. Among the chlorinated hydrocarbons, larger OR occurred for the grouped cyclodienes (chlordane and dieldrin) and among the organophosphates, greater risks occurred for halogenated aromatics (chlorphyrifos, coumaphos, crufomate, ronnel, and tetrachlorvinphos). A mong crop insecticide families that we evaluated, only the chlorinated hydrocarbons showed statistically elevated OR. No single family of herbicides was associated with NHL risk.

We found significantly elevated risks, with OR of 1.5 or more, for personal handling, mixing, or application of several individual insecticides, including carbaryl, chlordane, DDT, diazinon, lindane, malathion, and nicotine. Dieldrin, dichlorvos, famphur, and toxaphene also showed notable, though nonsignificant risk elevations. Patterns of risk from 3 other analyses were consistent with the hypothesis of an etiological role for these insecticides. Risk of NHL was greater for most chemicals among farmers who first used these chemicals before 1965 (15-18 years before diagnosis) and among those who did
not use protective equipment, and there was notable consistency in the risk estimates from the \(\mathbf{2}\) states. Associations with specific chemicals were not confounded by exposure to families of other pesticides. Other investigations of lymphopoietic cancer and pesticide exposure have also noted a rise in risk with increasing time since first exposure, suggesting the need for longer latency \((3,33,39)\).

Three of the 4 chemicals that showed excesses, and are used both on crops and livestock, had larger OR associated with crops (DDT, lindane, and malathion), while for chlordane the OR was greater for use on animals. This contrasts with the parallel study of leukemia in Iowa and Minnesota, in which we generally found higher risks for chemicals used as animal insecticides (3).

Several insecticides associated with NHL in this study (chlordane, dieldrin, DDT, lindane, and toxaphene) are classified as having sufficient or limited evidence for carcinogenicity in animals by the International Agency for Research on Cancer (42). For some other insecticides associated here with NHL (carbaryl and malathion), information for evaluation is insufficient. With the exception of phenoxyacetic acid herbicides, the epidemiological literature regarding cancer risks from specific pesticide exposures is quite limited. Cancer risks have been assessed in cohort studies of insecticide manufacturing workers and applicators (44-55), but these are generally not useful in evaluating the risk of NHL associated with specific pesticides. In most cohort studies, the specific pesticide exposures experienced by individuals were not well documented, or the effects of multiple exposures could not be disentangled. In addition, most cohorts were too small or the follow-up period too brief to adequately assess risk of NHL. Hematopoietic and lymphopoietic cancers, however, have been elevated in some of these studies. In Northern Italy, incident lymphatic tissue cancers were in excess among agriculture and forestry workers licensed to use pesticides (Standardized Incidence Ratio \(=1.4, \mathrm{Cl}=\) 1.0-1.9; 45 cases), especially among persons applying pesticides to only arable land (Standardized Incidence Ratio \(=1.8, \mathrm{Cl}=\) 1.2-2.5; 31 cases) (47). Excess NHL risk was found in a cohort of United States grain industry workers (Standardized Mortality Ratio = 149), and within the cohort, a nested case-control study showed flour millers to be at especially high risk (OR = 4.2, \(\mathrm{CI}=1.2-14.2\))(44). A variety of insecticides has been used in the grain industry, including DDT, hydrogen cyanide, ethylene dibromide, phosphine, and carbon tetrachloride. Among pesticide manufacturing workers exposed primarily to DDT (740 persons, \(17,186.9\) person-years of follow-up), no excess of all lymphopoietic and hematopoietic cancer was found (3 ob served, 2.40 expected) (51).

Six case-control studies, 4 of NHL \((19,38,39,56)\) and 2 of CLL (3, 17), provide limited information on risk associated with exposure to specific insecticides or insecticide families. A third case-control study of CLL found a nonsignificant risk elevation among persons exposed to "pesticides," not further defined (57). Exposure to DDT was linked with CLL in 2 casecontrol studies (3,17), and associated with NHL in 2 others \((19,56)\), with OR between 1.5 and 6.1 . In the 2 other casecontrol studies, either DDT was not reported separately (39) or no association was found (0 exposed cases, 3 exposed controls) (38). In the current study, we found an association with ever handling, mixing, or applying DDT that was stronger for its use on crops than on livestock, and that was more pronounced for first exposure prior to 1965 than later. We found elevated
risk for pre-1965 application of DDT to crops in both lowa and Minnesota.
The grouped chlorinated hydrocarbon insecticides were associated with small (nonsignificant) risk elevations for NHL in a Nebraska study (58). Other than DDT, the only chlorinated hydrocarbons reported specifically in other case-control studies are chlordane and lindane. Chlordane was significantly associated with NHL risk in Nebraska (\(O R=2.1\)), and nonsignificantly in Washington State (OR = 1.61) (19). Lindane, another organochlorine, was significantly associated here with NHL when used either on crops or animals, and risks were elevated in both Iowa and Minnesota. Lindane has also been associated with NHL in a study from Kansas (2).
Risks associated with organophosphate exposure, either collectively, or as individual chemicals, were reported for CLL in the parallel study of leukemia in Iowa and Minnesota (3) and for NHL in a study with similar methods from Eastern Nebraska (39, 58). In the Nebraska study, the OR for organophosphate exposure study was \(1.9(\mathrm{OR}=1.1-3.1)\), and risk increased with days/year of use to \(\mathrm{OR}=3.1\) for \(21+\) days. In Nebraska, 2 organophosphates, diazinon and malathion, showed significant positive associations with NHL, similar to our findings. In the parallel leukemia study in lowa and Minnesota (3), elevated risk was found for CLL among farmers exposed to dichlorvos as an animal insecticide (\(\mathrm{OR}=2.2, \mathrm{CI}\) \(=1.0-4.6\)). We found significant associations for the grouped organophosphate insecticides used on livestock (\(O R=1.5\)), especially halogenated aromatic organophosphates \((O R=2.0\), \(\mathrm{CI}=1.1-3.7\)). The ORs for grouped nonhalogenated aromatic organophosphates used on livestock and crops were also elevated, but not statistically significant. Regarding specific organophosphate insecticides, we observed significant associations of NHL with use of malathion prior to 1965 on both crops and animals, and OR were above 1.5 for both types of application in Iowa and in Minnesota. In addition, we found significant OR for pre-1965 use of diazinon on crops, with comparable risk elevations in the \(\mathbf{2}\) study states. Use of other organophosphates before 1965, including coumaphos and dichlorvos on livestock, and phorate on crops, also were associated with increased risk of NHL, although the \(\mathbf{9 5 \%}\) confidence interval for each included 1.0.
In the study from Nebraska (58), the carbamate insecticide family was significantly associated with \(\mathrm{NHL}(O R=1.8)\). We did not find significant associations with carbamates as a group. However, use of carbaryl prior to 1965 was associated with NHL (\(\mathrm{OR}=3.8, \mathrm{Cl}=1.1-13.6\)), and risk was elevated in both study areas. However, the number of exposed subjects was small (7 cases, 4 controls).

Phenoxyacetic acid herbicides have been linked to NHL risk in several \((19,33,39,56)\), but not all \((38,59)\), case-control studies. Excesses have also been noted in 2 phenoxyacetic acid manufacturing cohorts, although few deaths occurred (\(\mathbf{6 0}, \mathbf{6 1}\)). In our data, the risk of NHL associated with ever handling, mixing, or applying members of the phenoxy acid herbicide family, or the specific herbicides \(2,4-\mathrm{D}\) or \(2,4,5-\mathrm{T}\), was small and about the same as for farmers overall. However, when latency was considered, the association with \(2,4,5-\mathrm{T}\) was somewhat stronger. Although our findings are not entirely negative, the risk of NHL with 2,4-D use is considerably weaker than observed in studies of similar design from Kansas and Nebraska (33,39). Risks here were considerably lower and did not increase with latency or failure to use protective equipment. The reasons for the inconsistencies are not obvious. Use patterns of

2,4-D in lowa and Minnesota may differ from Kansas or Nebraska. In the latter states, the bulk of \(2,4-\mathrm{D}\) is for postemergent application on small grains, whereas in lowa it may be more frequently used on corn. 1t is unclear whether this difference affects exposures to farmers. It is also possible that the inconsistencies between this and other studies of 2,4-D are simply due to chance, since random variation in risk estimates among studies is to be expected.

Additional comments on the limitations of this study are warranted. Some associations found here may have arisen due to chance or bias. Numerous comparisons were made, and results must be evaluated in this context and judged against epidemiological rules of causality. Bias in selecting cases or controls was absent since eligibility for the study was unrelated to current or previous status as a farmer or the exercise of particular agricultural practices. However, willingness to participate could have been related to farm residence or occupation as a farmer. The fairly high and similar response rates in cases and controls, however, diminishes the possibility of such bias.

Bias due to differential response or recollection of cases and controls regarding specific pesticide exposure is possible. Such bias is unlikely because at the time interviews were held, respondents and interviewers were not aware of hypotheses regarding specific pesticides. Moreover, we found no excess risk for many pesticides but rather some internal consistency for elevated risk with others, such as some of the chlorinated hydrocarbons and organophosphates.
Nondifferential misclassification of specific pesticide exposures is a more likely source of distortion of risk estimates. For dichotomous measures of exposure, however, this distortion would tend to bias risk estimates toward the null (62) and is unlikely to yield false-positive findings. The effect of nondifferential misclassification on polychotomous measures can be more complex (63). There are many ways in which exposure misclassification may occur in studies of this design (64). Most, however, would yield false-negative findings. More than \(\mathbf{9 0 \%}\) of the farmers in this study operated one or more farms, in contrast to working as hired help. Most farm operators plan their own pest control operations, personally purchase pesticides, and mix and apply the chemicals themselves. They are thus more likely to remember names of specific chemicals that they used than most other pesticide users. However, when many different chemicals were involved, when their use was several decades in the past, and when the use of particular chemicals was brief or episodic, accuracy in reporting chemical names and the timing of application undoubtedly suffers. Proxy respondents not directly involved in farming operations may have been more prone to inaccurate responses than directly interviewed subjects. Among farmers, proxies responded for \(\mathbf{2 8 . 9 \%}\) of cases and \(34.2 \%\) of controls. Among controls who had farmed, \(18.4 \%\) of proxies did not know whether crop insecticides had been used, and \(17.2 \%\) did not know about herbicide use. In contrast, \(\mathbf{3 . 3 \%}\) of directly interviewed farmers didn't know about crop insecticide use, and \(\mathbf{3 . 1 \%}\) didn't know about herbicide use. Among the controls who reported insecticide use on crops, DDT use was reported as unknown by 11 of 86 proxies (\(13 \%\)) but only 8 of \(\mathbf{2 3 3}\) alive subjects (\(\mathbf{3 . 4 \%}\)), and crop application of malathion was unknown by 16 of 86 proxies (\(19 \%\)) and 7 of 233 living subjects (3.0\%). Among controls who ever used herbicides, 2,4-D use was reported as unknown by 9 of 88 proxies (10.2\%) and 5 of 256 direct respondents (2.0\%). Differential effects on risk estimates due to proxy responses among cases and controls should not occur because we adjusted for
type of respondent in the analysis.
This investigation supports findings from earlier studies that point to an elevated risk of non-Hodgkin's lymphoma among farmers, and our data strongly suggest a relationship with certain pesticide exposures. Interpretation of results regarding individual pesticides is fraught with difficulties, including the problems of interpreting risk of individual factors in the multiple exposure setting of modern agriculture as well as the chance occurrence of finding positive associations with multiple comparisons. Of equal concern is the possibility of missing important associations due to nondifferential exposure misclassification because of difficulties in accurate recall of past pesticide exposures. This would bias risk estimates toward the null. Despite these qualifications, the many internal consistencies of this study and concordance with observations of others support the notion that elevated NHL risk among farmers is associated with exposure to several insecticides, and support the use of protective equipment. The chemicals most strongly associated with risk of NHL were carbaryl, chlordane, DDT, diazinon, dichlorvos, lindane, malathion, nicotine, and toxaphene. Many of these insecticides are still in widespread use today, in the United States or elsewhere, and deserve further epidemiological evaluation.

\section*{ACKNOWLEDGMENTS}

The authors thank the following individuals for their invaluable help in this project: Peter Isacson, Stephanie VanLier, Ruby Boatman, Judy Cohen, Mariana Hildesheim, and Robert Banks.

\section*{REFERENCES}
1. Blair, A., Malker, H., Cantor, K. P., Burmeister, L., and Wiklund, K. Cancer among farmers. a review. Scand. J. Work Environ. Health, II: 397-407, 1985.
2. Blair, A., Axelson, O., Franklin, C.. Payater, O. E., Pearce. N., Stevenson, D.. Trosko. J. E.. Vainio. H., Williams, G., Woods, J., and Zahm, S. H. Carcinogenic effects of pesticides. In: S. R. Baker and C. F. Wilkinson (eds.), The Effects of Pesticides on Human Health, pp. 20t-260. Princeton. NJ: Princeton Scientific Publishing Co., 1990.
3. Brown, L. M., Blair, A., Gibson. R., Everetl, G. D.. Cantor, K. P.. Schuman, L. M., Burmeister, L. F., VanLier, S. F., and Dick, F. Pesticide exposures and other agricultural risk factors for leukemia among men in lowa and Minnesola. Cancer Res., 50: 6585-6591, 1990.
4. Non-Hodgkin's Lymphoma Pathologic Classification Project. National Cancer Institute sponsored study of classifications of non-Hodgkin's lymphomas. Cancer (Phila), 49: 2112-2135. 1982.
5. Dick, F.. Van Lier, S., Banks, P., Frizzera, G., Witrak, G., Gibson, R., Evereti, G., Schuman, L., Isacson, P., O'Comer, G., Cantor, K., Blatiner, W.. and Blair, A. Use of the working formulation for Non-Hodgkin's lymphoma in epidemiolotic studies: agreement between reported diagnoses and a panel of experienced pathologists. J. Nall. Cancer Inst., 78: 1137-1144. 1987.
6. Diek, F. R., Van Liet, S. F., McKeen, K., Everett, G. D., and Blair, A. Nonconcurrence in abstracted diagnoses of Non-Hodgkin's lymphoma. J. Natl. Cancer Inst., 78: 675-678, 1987.
7. Hartge, P., Brinton, L. A., Rosenthal, J. F., Cahill, J. I., Hoover, R. N., and Waksberg. J. Random disit dialing in selecting a population-based control group. Am. J. Epidemiol., 120: 825-833, 1984.
8. Waksberg. J. Sampling methods for random digit dialing. J. Am. Stat. Assoc., 73: 40-46, 1978.
9. Hartge, P.. Cahill, J. I.. West. D., Hauck. M.. Austin. D.. Silverman, D., and Hoover, R. Design and methods in a multi-center case-control interview study. Am. J. Public Health, 74: 52-56, 1984.
10. Cox, D. R. The Analysis of Binary Data. p. 14. London: Methuen, 1970.

1I. Dixon, W. J. (ed.) BMDP Statistical Software. p. 330. Berkeley. CA: University of California Press, 1983.
12. Gart, J. J. Point and interval estimation of the common odds ratio in the combination of \(2 \times 2\) lables with fixed marginals. Biometrika, 57: 471-475. 1970.
13. Burmeister, L. F. Cancer mortality in lowa farmers, 1971-78. J. NatI. Cancer Inst., 66: 461-464, 1981.
14. Buesching. D. P., and Wollstadt, L. Cancer mortality among farmers (letter). J. Natl. Cancer Inst.. 72: 503-504. 1984.
15. Balajaran, R. Malignant lymphomas in agricultural and forestry workers in England and Wales. Public Health. 102: 585-592. 1988.
16. Cantor, K. P. Farming and mortality from non-Hodgkin's lymphoma: a casecontrol study. Int. J. Cancer, 29: 239-247, 1982.
17. Flodin, U., Fredriksson, M., Persson, B., and Axelson, O. Chronic lymphatic leuknemia and engine exhausts, fresh wood, and DDT: a case-referent study. Br. J. Ind. Med., 45: 33-38, 1988.
18. Pearce, N. E., Smith, A. H., and Fisher, D. O. Malignant Iymphoma and multiple myeloma linked with agricultural occupations in a New Zealand cancer registry-based study. Am. J. Epidemiol., 121: 225-237, 1985.
19. Woods, J. S., Polissar, L., Severson, R. K., Heuser, L. S., and Kulander, B. G. Soft tissue sarcoma and non-Hodgkin's lymphoma in relation to phenoxyherbicide and chlorinated phenol exposure in western Washington. J. Natl. Cancer Inst., 78: 899-910, 1987.
20. LaVecchia, C., Neqri, E., D'Avanzo, B., and Franceschi, S. Occupation and tymphoid neoplasms. Br. J. Cancer, 60: 385-388, 1989.
21. Burmeister, L. F., Van Lier, S. F., and Isacson, P. Leukemia and farm practices in Iowa. Am. J. Epidemiol., IIS: 720-728, 1982.
22. Blair, A., and White, D. W. Leukemia cell types and agricultural practices in Nebraska. Arch. Environ. Health, 40: 211-214, 1985.
23. Pearce, N. E., Sheppard, R. A., Howard, J. K., Fraser, J., and Lilley, B. M. Leukemis amons New Zealand agricultural workers. Am. J. Epidemiol., J24: 402-409, 1986.
24. Reif, J., Pearce, N., and Fraser, J. Cancer risks in New Zealand farmers. Int. J. Epidemiol., 18: 768-774, 1989.
25. Brownson, R. C., Reif, J. S., Chang, J. C., and Davis, J. R. Cancer risks among Missouri farmers. Cancer (Phila.), 64: 2381-2386, 1989.
26. Wiklund, K., Lindefors. B-M., and Holm. L.E. Risk of malignant lymphoma in Swedish agricultural and forestry workers. Br. J. Ind. Med., 45: 19-24, 1988.
27. Wigle, D. T., Semenciw, R. M., Wilkins, K., Riedel. D., Ritter, L., Mortison, H. I., and Mao, Y. Mortality study of Canadian male farm operators: nonHodekin's lymphoma mortality and aqricultural practices in Saskachewan. J. Natl. Cancer Inst., 82: 575-582, 1990.
28. Stark, A. D., Chang, H-G., Fitzgerald, E. F., Riccardi, K., and Stone, R. R. A retrospective cohort study of cancer incidence among New Yort Sute Farm Bureau members. Arch. Environ. Health, 45: 155-162, 1990.
29. Stark, A. D., Chang. H. G., Fitzgerald. E. F., Riccardi, K., and Stose, R. R. A retrospective cohort study of mortality amons New York Seate farm bureau members. Arch. Environ. Health, 42: 204-212, 1987.
10. Fasal, E., Jackson, E. W., and Klauber, M. R. Lewkemia and lymphoma mortality and farm residence. Arm. J. Epidemiol., 87: 267-274, 1968.
31. Delzell, E., and Grufferman. S. Mortality among white and now white farmers in North Carolina, 1976-1978. Am. J. Epidemiol., 121: 391-402, 1985.
32. Brownson, R. C., and Reif, J. S. A cancer registry-based study of occupational risk for lymphoms, multiple myeloma and leukemia. Int. J. Epidemiol., 17: 27-32, 1988.
33. Hoar, S. K., Bleir, A., Holmes. F. F., Boysen, C. D., Robel, R. J., Hoover, R., and Fraumeni, J. F. Agricultural herbicide use and risk of lymphoma and soft-tissue sarcoma. J. Am. Med. Assoc., 256: 1141-1147, 1986.
34. Cartwright, R. A., McKinney, P. A., O'Brien, C., Richards, I. D. G., Roberts, B., Lauder, I., Darwin, C. M., Bernard, S. M., and Bird, C. C. Non-Hodekin's lymphoma: case control epidemiologic study in Yorkshire. Leuk. Res., 12: 81-88, 1988.
35. Dubrow, R.. Paulson, J. O., and Indian, R. W. Farming and maligaant lymphoma in Hancock County, Ohio. Br. J. Ind. Med., 45: 25-28, 1988.
36. Milham, S., Jr. Leukemia and multiple myeloma in fermers. Am. J. Epidemiol., 94: 307-310, 1971.
37. Pearce. N. E., Sheppard. R. A., Smish. A. H.. and Teague, C. A. NomHodgkin's lymphoma and farming: an expanded case-control study. Int. J. Cancer, 39: 155-161, 1987.
38. Persson, B., Dahlander, A-M., Fredrikscon, M., Brage, H. N., Ohison, C-G., and Axelson, O. Malignant lymphomas and occupational exposures. Br. J. Ind. Med. 46: 516-520. 1989.
39. Zahm. S. H.. Weisenburger. D. D., Babbitl, P. A., Sal. R. C.. Vaughe, J. B., Cantor, K. P., and Blair, A. A case-control study of non-Hodgkin's lymphoma and the herbicide 2,4-dichlorophenoxyacetic acid (2.4-D) in Eastem Nebraska. Epidemioloty, 1: 349-356, 1990.
40. Franceschi, S.. Serraino, D., Bidoli, E., Talamini, R., Tirelli, U.. Carbone, A., and LaVecchia, C. The epidemiology of non-Hodgkin's lymphoma in the north-east of lasly: a hospital-based case-control study. Leuk. Res., 13: 465472, 1989.
41. Schumacher, M. C., and Deizell, E. A death-certificate case-control study of mon-Hodgkin's lymphoma and occupation in men in North Carolina. Am. J. Ind. Med., 13: 317-330, 1988.
42. International Agency for Research on Cancer. Overall Evaluations of Carcinogenicity: An Updating of IARC Monographs Volumes 1 to 42. Lyon. France: International Agency for Research on Cancer, 1987.
43. International Agency for Research on Cancer. IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans: Volume \(\mathbf{3 0}\), Miscellaneous Pesticides. Lyon: International Agency for Research on Cancer. 1983.
44. Alavanja, M. C. R., Blair, A., and Masters, M. N. Cancer mortality in the U. S. flour industry. J. Natl. Cancer Inst., 82: 840-848, 1990.
45. Blair, A., Grauman, D. J., Lubin, J. H., and Fraumeni, J. F. Luing cancer and other causes of death among licensed pesticide applicators. J. Natt. Cancer Inst. 71: 31-37. 1983.

FARMING AND NON-HODGKIN'S LYMPHOMA
46. Barthel, E. Increased risk of lung cancer in pesticide-exposed male agricultural workers. J. Toxicol. Environ. Health, 8: 1027-1040, 1981.
47. Corrao, G., Calleri, M., Carte, F., Russo, R., Bosian. S., and Piccioni, P. Cancer risk in a cohort of licensed pesticide users. Scand. J. Work Environ. Health. 15: 203-209, 1989.
48. Cantor, K. P., and Booze, C. F. Mortality among aerial pesticide applicators and night instructors. Arch. Environ. Health, 45: 295-302, 1990.
49. MacMahon, B., Monson, R. R., Wang, H. H., and Zheng, T. A second follow-up of mortality in a cohort of pesticide applicators. J. Occup. Med., 30: 429-432, 1988.
50. Wiklund. K.. Dich. J., and Holm, L-E. Risk of malignant lymphoma in Swedish pesticide appliers. Br. J. Cancer, 56: 505-508. 1987.
51. Wong, O., Brocker, W., Davis, H. V., and Nagle, G. S. Mortality of workers potentially exposed to organic and inorganic brominated chemicais, DBCP. TRIS, PBB, and DDT. Br. J. Ind. Med, 41: 15-24, 1984.
52. Mebuchi. K., Lilienfeld. A. M., and SnelL. L. M. Lung cancer among pesticide workers exposed to inorganic arsenicals. Arch. Environ. Health, 34: 312320. 1979.
53. Ditraglia, D., Brown, D. P., Namekata, T., and Iverson, N. Mortality study of workers employed at organochlorine pesticide manufacturing plants. Scand. J. Work Environ. Health, 7(Suppl. 4): 140-146. 1981.
54. Ribbens, P. H. Mortality study of industrial workers exposed to aldrin, dieldrin and endrin. Int. Arch. Occup. Environ. Health, 56: 75-79, 1985.
55. Wang, H. H., and MacMahon, B. Mortality of workers employed in the manufacture of chlordane and heptachlor. J. Occup. Med., 21: 745-748, 1979.
56. Hardell, L., Eriksson, M., and Lenner, P. Malignant lymphoma and exposure
to chemicals, especially organic solvents, chlorophenols and phenoxy acids: a case-control study. Br. J. Cancer, 43: 169-176, 1981.
57. Malone, K. E., Koepsell, T. D., Daling. J. R., Weiss, N. S., Morris, P. D., Taylor, J. W.. Swanson. G. M.. and Lyon, J. L. Chronic lymphocytic leukernia in relation to chemical exposures. Am. J. Epidemiol., 130: 1152 1158, 1989.
58. Zahm, S. H., Weisenburger, D. D.. Babbitt, R. C., Saal, R. C.. Cantor, K. P., and Blair, A. A case-control study of non-Hodgkin's lymphoma and agricultural factors in Eastern Nebraska (absiract). Am. J. Epidemiol., 128: 901.1988.
59. Pearce, N. Phenoxy herbicides and non-Hodgkin's lymphoma in New Zealand: frequency and duration of herbicide use (ketter), Br. J. ind. Med., 46: 143-144, 1989.
60. Bond, G. G., Wetterstroem. N. H., Roush, G. J., McLaren, E. A., Lipps, T. E., and Cook, R. R. Cause specific mortality among employees engaged in the manufacture, formulation, or packaging of 2,4-dichlorophenoxyacetic acid and related salts. Br. J. Ind. Med., 15: 98-105, 1988.
61. Coggon, D., Pannett, B., and Winter, P. Mortality and incidence of cancer at four factories making phenoxy herbicides. Br. J. Ind. Med., 48: 173-178. 1991.
62. Checkoway, H., Pearce, N. E., and Crawford-Brown, D. J. Research Methods in Occupational Epidemiology. New York: Oxford University Press. 1989.
63. Dosemeci, M.. Wacholder, S.. and Lubin, J. H. Does nondifferential misclassification of exposure always bias a true effect toward the null value? Am. J. Epidemiol., 132: 746-748, 1990.
64. Blair, A., and Zahm. S. H. Methodologic issues in exposure assessment for case-control studies of cancer and herbicides. Am. J. Ind. Med., 18: 285293, 1990.

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

\section*{23 ucC 1975}

\section*{Monsanto Company}

Attention: Mr. Hannah
800 N. Lindbergh Boulevard
St. Louis, Mtssourt 63166
Gentlemens
Subject :
ROUNDUP
EPA Reg. No. 524-308
Your application of
December 22, 1975
The labeling referred to above, submitted in connection with registration under the Federal Insecticide, Fungicide, and Rodenticide Act, as amended, is acceptable, and a stamped copy is enclosed for your records.

Note that this submission was processed and accepted under the 1947 Federal Insecticide, Fungicide, and Rodentictde Act. At such time as re-registration is requized or amendments are proposed, the Registration, Re-registration and Classification Procedures, as published in the Federal Register on July 3, 1975, will be applied. Refer to Section 162.23 of that document. Refer also to PR Notice 75-1 and 75-4.

Sincerely,
Cuwnt Suy 02
Fungicide-Herbicide Branch
Registration Division (WH-567)
Enclosure

\section*{EXHIBIT 19-11}

PRECAUTIONARY STATEMENTS Hazard to Humans
WARNING! Keep out of reach of children. CAUSES EYE IRRITATION.
HARMFULIF SWALLOWED.
Do not get in eyes, on skin or on clothing
FIRST AID: In case of contact, immediately fush eyes with plenty of water for at least 15 minutes. Call a physician. Flush skin with water. Wash clothing before reuse.

Storage and Disposal
STORE ABOVE \(10^{\circ}\) F. TO KEEP FROM FREEZING. reezing will result in crystals which settle to the botom of the can. If allowed to freeze, place in a warm, everal days to redissolve. issolve.
Avoid contamination of seed, feed and food stulfs. Do not reuse container, destroy when empty. Collect, day or night, (314) 694-1000.

Monsanto

Water soluble herbicide for fogs solectvecontroformany hinualand perennial weeds. Carefully follow detailed instactions in attachedabalitu

plants and trees, since severe injuryor destrugtion may rosulk

Read "Limit of warranty and LIABILITY" before buying or using. If terms are not acceptable, return at once unopened.
WARNING!
Read precaution on back panel.
Keep out of reach of children.

Active ingredient Isopropyiaminewit Inert ingreftipeps:

NET 1 GAL

Contains 480 grams per liter or 4 pounds of the active ingredient isopropytamine salt of N-(phosphonomethyl) glycine per U.S. gallon Equivalent to 359 grams per fiter or 3 pounds
per U.S. gallon of the acid, glyphosate.

EPA Reg. No. 524-308-AA

\title{
Integrative assessment of multiple pesticides as risk factors for non-Hodgkin's lymphoma among men
}

\author{
A J De Roos, S H Zahm, K P Cantor, D D Weisenburger, F F Holmes, L F Burmeister, A Blair
}

Occup Environ Med 2003;60:e 11 (hitp://www.occenvmed com/cgi/content/full/60/9/e 11)

See end of article for authors' affiliations

Correspondence to:
Di A J De Roos,
1100 Fairview Avenue North, MP-474, PO Box 19024, Seatle. WA 98109 , USA; aderoos@ftcrc.org
Accepled 27 March 2003

\begin{abstract}
Background: An increased rate of non-Hodgkin's lymphoma (NHL) has been repeatedly observed among farmers, but identification of specific exposures that explain this observation has proven difficult.
Methods: During the 1980s, the National Cancer Institute conducted three case-control studies of NHL in the midwestern United States. These pooled data were used to examine pesticide exposures in farming as risk factors for NHL in men. The large sample size (\(n=3417\)) allowed analysis of 47 pesticides simultaneously, controlling for potential confounding by other pesticides in the model, and adjusting the estimates based on a prespecified variance to make them more stable.
Results: Reported use of several individual pesticides was associated with increased NHL incidence, including organophosphate insecticides coumaphos, diazinon, and fonofos, insecticides chlordane, dieldrin, and copper acetoarsenite, and herbicides atrazine, glyphosate, and sodium chlorate. A subanalysis of these "potentially carcinogenic" pesticides suggested a positive trend of risk with exposure to increasing numbers.
Conclusion: Consideration of multiple exposures is important in accurately estimating specific effects and in evaluating realistic exposure scenarios.
\end{abstract}

Farming occupation has been associated with an increased risk of non-Hodgkin's lymphoma (NHL) in the United States and other countries. \({ }^{14}\) Specific farming exposures contributing to the excess risk have not been clearly discerned, but pesticides have received considerable attention. Associations have been observed between NHL risk and exposure to phenoxyacetic acids, most notably 2,4 -dichlorophenoxyacetic acid (2,4-D). \({ }^{\text {.-10 }}\) Organochlorine, organophosphate, carbamate, and triazine pesticides have also been implicated. \({ }^{89}{ }^{11-14}\)
There are several analytical challenges in studying health effects of pesticide exposures among farmers. Farmers are typically exposed to multiple pesticides during a lifetime, and pesticides are frequently used together or during the same growing season, posing a challenge for identifying specific risk factors. Although multiple and simultaneous exposures are common in epidemiology and the situation regarding pesticides is not unique, they do require large numbers to successfully identify risks from specific exposures. Many of the past studies of NHL and pesticides had limited power to adjust for potential confounding by associated pesticide exposures. Limited study power has also hindered investigation of the risk associated with common pesticide combinations.

In principle, multiple pesticide exposures should be modelled simultaneously to account for their probable correlation; however, modelling multiple pesticides can lead to imprecise estimates, particularly where exposures are infrequent. In addition, some estimates are expected to be very inaccurate, either due to chance or systematic error (such as recall bias). Hierarchical regression models, also known as multilevel or multistage models, allow the researcher to specify prior distributions for multiple effect parameters of interest (for example, pesticide effects), and to adjust the observed likelihood estimates towards these prior distributions with the objective of obtaining increased precision and accuracy for the ensemble of estimates. \({ }^{15-47}\) Although the true prior distributions are rarely known, factors hypothesised to determine or explain the magnitude of the true effects of
interest can be used to specify the form of the prior distributions, whose magnitudes are then estimated."

During the 1980s, the National Cancer Institute conducted three population based case-control studies of NHL in Nebraska. \({ }^{\text {' }}\) Iowa and Minnesota. \({ }^{\text {. }}\) and Kansas. \({ }^{7}\) Each of these studies focused on farming exposure to pesticides, and data from the three studies have been pooled. In the pooled data, certain organophosphate \({ }^{12}\) and carbamate \({ }^{13}\) insecticides were positively associated with the risk of NHL. Lindane use was associated with slightly increased incidence of NHL, \({ }^{18}\) whereas DDT use was not. \({ }^{19}\) There was also a slightily incieased incidence associated with atrazine exposure. \({ }^{20}\)

We used these pooled data to conduct an analysis of exposure to multiple pesticides in farming as risk factors for NHL among men. The larger sample size provided adequate numbers of exposed persons to analyse a set of pesticide exposures simultaneously, using hierarchical regression to adjust estimates based on prior distributions for the pesticide effects. In addition, effects of the number of pesticides used and of common pesticide combinations were explored to assess the risk associated with realistic scenarios of farmers' exposures to multiple pesticides.

\section*{METHODS}

\section*{Study population}

The three case-control studies had slightly different methods of subject recruitment. In Nebraska,' all cases of NHL diagnosed between July 1983 and June 1986 among white subjects 21 years of age and older, and living in one of the 66 counties of eastern Nebraska were identified through the Nebraska lymphoma Study Group and area hospitals. In Iowa and Minnesota," all newly diagnosed cases of NHL among

Abbreviations: 2,4-D, 2,4-dichlorophenoxyacetic acid; NHL, non-Hodgkin's lymphoma; OP, organophosphorus
white men aged 30 years or older were ascertained from records of the lowa State Health Registry from 1981 to 1983, and a special surveillance system of Minnesota hospitals and pathology laboratories from 1980 to 1982 . In Kansas,' a random sample of cases diagnosed between 1979 and 1981 among white men age 21 years or older was selected from the statewide cancer registry run by the University of Kansas Cancer Data Service. Population based controls were randomly selected from the same geographical areas as the cases, frequency matched to cases by race, sex, age, and vital status at the time of interview. Potential controls were identified by random digit dialing and from Medicare records, and for deceased cases, from state mortality files.

Only one study included women; in this pooled analysis we excluded female cases and controls. Those who lived or worked on a farm when younger than 18 years of age, but not after age 18, were not asked about their pesticide use in the Nebraska study: persons with this history from any of the three studies were therefore excluded from analyses of the pooled data. Following exclusions, the study population included 870 cases and 2569 controls.

\section*{Interviews}

Interviews were conducted with the subjects or their next of kin if the subjects were dead or incapacitated. In each study, detailed questions were asked about the use of agricultural pesticides as well as other known or suspected risk factors for NHL. In Nebraska, information was obtained through questioning about the use of any pesticide. followed by prompting for selected specific pesticides, with details on the total number of years of use and average number of days per year. In Iowa and Minnesota, use was assessed by a direct question about a selected list of specific pesticides. Pesticide users were also asked the first and last year each pesticide was used. In Kansas, use of pesticides was assessed by an open ended question without prompting for specific pesticides, and duration of use and days per year were obtained for groups of pesticides (herbicides, insecticides, and fungicides), but not for each pesticide individually.

\section*{Statistical analyses}

Each pesticide for which there were data from all three studies, and to which 20 or more persons were exposed. was included in the pooled analysis. The set of pesticides examined included 47 insecticides and herbicides. Exposure to each pesticide was coded as an indicator variable for exposed (1) or not exposed \(\{0\}\). Because these analyses of multiple pesticides modelled the pesticides simultaneously, any subject with a missing or "don't know" response for any one of the 47 pesticides of interest was excluded from all analyses. Following exclusion of subjects with missing data, analyses of multiple pesticides included 650 cases (\(74.7 \%\)) and 1933 controls (\(75.2 \%\)). We employed two approaches to our analyses: standard logistic regression (maximum likelihood estimation) and hierarchical regression, calculating odds ratios to estimate the relative risk associated with each pesticide. All models included variables for age (coded as a quadratic spline variable with one knot at 50 years) \({ }^{21}\) and indicator variables for study site. Other factors known or suspected to be associated with NHL, including first degree relative with haematopoietic cancer, education, and smoking, were evaluated and found not to be important confounders of the associations between NHL and pesticides. The standard logistic regression models did not assume any prior distribution of pesticide effects, in contrast to the hierarchical regression modelling.

\section*{Hierarchical regression of multiple pesticide exposures} In the first-level model of the hierarchical regression analysis, NHL disease status was regressed simultaneously on the 47 pesticide exposures, age, and study site. The maximum likelihood estimates for the 47 pesticides from the first-level model
were regressed in a second-level linear regression model as a function of prespecified prior covariates for each of the pesticides. The second-level model should incorporate what is known about each true effect parameter prior to seeing the study data." \({ }^{\prime 2}\) Information derived from the second-level model was used to adjust the beta coefficient for each pesticide exposure according to its "prior distribution": the beta for each pesticide was adjusted in the direction of its prior mean, or expected value (from the second-level model), with the magnitude of shrinkage dependent on the precision of its likelihood estimate (from the first-level model) and a prespecified variance of the assumed normal distribution for that parameter. SAS Proc GLIMMIX was used to run the hierarchical models. This program can be adapted for the purpose of hierarchical modelling of multiple exposures, and uses a penalised likelihood function to fit the first-and second-level models by an iterative procedure. \({ }^{23}\)

Information on pesticides that would give a priori reason to believe that the true effect parameters for certain specific pesticides would be more or less similar to each other was constructed into a matrix for use in the second level of the hiesarchical regression analysis (table 1). The second-level, or prior covariates, were factors hypothesised to determine the magnitude of, or explain some of the variability between, the individual true effects. The covariates were indicators of pesticide class, structure, and toxicity, used to define categories of pesticide effects which would be regarded as "exchangeable", or as draws from a common prior distribution. " \({ }^{22}\) These "categories of exchangeability" included the groupings: insecticides (versus herbicides), organochlorines, organophosphates, carbamates, phenoxyacetic acids, triazines, amides, and benzoic acids (see table 1) In addition to categories of exchangeability, we defined a prior covariate incorporating prior evidence for carcinogenicity of the pesticide. Based on data from the United Siates Environmental Protection Agency's (US EPA) Integrated Risk Information System (http:// wwwepagov/iris/) and the International Agency for Research on Cancer's Program on the Evaluation of Cancer Risks to Humans (http://monographs.iarc.fr/). carcinogenic probability for any cancer (not limited to NHL), was defined as a continuous variable ranging between 0 and 1 (algorithm for variable definition is included as footnote to table 1).

Another component of each pesticide effect's orior distribution was a value for the residual variance, which captures effects above and beyond those accounted for by the "group" effects of the second-level covariates, and determines the degree of shrinkage of a likelihood estimate toward its prior mean. \({ }^{122}\) This residual variance was defined as a value relating to a range of probable values for the true effect parameter. We assumed, with \(95 \%\) certainty, that the rate ratio for each pesticide, after adjusting for the second-level covariates, would fall within a 10 -fold range around its prior mean (for example. between 0.5 and 5.0 , by defining the prior residual variance as 0.35 (note: for a 10 -fold range, residual variance \(=\{(\ln \langle 10)\rangle\) \(3.92)^{2} \cong 0.35\)), assuming normality).

Because our prior covariates were crudely defined, and because there is little information on factors that would be expected to affect the cuagnitude of the effect of pesticides on NHL incidence, we also performed a hierarchical regression analysis of multiple pesticides using an intercept-only model, in which all pesticide effects were assumed to arise from 3 common prior distribution, with a prior residual variance of 0.35. In other words, this modelling strategy assumed that there was no a priori reason to believe that any specific pesticide was more likely to be associated with NHL incidence than any other pesticide in the model.

\section*{Number of pesticides used}

We conducted analyses to estimate NHL incidence associated with the number of pesticides used, out of the total number of

Table 1 Secondlevel matrix for hierarchical regression analysis, showing values of "prior covariates" for each pesticide of interest \({ }^{\star} \dagger\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Pesticides & Insecticides & Organochlorines & Organophospates & Carbamoles & Phenoxy-acetic acids & Triozines & Anides & Benzoic acids & Carcinogenic probability \\
\hline \multicolumn{10}{|l|}{Insecticides} \\
\hline Aldrin & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0.6 \\
\hline Butencarb & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0.3 \\
\hline Carbary & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0.3 \\
\hline Carboturan & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0.3 \\
\hline Chlordane & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0.8 \\
\hline Copper acetoarsenite* & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1.0 \\
\hline Coumophos & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0.3 \\
\hline DDT & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0.8 \\
\hline Diazinon & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0.3 \\
\hline Dichlorvos & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0.8 \\
\hline Dieldrin & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0.6 \\
\hline Dimethoate & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0.3 \\
\hline Ethoprop & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0.3 \\
\hline fomphur & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0.3 \\
\hline Fly, lice, tick spray & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0.3 \\
\hline fonofos & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0.3 \\
\hline Hoptachlor & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0.8 \\
\hline Leod arsenate* & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1.0 \\
\hline Lindone & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0.3 \\
\hline Malathion & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0.3 \\
\hline Mathoxychlor & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0.3 \\
\hline Nicoline & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0.3 \\
\hline Phorate & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0.3 \\
\hline Pyrethrins & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0.3 \\
\hline Roterione & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0.3 \\
\hline Tetrachlorvinphos & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0.3 \\
\hline Toxaphene & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0.8 \\
\hline Terbufos & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0.3 \\
\hline \multicolumn{10}{|l|}{Herbicides} \\
\hline Alochlor & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0.3 \\
\hline Atrazine & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0.3 \\
\hline Bentazon & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0.1 , \\
\hline Butylate & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0.3 \\
\hline Chloramben & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0.3 \\
\hline Cyanazine & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0.3 \\
\hline 2,4-D & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0.5 \\
\hline Dicambo & 0 & 0 & 0 & 0 & 0 & 0 & 0 & : & 0.3 \\
\hline EPTC & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0.3 : \\
\hline Glyphosate & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0.3 \\
\hline Linuron & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0.5 \\
\hline MCPA & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0.3 \\
\hline Matolachior & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0.5 \\
\hline Matribuzin & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0.3 \\
\hline Paraqual & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0.5 \\
\hline Propachlor & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0.3 \\
\hline Sodium chlorate & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0.3 \\
\hline 2,4,5-7 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0.5 \\
\hline Trifuralin & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0.5 \\
\hline \multicolumn{10}{|l|}{*Carcinogenic probability value is created by combining the clossifications from the IARC Monographs Programme on the Evaluation of Carcinogenic Risks to Humans and the US EPA Integrated Risk Information System. Assignment of carcinogenic probability by order of priority: \(1.0=\) classified as a humon carcinogen on either assessment; 0.9 - probable humon carcinogen in both assessment; \(0.8=\) probable human corcinogen in one assessment and possible humon carcinogen in other assessment; \(0.6=\) probable human carcinogen in one assessment ond vaclassifiable in the other; \(0.5=\) pessible human carcinogen in both assessments, or possible human carcinogen in one assessment and not assessed by the other group; \(0.3=\) not assessed by IARC or US EPA IRIS, or deemed unclassifiable in one or both assessments; \(0.1=\) evidence for noncorcinogenicity in aither assessment. \(\dagger\) Used the IARC assessment for arsenic and orsenic compounds.} \\
\hline
\end{tabular}

86 pesticides reported in all three of the pooled studies (many of these 86 pesticides were not included in the multivariable analysis of the set of 47 specific pesticides because of their infrequent use). The number of pesticides was coded using indicator variables (l pesticide, 2-4 pesticides, 5 or more pesticides). Similar analyses were conducted for the number of insecticides and herbicides used. For those pesticides showing positive associations with NHL in the hierarchical regression analysis of 47 specific pesticides (nine pesticides total, see table 3), we conducted a similar analysis of the number of pesticides used, restricted to these "potentially carcinogenic" pesticides. In addition to logistic regression analyses, we evaluated the effect of the number of pesticides used by hierarchical regression with an intercept-only model, in which all pesticide effects (those indicating number of pesticides, as
well as the 47 specific pesticides) were assumed to have been sampled from a common prior distribution with an unknown mean and a residual variance of 0.35 .

\section*{Combined pesticide exposures}

We explored the risk associated with combined pesticide exposures, defined as two pesticides used by the same person, but not necessarily at the same time. For any two pesticides for which more than 75 persons reported use of both (representing the \(5 \%\) most common of all possible combinations of the 47 pesticides), and at least 20 persons reported use of each of the two individual pesticides not in combination, we evaluated potential superadditivity of pesticide effects on NHL (the appendix contains a list of the pesticide combinations evaluated). Individual and joint effects were first estimated

Table 2 Characteristics of subjects in the study population* and those subjects included in analyses of multiple pesticidest
\(\left.\begin{array}{lllllllll} & \text { Pooled study }\end{array}\right)\)
*Pocled study poputation limited to males and following exclusions.
\(\dagger\) Any abservation with a missing value for any of the 47 muttiple pesticides wos not included in analyses
\(\ddagger\) Odds ratios (OR) and \(95 \%\) confidence timits (Cl).
§Odds ratios for the matching foctors ore not interpretable for their relation with NHL, but are presented for comparison to odds ratios for the subgroup included in onalyses of muttiple pesticides.
1GED, General Equivalency Diploma.
using logistic regression in models including variables for the joint exposure and two individual exposures, the 45 other specific pesticides, age, and study site. Where the OR for the joint effect was 1.3 or higher, positive interaction on the additive scale was evaluated using the interaction contrast ratio (ICR \(=\mathrm{OR}_{\mathrm{mp}}\) \(\qquad\) - \(\mathrm{OR}_{\mathrm{m}}\) \(\qquad\) , \(-\mathrm{OR}_{\text {in }}\) \(\qquad\) © \(\left.{ }^{2}+1\right)\). ICR values above 0.5 were considered indicative of superadditivity, and these pesticide combinations were further analysed using hierarchical regression with an intercept-only model. in which all pesticide effects (those indicating joint and individual exposures to the two pesticides, as well as the other 45 specific pesticides) were assumed to have been sampled from a common prior distribution with an unknown mean and a residual variance of 0.35 .

\section*{RESULTS}

Table 2 shows characteristics of men in the pooled studies. In the control population, which was representative of this part of the midwestern United States, approximately \(70 \%\) of the men had lived or worked on a farm as an adult. There was a \(10 \%\) increased NHL incidence associated with living or working on a farm as an adult; this increase is similar in magnitude to meta-analyses of farming and NHL mortality and morbidity. " "ases were slightly more likely than controls to have been directly interviewed, to be between the ages of 40 and 79, and they were more than twice as likely to have a first degree relative with haematopoietic cancer. The subset of subjeats included in analyses of multiple pesticides was less likely than those in the overall study population to be from the Kansas or Nebraska studies, to have lived or worked on a farm as an adult, or to have had a proxy respondent, and they were slightly more likely to be more highly educated; however, the
relation of these factors with case status did not diffebetween the overall study and the subset included in the analyses of multiple pesticides.
Use of most specific pesticides was more frequent among cases than contiols; however, most of the odds ratios were not increased in the multivariable models (table 3), primariiy uluc to adjustment for study site, since both the frequency of pesticide use and case-to-control ratios differed by study site. The results of the hierarchical regression analysis of 47 pesticides were generally similar to, but had somewhat more narrow confidence intervals than results from the logistic regression model. Only a few pesticides were associated with a possible increased NHL incidence (judged by \(O R \geqslant 1.3\) and lower confidence limit \(\geqslant 0.8\)), including the organophosphate (\(O P\)) insecticides coumaphos, fonofos, and diazinon, the organochlorine insecticides chlordane and dieldrin, the insecticide copper acetoarsenite, and the herbicides atrazine, glyphosate. and sodium chlorate. There was also a significantly decreased risk associated with aldrin exposure. These suggested effects occurred in both the logistic and hierarchical regression analyses. For pesticides that had wider confidence intervals in the logistic regression model. odds ratios from the hierarchical model were generally closer to the null value, based on a priori assumptions about the probable magnitudes of effect. For example, we assumed that the effect of sodium chlorate would be similar to that of other herbicides and other pesticides for which there was a low carcinogenic probability, and that after accounting for these prior covariates, the rate ratio would likely fall within a 10 -fold range around its expected value. Based on these assumptions, a fourfold risk associated with the use of sodium chlorate in the logistic regression analysis was adjusted to a 1.8 -fold risk using hierarchical regression. Although unstable estimates were adjusted, results of the

Table 3 Effect estimates for use of specific pesticides and NHL incidence, adjusting for use of other pesticides*
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Pesticides} & \multicolumn{2}{|l|}{Exposed [n (\%)]} & \multirow[b]{2}{*}{Logistic regression OR \((95 \% \mathrm{Cl}) \dagger\)} & \multirow[b]{2}{*}{Hierarchical regression OR (\(95 \% \mathrm{CL}\))} \\
\hline & \[
\begin{aligned}
& \text { Cases } \\
& (n=650)
\end{aligned}
\] & \[
\begin{aligned}
& \text { Controls } \\
& (n=1933)
\end{aligned}
\] & & \\
\hline \multicolumn{5}{|l|}{Insecticides} \\
\hline Aldrin & 47 (7.2\%) & 115 (5.9\%) & 0.510 .3 ro 0.91 & 0.6 (0.4 to 1.0\()\) \\
\hline Bufencarb \(\ddagger\) & 6 (0.9\%) & 12 (0.6\%) & 1.110 .3 to 3.7 & 1.0 (0.4 to 2.3) \\
\hline Carbary & 30 (4.6\%) & 57 (2.9\%) & 1.0 (0.5 to 1.9\()\) & 1.1 (0.6 to 1.9) \\
\hline Carboturon & 41 (6.3\%) & 96 (5.0\%) & 0.9 (0.5 to 1.6\()\) & 1.0 10.6 to 1.71 \\
\hline Chlordane & 39 (6.0\%) & 65 (3.4\%) & 1.5 (0.8 to 2.6\()\) & 1.3 (0.8 to 2.1) \\
\hline Copper ocetoorsenite & 41 (6.3\%) & 68 (3.5\%) & 1.4 (0.9 to 2.3) & 1.4 (0.9 to 2.1) \\
\hline Coumophos & 15 (2.3\%) & 22 (1.1\%) & 2.4 (1.0 to 5.8) & 1.7 (0.9 to 3.3) \\
\hline DOT & 98 (15.1\%) & 226 (11.7\%) & 1.0 (0.7 to 1.3) & 1.0 (0.7 to 1.3) \\
\hline Diazinon & 40 (6.1\%) & 62 (3.2\%) & 1.9 (1.1 03.6) & 1.7 (1.0 \% 2.8) \\
\hline Dichlorvos & 16 (2.5\%) & 37 (1.9\%) & 0.9 (0.4 to 2.01 & 0.9 (0.5 10 1.7\()\) \\
\hline Dieldrin & 21 (3.2\%) & 39 (2.0\%) & 1.8 (0.8 0 ¢ 3.9\()\) & \(1.4(0.8 \div 2.6)\) \\
\hline Dimethoate \(\ddagger\) & 5 (0.8\%) & 11 (0.6\%) & 1.2 (0.3 to 5.3) & \(1.2(0.5 \pm 2.8)\) \\
\hline Ethoprop \(\ddagger\) & 4 (0.6\%) & 14 (0.7\%) & 0.7 (0.2 to 2.9) & 0.9 (0.4 to 2.1) \\
\hline Fomphur & 12 (1.8\%) & 34 (1.8\%) & 0.710 .3 to 1.7\()\) & 0.8 (0.4 to 1.5\()\) \\
\hline Fly, lice, of tick spray & 162 (24.9\%) & 408 (21.1\%) & 0.9 \{0.7 to 1.1) & 0.9 (0.7 to 1.1) \\
\hline Fonofos & 28 (4.3\%) & 44 (2.3\%) & \(1.8 \quad 10.9\) to 3.5) & 1.5 (0.9 to 2.7) \\
\hline Heprochlor & 28 (4.3\%) & 53 (2.7\%) & 1.1 (0.6 to 2.4) & 1.1 (0.6 10 2.0) \\
\hline leod orsenate & 9 (1.4\%) & 25 (1.3\%) & 0.5 (0.2 to 1.2) & 0.6 (0.3 to 1.3) \\
\hline lindane & 59 (9.1\%) & 109 (5.6\%) & 1.2 (0.7 to 2.0) & 1.2 (0.8 5 1.91 \\
\hline Malathion & 53 (8.1\%) & 100 (5.2\%) & 1.1 (0.6 to 1.8) & 1.1 (0.7 to 1.7) \\
\hline Methoxychlor & 9 (1.4\%) & 20(1.0\%) & 0.8 (0.3 to 2.1) & 0.9 (0.4 t 1.9\()\) \\
\hline Nicotine & 24 (3.7\%) & 50 (2.6\%) & 0.9 (0.5 to 1.6\()\) & 1.0 [0.6 to 1.6] \\
\hline Phorate & 28 (4.3\%) & 67 (3.5\%) & 0.8 (0.4 to 1.6) & 0.9 (0.5 to 1.5) \\
\hline Pyrethrins \(\ddagger\) & 6 (0.9\%) & 12 (0.6\%) & 1.0 (0.3 to 3.2) & 1.0 (0.4 to 2.3) \\
\hline Rotenone & 10 (1.5\%) & 26 (1.4\%) & 0.7 (0.3 to 1.7) & 0.8 (0.4 to 1.5\()\) \\
\hline Tetrachlorvinphos \(\ddagger\) & 3 (0.5\%) & 11 (0.6\%) & 0.4 (0.1 to 1.8) & 0.8 (0.3 to 1.9) \\
\hline Toxaphene & 17 (2.6\%) & 34 (1.8\%) & 1.1 (0.5 to 2.4) & 1.1 (0.6 to 2.0) \\
\hline Terbutos & 21 (3.2\%) & 50 (2.6\%) & 0.8 (0.4 to 1.8) & 0.8 (0.5 to 1.6\()\) \\
\hline \multicolumn{5}{|l|}{Herbicides} \\
\hline Alochlor & 68 (10.5\%) & 152 (7.9\%) & 1.1 (0.7 to 1.8\()\) & 1.0 (0.6 to 1.6) \\
\hline Atrazine & 90 (13.8\%) & 185 (9.6\%) & 1.6 (1.1 \% 2.5) & 1.5 (1.0 \% 2.2) \\
\hline Bentazon & 22 (3.4\%) & 58 (3.0\%) & 0.7 (0.3 to 1.5\()\) & 0.8 [0.4 to 1.4\(\}\) \\
\hline Butylate & 28 (4.3\%) & 56 (2.9\%) & 1.2 (0.6 to 2.3) & 1.2 (0.7 to 2.0) \\
\hline Chioramben & 34 (5.2\%) & 81 (4.2\%) & 0.9 (0.5 to 1.6\()\) & 0.9 (0.5 \% 1.5) \\
\hline Cyanazine & 37 (5.7\%) & 96 (5.0\%) & 0.6 [0.3 10 \(1.0 \mid\) & 0.6 (0.4 to 1 1] \\
\hline 2,4D & 123 (18.9\%) & 314 (16.2\%) & 0.8 (0.6 to 1.1) & 0.9 (0.6 to 1.2) \\
\hline Dicambo & 39 (6.0\%) & 79 (4.1\%) & 1.2 (0.6 to 2.3) & 1.2 (0.7 to 2.1) \\
\hline EPTC + profeciont & 13 (2.0\%) & 29 (1.5\%) & 1.2 (0.5 to 3.1) & 1.1 (0.5 to 2.3) \\
\hline Glyphosate & 36 (5.5\%) & 61 (3.2\%) & 2.1 (1.1 to 4.0) & 1.6 (0.9 to 2.8) \\
\hline Linuron & 5 (0.8\%) & 22 (1.1\%) & 0.3 (0.1 to 1.2) & 0.5 (0.2 to 1.2) \\
\hline MCPA & 8 (1.2\%) & 16 (0.8\%) & 1.0 (0.4 to 2.6\()\) & 0.9 (0.4 to 2.0) \\
\hline Meolachlor & 13 (2.0\%) & 37 (1.9\%) & 0.7 (0.3 to 1.6\()\) & 0.7 (0.4 to 1.5) \\
\hline Merribuzen & 20 (3.1\%) & 53 (2.7\%) & 0.8 (0.4 to 1.7 & 0.8 (0.4 10 1.5) \\
\hline Paraquor \(\ddagger\) & 2 (0.3\%) & 15 (0.8\%) & 0.1 (0.02 to 0.7) & 0.5 (0.2 to 1.2) \\
\hline Propochlor & 20 (3.1\%) & 50 (2.6\%) & 1.0 (0.5 2.2 .0\()\) & 1.0 (0.6 to 1.9) \\
\hline Sodium chlorate \(\ddagger\) & 8(1.2\%) & \(710.4 \%\) & 4.1 (1.3 to 13.6) & 1.8 (0.810 4.1) \\
\hline 2,4,5-T & 25 (3.8\%) & 63 (3.3\%) & 1.0 (0.5 to 1.9) & 0.9 (0.5 to 1.6) \\
\hline Triflurolin & 52 (8.0\%) & 120 (6.2\%) & 0.9 (0.5 to 1.6) & \(0.9(0.5 * 1.4)\) \\
\hline
\end{tabular}
*Each estimate is adjusted for use of all other pesticides listed in table 3, age, and study site.
\(\dagger\) Odds ratias (OR) and \(95 \%\) confidance limits \(\{C!\).
\(\ddagger\) Criteria for inclusion in the models wos o pesticide use frequency of \(\geqslant 20\); however, some pesticide use
frequencies are <20 in the multivariable models since observations with missing values were dropped.
hierarchical model including prior covariates and those from the hierarchical intercept-only model were virtually identical (results for intercept-only model not shown), indicating that the prior covariates representing pesticide category and carcinogenic probability were not important determinants of the variability between the observed effects, and that adjustment of estimates primarily occurred because of the a priori restriction on their variance. Indeed, a linear regression analysis of the 47 logistic regression beta coefficients for the pesticides regressed on the prior covariates found no statistically significant associations (at a significance level of \(p<0.05\); results not shown).
Among the farmers who used pesticides, the number of total pesticides ever used ranged between 1 and 32, but approximately \(50 \%\) of farmers reported using only one or two pesticides. There was no association between NHL incidence
and either the total number of pesticides or herbicides used (see table 4). There was a \(40 \%\) increased incidence associated with the use of five or more insecticides; however, there was no apparent exposure-response trend. In an analysis of the number of "potentially carcinogenic" pesticides, NHL incidence increased by the number of pesticides used by the subject. Subjects who reported using any five or more "potentially carcinogenic" pesticides were twice as likely to be NHL cases than controls, compared to those using no pesticides. The results for "potentially carcinogenic" pesticides were highly sensitive to removal of certain pesticides from the count, including dieldrin, atrazine, or glyphosate For example. removal of glyphosate from the count resulted in a lack of trend for increasing number of "potentially carcinogenic" pesticides (1 pesticide: \(\mathrm{OR}=1.2 ; 2-4\) pesticides: \(\mathrm{OR}=1.2 ; \geqslant 5\) pesticides: \(\mathrm{OR}=1.1\)).

Table 4 Effect of number of pesticides used on NHL incidence*
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Number of pesticides used} & \multicolumn{2}{|l|}{Exposed [n (\%)]} & \multirow[b]{2}{*}{Logistic regression OR (95\% CL)} & \multirow[b]{2}{*}{Hierorchical regression OR (\(95 \% \mathrm{CL}\))} \\
\hline & Coses
\[
(n=650)
\] & Controls
\[
(n=1933)
\] & & \\
\hline \multicolumn{5}{|l|}{Any pesticide} \\
\hline 0 & 370 & 1252 & 1.0 & 1.0 \\
\hline 1 & 89 (13.7\%) & 230 (11.9\%) & 1.2 (0.8 to 1.8\()\) & 1.1 (0.9 to 1.7) \\
\hline 2-4 & 87 (13.4\%) & 221 (1).4\% & 1.0 (0.6 to 1.6\()\) & 1.0 (0.7 to 1.5\()\) \\
\hline \(\geqslant 5\) & 104 (16.0\%) & 230 (11.9\%) & 0.8 (0.4 to 1.9) & 1.0 (0.5 to 1.8\()\) \\
\hline \multicolumn{5}{|l|}{Any insecticide} \\
\hline 0 & 382 & 1292 & 1.0 & 1.0 \\
\hline 1 & 114 (17.5\%) & 281 (14.5\%] & 1.3 (0.9 to 1.9\()\) & 1.2 (0.9 to 1.7) \\
\hline 2-4 & 86 (13.2\%) & 237 (12.3\%) & 1.0 [0.5 to 1.81 & \(0.9(0.6\) to 1.4) \\
\hline \(\geq 5\) & 68 (10.5\%) & 123 (6.4\%) & 1.9 (0.6 to 5.7\()\) & 1.4 (0.7 to 2.9) \\
\hline \multicolumn{5}{|l|}{Any herbicide 1.0} \\
\hline 0 & 489 & 1544 & 1.0 & 1.0 \\
\hline 1 & 50 (7.7\%) & 132 (6.8\%) & 1.0 (0.6 to 1.9) & 1.1 (0.7 01.7 \\
\hline 2-4 & 52 (8.0\%) & 132 (6.8\%) & 0.8 (0.4 to 1.9) & 1.0 (0.6 to 1.6) \\
\hline \(\geq 5\) & 59 (9.1\%) & 125 (6.5\%) & 0.8 (0.2 to 3.3) & 1.0 (0.5 t 2.2) \\
\hline \multicolumn{5}{|l|}{"Potentiolly carcinogenic" pesticides} \\
\hline 0 & 496 & 1632 & 1.0 & 1.0 \\
\hline 1 & 74 (11.4\%) & 168 (8.7\%) & 1.6 (0.8 to 3.1) & 1.1 (0.8 to 1.7) \\
\hline 2-4 & 68 (10.5\%) & 123 (6.4\%) & 2.7 (0.7 เ 10.8) & 1.3 (0.7 ¢ 2.3) \\
\hline \(\geqslant 5\) & 12 (1.8\%) & 10 (0.5\%) & 25.9 (1.5 to 450.2) & 2.0 (0.8 to 5.2\()\) \\
\hline
\end{tabular}
*Each estimare is adiusted for use of all pesticides listed in mble 3, oge, and snudy site. tOdds ratios (OR) and \(95 \%\) confidence limits (CL).

The analysis of 48 pesticide combinations in relation to NHL incidence revealed few joint effects of 1.3 or higher that were indicative of superadditivity (table 5). Combined exposures to carbofuran and atrazine, diazinon and atrazine, and alachlor and atrazine had estimated joint effects that were more than additive (\(\mathrm{ICR} \geqslant 0.5\)), even following shrinkage in hierarchical regression analyses. Other joint pesticide effects which seemed indicative of superadditivity in results from logistic regression analyses, such as that for atrazine and dicamba,
were probably misleading due to imprecision of estimates; these results did not hold up following shrinkage in hierarchical regression analyses, according to our prior distribution of complete exchangeability.

\section*{DISCUSSION}

Incidence and mortality rates for NHL have been generally increasing in the United States and in most industrialised countries for several decades, with an \(85-100 \%\) increase in

Table 5 Estimated individual and joint effects of pesticide combinations on NHL incidence* \(\dagger\)
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Individual and joint pesticide exposures} & \multicolumn{2}{|l|}{Exposed [n (\%)]} & \multirow[b]{2}{*}{Logisfic regression OR \(195 \%\) CL} & \multirow[b]{2}{*}{Hierorchicel regrestion OR P5/ C4} \\
\hline & \[
\begin{aligned}
& \text { Cases } \\
& (n=650)
\end{aligned}
\] & Conirols
\[
(n=1933)
\] & & \\
\hline \multicolumn{5}{|l|}{Chlordone ond DDT} \\
\hline Neither & 543 & 1687 & 1.0 & 1.0 \\
\hline Chlordane only & \(9(1.4 \%)\) & 20 (1.0\%) & 1.1 (0.4 10 2.7 & 1.0 (0.5 to 1.9) \\
\hline DDT only & 68 (10.5\%) & 181 (9.4\%) & 0.9 (0.6 to 1.3) & 0.9 (0.6 \% 1.2) \\
\hline Both & 30 (4.6\%) & 45 (2.3\%) & 1.7 (0.7 to 3.2) & 1.3 (0.8 to 2.3) \\
\hline \multicolumn{5}{|l|}{Carbofuran and atrazine} \\
\hline Neither & 557 & 1728 & 1.0 & 1.0 \\
\hline Carboturan onvy & \(3(0.5 \%\)) & 20 \(10.0 \%\) & \(0.2(0.1 \sim 1.1)\) & 0.6 (0.3 to 1.3) \\
\hline Atrazine only & 52 (8.0\%) & 109 (5.6\%) & 1.4 (0.9 to 2.2) & 1.3 (0.9 to 1.9) \\
\hline Both & 38 (5.9\%) & 76 (3.9\%) & 1.6 (0.8 10 3.3) & 1.5 (0.9 \% 2.7) \\
\hline \multicolumn{5}{|l|}{Diazinon and atrazine} \\
\hline Neither & 551 & 1730 & 1.0 & 1.0 \\
\hline Diazinon only & 9 (1.4\%) & 18 (0.9\%) & 1.2 (0.5 to 3.1) & 1.1 (0.5 to 2.3) \\
\hline Atrazine only & 59 (9.1\%) & 141 (7.3\%) & 1.5 (1.0 to 2.3) & 1.3 (0.9 to 1.91 \\
\hline Both & 31 (4.8\%) & 44 (2.3\%) & 3.9 (1.7 to 8.8) & 2.3 (1.2 ¢ 4.2) \\
\hline \multicolumn{5}{|l|}{Alachlor and atrazine} \\
\hline Neither & 545 & 1695 & 1.0 & 1.0 \\
\hline Alochlor only & 15 (2.3\%) & 53 (2.7\%) & 0.7 (0.3 to 1.3) & 0.7 (0.4 to 1.3) \\
\hline Atrazine only & 37 (5.7\%) & 86 (4.5\%) & 1.3 (0.8 to 2.1) & 1.2 (0.8 to 1.8\()\) \\
\hline Both & 53 (8.2\%) & 99 (5.1\%) & 2.1 (1.1 to 3.9) & 1.6 (1.0 to 2.7) \\
\hline \multicolumn{5}{|l|}{Atrazine and dicamba} \\
\hline Neither & 552 & 1729 & 1.0 & 1.0 \\
\hline Atrazine only & 59 (9.1\%) & 125 (6.5\%) & 1.5 (1.0 to 2.4) & 1.4 (0.9 to 2.0) \\
\hline Dicamba only & 8 (1.2\%) & 19(1.0\%) & 0.9 (0.3 to 2.6) & 1.0 (0.5 to 2.0) \\
\hline Both & 31 (4.8\%) & \(60(3.1 \%)\) & 2.1 (1.0 to 4.7) & 1.6 (0.9 to 2.9\()\) \\
\hline
\end{tabular}
*Effects of combined pesticide exposures were estimated in models including terms for the joint exposure, two individual exposures, the use of each other pesticide listed in toble 2, oge, and study site.
\(\dagger\) Pesticide combinotions considered are listod in the appendix.
\(\ddagger\) Odds rotios (OR) and \(95 \%\) confidence limits (Cl).
mortality among whites and non-whites from the late 1940 s to the late \(1980 \mathrm{~s},^{26}\) a time period relevant for this study. This increase may be partially attributed to improved diagnosis and in later years to AIDS related lymphomas, but cannot be completely explained by these factors." Environmental factors such as pesticides could play a role in this persistent increase, since their use became more widespread during this time period. \({ }^{2+30}\) Several aetiological mechanisms of pesticides in relation to NHL have been proposed, including genotoxicity and immunotoxicity, \({ }^{3132}\) increased cell proliferation," and chromosomal aberrations. \({ }^{14}\) In our analysis of multiple pesticides in farming, we found only a small number of the pesticides to be risk factors for NHL, with the highest increased risks among subjects exposed to five or more of these "potentially carcinogenic" pesticides, or those with certain combined pesticide exposures.

The large number of exposed subjects in this pooled analy. sis allowed adjustment for the use of other pesticides, and hierarchical regression modelling resulted in estimates that were in some instances more stable than those from logistic regression models. However, the effect estimates from the logistic and hierarchical analyses were quite similar overall, with a few standout exceptions. The hierarchical results are more conservative than those from the logistic regressions, given the uninformed nature of the prior distributions we specified, particularly in analyses of the number of pesticides used and combined pesticide exposures. For example, in the hierarchical regression analysis of the number of pesticides used, we assumed that the use of any five or more pesticides was no more likely to be associated with NHL than use of any one pesticide. A less conservative prior distribution could have been specified in which a higher probability would be placed on a positive association for the greater number of pesticides used. However, the uninformed nature of these priors seemed appropriate in a largely exploratory analysis of multiple exposures for which there is little prior knowledge about how pesticide exposures interact in relation to the risk of NHL. Both analyses showed increasing odds ratios with the number of "potentially carcinogenic" pesticides used, but the relative risks in the upper category were substantially different-25.9 for the logistic regression and 2.0 for the hierarchical analysis-probably indicating inappropriate use of logistic regression for these sparse data.

Adjustment for multiple pesticides suggested that there were few instances of substantial confounding of pesticide effects by other pesticides. Nevertheless, some previous findings in our data appear to be due to confounding by correlated pesticide exposures. In particular, a previously reported positive association for carbaryl \({ }^{13}\) was not replicated in the adjusted analyses. Further analysis here revealed that carbaryl and diazinon use were highly associated (\(\mathrm{p}<0.00 \mathrm{I}\)), and previously reported associations of different carbaryl measures with NHL were eliminated by adjustment for diazinon, including carbaryl use, personal handling of carbaryl, and use longer than 10 years. In the previous analysis, estimates were adjusted for groups of pesticides, including a group for organophosphate insecticides, \({ }^{33}\) but adjustment for specific pesticides here gave different results. Similarly, previous observations of increased NHL risk associated with use of the OP insecticides dimethoate and tetrachlorvinphos \({ }^{12}\) were negligible on inclusion of other OP insecticides in the model. These findings underscore the importance of considering correlated pesticide exposures.

Our observation of increased risk associated with the use of certain OP insecticides, including coumaphos, diazinon, and fonofos, is consistent with previous analyses of the pooled data, \({ }^{1230}\) and also corroborates findings of other studies. \({ }^{8}{ }^{4} \mathrm{OP}\) insecticides are known to cause cytogenetic damage, and could thereby contribute to NHL aetiology." There are data from in vitro, animal, and human studies that show effects of several OP insecticides on the immune system, \({ }^{36-40}\) indicating
another potential mechanism. OP compounds may impair immune function through pathways involving cholinergic stimulation, \({ }^{41}\) or inhibition of serine esterases found in monocytes, natural killer cells, and cytotoxic T lymphocytes, \({ }^{42}\) but it is unknown whether such immune effects might be chemical specific or related to general OP toxicity. Our data do not indicate an aetiological mechanism for NHL common to all OP insecticides, since increased NHL incidence was associated only with certain OPs evaluated.

We observed a possible effect of the organochlorine insecticides chlordane and dieldrin. There is some evidence that chlordane is immunotoxic, causing decreased lymphocyte function in vitro. \({ }^{43}\) The concentration of chlordane in adipose tissue was higher among NHL cases than controls in a small case-control study in Sweden, \({ }^{4}\) but a larger study in the United States found no such association. \({ }^{45}\) Although these chemicals have been banned in the United States, their continued use in some developing countries, and bioaccumulation of their chemical residues in the food chain, \({ }^{46}\) justify further research on health effects.

Use of the herbicide atrazine was associated with increased risk of NHL. Increased risk was observed in each of the three pooled studies separately, but a previous analysis of the Nebraska study data found that the risk was diminished on adjustment for use of OP insecticides and 2,4-D. \({ }^{20}\) There have been few other epidemiological studies of atrazine in relation to NHL. In a cohort of triazine herbicide manufacturing workers, there was an excess number of deaths from NHL (\(n=3\)) among a group of men with definite or probable exposure; however, some of the cases worked in triazine related jobs for short time periods, thus clouding interpretation." A recent NHL study where cases were further distinguished by presence or absence of the \(t(14 ; 18)\) chromosomal translocation found that the risk of NHL associated with atrazine use was solely observed among \(t(14 ; 18)\) positive cases, suggesting a cyrogenetic mechanism. \({ }^{\text {i4 }}\) However, there is only very limited evidence for genotoxicity of atrazine, although there are no studies in humans. \({ }^{44}\) A small number of studies of atrazine on immune function in rodents and in vitro suggest a decreased lymphocyte count and cytokine production following exposure; however, these effects were not always dose dependent or statistically significant. \({ }^{34848}\) In our data, there was an indication of superadditive effects of atrazine in combination with cdrbofiran, diazinon, or alachlor. This is a factor to consider in future studies of this widely used pesticide.

Glyphosate, commercially sold as Roundup, is a commonly used herbicide in the United States, both on crops and on non-cropland areas. \({ }^{50}\) An association of glyphosate with NHL was observed in another case-control study, but the estimate was based on only four exposed cases. \({ }^{5 i}\) A recent study across a large region of Canada found an increased risk of NHL associated with glyphosate use that increased by the number of days used per year. \({ }^{8}\) These few suggestive findings provide some impetus for further investigation into the potential health effects of glyphosate, even though one review concluded that the active ingredient is non-carcinogenic and non-genotoxic. \({ }^{\text {so }}\)

Much attention in NHL research has focused on the herbicide 2,4 -D as a potential risk factor, and several studies have observed positive associations with 2,4-D exposure. \({ }^{689}\) Whereas an indicated effect of \(2,4-\mathrm{D}\) exposure on NHI was reported in NCI's Nebraska and Kansas studies,s this analysis of the pooled data found no association with having ever used \(2,4-\mathrm{D}\). The null association does not result from adjustment for other pesticides, missing data, or from the hierarchical regression modelling approach, but is rather due to pooling data from the Iowa and Minnesota study, in which no association of \(2,4-\mathrm{D}\) with NHL incidence was observed, with data from the Nebraska and Kansas studies. The literature on the relation between \(2,4-\) D and NHL is not consistent. \({ }^{1252}\) Some recent studies have reported excess risk among
manufacturers" and farmers, \({ }^{\text {s }}\) while others have not. \({ }^{51}\) The study in Nebraska,' however, observed that NHL risk increased by number of days per year of 2,4-D use, which we were unable to duplicate in the pooled analysis because of lack of such data from the other two studies. It is possible that a more refined metric incorporating frequency of use better captures relevant exposure. Some recent studies may shed light on potential mechanisms of 2.4-D in relation to NHL. A study of 10 farmers who applied 2,4-D and MCPA observed a significant reduction of several immune parameters, including CD4, CD8, natural killer cells, and activated CD8 cells (expressing the surface antigen HLA-DR), and a reduction in lymphoproliferative response. \({ }^{4}\) Furthermore, a study of professional 2,4-D applicators in Kansas observed an increase in the lymphocyte replication index following application. \({ }^{33}\)

This pooled study of multiple agricultural pesticides provided an opportunity to estimate the effect of each specific pesticide and certain pesticide combinations on NHL incidence, adjusted for the use of other pesticides. Overall, few pesticides and pesticide combinations were associated with increased NHL risk; this has several implications. First, it is consistent with results from bioassays where only a few of the pesticides tested have caused cancer in laboratory animals." Although epidemiological data on cancer risks from exposure to specific pesticides are scant, it also suggests that while some pesticides may present a cancer risk to humans, many, maybe even most, pesticides do not. Second, the fact that there were few associations suggests that the positive results we observed are not likely to be due to a systematic recall bias for pesticide exposures, or selection bias for the subgroup included in the analyses of multiple pesticides. Third, although some of the positive results could be due to chance, the hierarchical regression analysis placed some restriction on the variance of estimates, theoretically decreasing the chances of obtaining false positive results. On the other hand, it is possible that the assumptions for the hierarchical regression are too restrictive and that this has increased the number of false negatives.

Certain limitations of our data hinder the inferences we can make regarding specific pesticides in their association with NHL. Our exposure metric of having ever used a pesticide is rather crude, offering no distinctions based on use by the number of years or the number of days per year. Further
exploration of observed associations by more refined exposure metrics is warranted. In addition, this analysis provides no information on the timing of pesticide use in relation to disease onset or in conjunction with the timing of other pesticides used. This has particular relevance in our analysis of "combined pesticide exposures", in which two pesticides may or may not have been used at the same time or even during the same year. Lastly, if a study subject had a missing value for any one of the 47 pesticides evaluated, that person was excluded from analyses, resulting in analyses on a limited subset (about \(75 \%\)) of the pooled study population. Although we have no way to evaluate potential bias due to missing data, some assurances are provided by the fact that cases and controls were equally likely to be included in analyses, and that there were similarities between the entire group of study subjects and subjects included our analyses, in terms of NHL status in relation to demographic factors (table 2). If simultaneous analysis of multiple exposures is to become standard, statistical techniques to impute values for subjects with "don't know" or missing responses should be further developed in order to prevent biased results.

Despite limitations of our study, certain inferences are possible. Our results indicate increased NHL incidence by number of pesticides used, only for the subgroup of "potentially carcinogenic" pesticides, suggesting that specific chemicals, not pesticides, insecticides, or herbicides, as groups, should be examined as potential risk factors for NHL. In addition, argument against an analysis approach focused on classes or groups of pesticides is provided by the fact that our prior covariates of pesticide classes and groups in the hierarchical regression model were not important predictors of the magnitude of observed pesticide effects. A chemical specific approach to evaluating pesticides as risk factors for NHL should facilitate interpretation of epidemiological studies for regulatory purposes. However, the importance of additionally considering multiple correlated exposures is clear.

\section*{APPENDIX}

Table Al shows the pesticide combinations considered in analyses of joint and individual exposures.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Table A1 Pesticide combinations considered in analyses of joint and individual exposures} \\
\hline Insecticides & Insecticide ond herbicide. & Herbicides, \({ }^{\text {a }}\), \\
\hline DDT and chlordane DDT and lindane DDT and malathion DDT and Ay, lice, or tick sproy DDT and aldrin lindane and malathion Lindane and aldrin Malathion and aldrin & \begin{tabular}{l}
Aldrin and alachlor \\
Aldrin and atrazine \\
Aldrin and 2,4D \\
Aldrin and tifiuralin Carbofuran and alachlor \\
Carboluran and atrazine \\
Carbofuran and 2,4D \\
Chiordane and 2,4-D \\
DDT and alachlor \\
DDT and atrazine \\
DDT and 2,4D \\
DDT and tifluralin \\
Diazinon and atrozine \\
Fly, lice, or lick spray and alachlor \\
Fly, lice, or lick sproy and atrazine \\
Fly, lice, or tick sproy and 2,40 \\
Fly, lice, or tick sproy and trifluralin \\
lindane and alochlor \\
lindone and atrazine \\
lindane and 2,4-D \\
Lindane and trifluralin \\
Malathion and alachlor \\
Malathion and atrazine \\
Malathion and 2,4D
\end{tabular} & \begin{tabular}{l}
Alachtor and atrazine Alachlor and chloramben Alochlor and cyanazine Alachlor and 2.40 \\
Alachlor and dicamba Alachtor and glyphosate Alochlor ond trifuralin Atrazine and cyanazine Altazine and 2,4-0 Atrazine and dicamba Atrazine and glyphosale Atrozine and tifluralin Chtoramben and trifluralin Cyanozine and 2,4D Cyonazine and trifluralin 2,4D and trifuralin
\end{tabular} \\
\hline
\end{tabular}

\section*{Authors' affiliations}

AJ De Roos, S H Zahm, K P Cantor, A Blair, Division of Cancer
Epidemiotogy and Genetics, National Concer Institute, USA
OD Weisenburger, University of Nebrasko Medical Center, Omaho, NE, USA
FF Holmes, Kansos University Medicol Center, Konsos City, KS, USA L F Burmeister, University of lowa College of Medicine, lowa City, IA USA

\section*{REFERENCES}

1 Blair A. Dosemeci M, Heinemon EF. Concer and other couses of deoth among male and female farmers from twenty three states. Am J ind Med 1993;23:729-42
2 Blair A, Zatm 5H. Agriculturol exposures and cancer. Enviton Health Perspect 1995:103(suppl 8):205-8.
3 Keller-Byrne JE, Khuder SA, Schaub EA, et al. A metananalysis of non-Hodgkin's lymphomo omang formers in the central United States. Am \(J\) Ind Med 1997;31:442-4.
4 Khuder SA, Schaub EA, Keller-Byrne JE. Meranonalyses of non Hodgkin's lymphoma and forming. Scand \(J\) Work Environ Health 1998:24:255-61.
5 Zohm SH, Weisenburger DD, Bobbitt PA, et af. A cosecontrol study of nonthodgkin's lymphoma and the herbicide 2, Adichlorophenoxyacetic acid \((2,40)\) in eastern Nebraska. Epidemiatogy 1990;1:349-50.
6 Hardell L. Eriksson \(M\), Lenner \(P\), et al. Malignant tymphoma and exposure to chemicals, especially argonic solvents, chlorophenols ard phenoxy ocids: a cose-contol study. \(\mathrm{Br} J\) Concer 1981;43:169-76.
7 Hoor SK, Bloir A, Holmes FF, ef ol. Agricultural herbicide use ond risk of lymptroma and sofhissue sarcomo. JAMA, 1980;256:1141-7.
8 McOuffie HH, Pohwa P. Mclaughlin JR, et al. NonHodgkin's tymphama and specific pesticide exposures in men: cross-Canado study of pesticides and health. Cancer Epidemial Biomarkers Prev 2001;10:1155-63.
9 Woods 3S, Polissor 1. Severson RK, et ol. Soft fissue sorcoma and non-Hodgkin's lymphoma in relation to phenoxyherbicide and chlorinated phenol exposure in western Washington. I Nati Cancer Inst 1987.78:899-910.

10 Wigls DT, Samanciw RM, Witkins K, et al. Mortality study of Canadion mole farm operators: non-Hodgkin's hymphomo mortolity and ogricuitural practices in Saskatchewan. J Nat Cancer lnst 1990;82:575-82.
If Contor KP. Blair A, Everett G, ef ol. Pesticides and other agriculfurol risk factors tor non-Hodgkin's lymphoma among men in lowo and Minnesota. Cancer Res 1992;52:2447-55.
12 Woddell BL, Zahm SH, Boris D, ef al. Agricultural use of orgonophosphate pesticides and the risk of nan-Hodgkin's lymphomo amang male famers (United States). Concer Causes Control 2001;12:509-17.
13 Zheng T, Zahm SH, Cantor KP, et of. Agricultural expasure to carbamate pesticides and risk of non-Hodgkin lymphoma. I Occup Environ Med 2001.43:641-9.

14 Schroeder JC, Oishan AF, Boric R, et al. Agricultural risk factors for (14;18) subiypes of nonHodgkin's lymphoma. Epidemiology 2001;12:701-9.
15 Grennland S. Hierarchical regression for epidemiologic analyses of multiple expasures. Environ Health Perspect 1994;102 (supp' 8):33-9
16 Witte JS, Greenland S, Haile RW, et al. Hierarchical regression anolysis applied to a study of multiple diekary exposures and breast cancer. Epidemiology 1994;5:612-21
17 Siemnland K, Broy 1, Greenland S, et al. Empirical Bayes odiustments for multiple results in hypothesis-generating or surveillance shudies. Cancer Epidemiol Biomarkers Prev 2000;9:895-903.
18 Baris D, Zahm SH, Contor KP, et of. Agricultural use of DOT and risk of non-Hodgkin's lymphoma: pooled analysis of three cose-control studies in the United Stotes. Oceup Environ Med 1998,55:522-7
19 Blair A, Contor KP, Zahm SH. Non-Hodgkin's lymphoma and agricultural use of the insecticide lindone. Am J Ind Med 1998;33:82-7.
20 Hoar Zahm SK, Weisenburger DO, Contar KP, ef al. Role of the herbicide atrazine in the development of non-Hodgkin's lymphoma. Scand / Work Environ Health 1993;19:108-14.
21 Greenland S. Intraduction to regression models. In: Rothmon \(K\), Greenland 5, eds. Madern epidemiolagy. Phíladelphia: Lippincont-Roven Publishers, 1998:359-99.
22 Greentand 5 . Principles of multilevel modelling. Int / Epidemiol 2000;29:158-67.
23 Witte JS, Greeniand S, Kim Li, et ol. Multilevel modeling in epidemiology with GUMMIX Epidemiology 2000:11:684-8.
24 Greeniand S, Rathmon KJ. Concepts of interaction. In: Rothmon K, Greentand S, eds. Madern epidemjology. Philadelphia: lippincottraven Publishers, 1998:329-42.
25 Blair A, Zahm \(\$ \mathrm{H}\), Pearce NE, et al. Clues to concer etiology from studies of formers Scand J Work Environ Healh 1992,18:209-15.

26 Devesa SS, Fears T. Nan-Hodgkin's tymphoma time trends: United States and international dato. Cancer Res \(1992 ; 52: 5432 \mathrm{~s}-40 \mathrm{~s}\)
27 Hartge P, Deveso 55 Quantificotion of the impact of known risk factors on time trends in non-Hodgkin's tymphomo incidence. Concer Res 1992;52:5566s-93.
28 Polockdharry CS. The epidemiology of non-Hadgkin's lymphoma: why the increased incidence? Oncology (Huntingt) 1994;8:67-73.
29 Rabkin CS, Devesa SS, Zahm SH, et al increosing incidence of nonHodgkin's lymphoma. Semin Hematol 1993;30:286-96.
30 Wilkinson CF. Introduction and overview. In: Baker SR, Wilkinson CF, eds. The effect of pesticides on human health. Princeton, NU: Princeton Scientific Publishing Co. Inc., 1990.5-33.
31 Zohm SH, Blair A. Pesticides and nonHodgkin's lymphoma. Cancer Res 1992;52:5485s-8s.
32 Zahm SH, Ward MH, Blair A. Pesticides and cancer. Occup Med 1997;12:269-89.
33 Figgs IW, Holland MT, Rothmann N, et al. increased lymphocyte replicative index following 2,4 -dichlorophenaxyocetic acid herbicide exposure. Cancer Causes Control 2000;11:373-80.
34 Nanni \(O\), Amodori \(D\), Lugaresi \(C\), et \(\sigma\) ! Chronic lymphocytic leuknemias and nan-Hodgkin's lymphomas by histological type in farming animal breeding workers: a population case-control study based on a priori exposure matrices. Occup Envison Med 1996;53:652-7.
35 Liebermon AD. Craven MR, Lewis HA, et al. Genotoxicity fram domestic use of organophosphate pesticides. I Occup Environ Med 1998;40:954-7.
36 Vial T. Nicolas B, Descotes 1. Clinical immunotoxicity of pesticides. \(J\) Toxicol Environ Heolth 1996;48:215-29.
37 Vos JG, Krajne EI. Immunotaxicily of pesticides. Dev Toxicol Environ Sei 1983;11:229-40.
38 Esa AH, Warr GA, Newcombe OS. Immunotoxicity of orgonophosphorus compaunds. Modulation af cell-mediated immune responses by inhibition of monocyte occessory functions. Clin mmunal Immunopathol 1988;49:4 \}-52.
39 Lee TP. Moscoti R, Park BH. Effects of pesticides on human leukocyte functions. Res Commun Chem Patha' Pharmacol 1979;23:597-609.
40 Hemmanowict \(A\), Kossmon S. Neutrophil function and infectious disease in workers occupationally exposed to phosphoorganic pesticides: role of mononuclearderived chemotoctic factor for neumophils. Clin immunol finmunopathol 1984;33:13-22.
A1 Casale GP, Cohen SO, DiCapua \(\$ \mathrm{AA}\). The effects of arganophosphate induced cholinergic stimutation on the ontitady response to sheep erythrocyles in inbred mice. Toxical Appi Pharmacal 1983;68:198-205.
42 Mewcombe DS. \{mmune surveillance, organophosphorus exposure, and lymphomagenesis. Lancet 1092;339:539-41
43 McConnachis PR, Zahalsky AC. Immune alterations in humons expased to the termiticide technical chlordone. Arch Environ Heoith 1992:47:295-301
44 Hardell L, Liliegren G. Lindstrom G, er al Polychiorinated biphenyls, chlordanes, and the etioiogy of non.Hodgkin's lymphomo. Epidemialogy 1997:8:689.
4:. Contor KP, Strickland PT, Brock JW, ef of. Risk of Non-Hodgkin's lymphoma and prediagnostic serum arganochlorines: ss-hexachloracyclohexane, chlordane/heptachlor-related compounds, dieldrin and hexochloroberzene. Environ Heolth Perspect 2003;111:179-84
46 Nigg HNWCF, Eeier RC, Corter O, al Exposure ta pesticides. In: Baker SR, Wikinson CF, eds. The effect of pesticides on human health Princeton, N: Princeton Scientific Publishing Co. Inc., 1990:35-130.
47 Sathiakumar N, Delzell E, Cole P. Mortality among workers of two riazine herbicide manufacluring plants. Am I Ind Med 1996:29:143-51
48 IARC. Alrazine, \(A\) ARC Monagr Evol Careinag Risks Hum 1999:73:59-113.
49 Hooghe R1, Devos S, HooghePeters EL. Effects of selected herbicides on cytokine production in vitu. Life Sal \(2000,66: 2519-25\).
50 Williarns GM, Kroes R, Munro K. Safely evaluation and risk assessment of the herbicide Roundup and its active ingredient, glyphosote, for humans. Regul toxicol Pharmacol 2000;31:117-65.
51 Hardell L. Eriksson M. A case-control study of nortiodgkin lymphoma and exposure to pesticides. Concer 1999;85:1353-60.
52 Dich 4 . Zohm SH, Hanberg \(A\), ef ol. Pesticides and concer. Cancer Couses Control 1997;8:420-43.
53 Burns C \(J\), Beard KK. Cormill SB. Mortality in chemicol workers potentially exposed to 2,4 dichlorophenoxyocetic acid \((2,4 \mathrm{D})\)
1945-94: an updote. Occup Environ Med \(2001 ; 58: 24-30\).
54 Faustini A, Settimi \(l\), Pacifici R, et of. Immunological changes among formers exposed to phenoxy herbicides: preliminary observations. Occup Environ Med 1996;53:583-5
55 Btoir A, Axeison O, Fronklin C, et al. Corcinogenic effects of pesticides. In: Boker SR, Wilkinson CF, eds. The effect of pesticides on humon harith. Princeton, NU: Princaton Scientific Publishing Co. Inc. 1990:203-00.

\title{
A Case-Control Study of Non-Hodgkin's Lymphoma and the Herbicide 2,4-Dichlorophenoxyacetic Acid (2,4-D) in Eastern Nebraska
}

\author{
Shelia Hoar Zahm, ' Dennis D. Weisenburger, \({ }^{2}\) Puula A. Babbitt, \({ }^{2}\) Robert C. Saal, \({ }^{3}\) Jimmie B. Vaught, \({ }^{3}\) Kenneth P. Cantor,' and Aaron Blair \({ }^{1}\)
}

\begin{abstract}
To evaluate the role of the herbacide 2.4-dichlorophenoxyacetic acid (2.4-D) in the development of non-Hodgkin's lymphoma (NHL), we conducted a populaton-based, case-control study in 66 counties in eastern Nebraska. Telephone interviews were conducted with 201 white men diagnosed with NHL between July 1,1983 , and June 30 , 1986 , and with 725 controls. There was a \(50 \%\) excess of NHL among men who mixed or appled 2,4-D (odds rato \(|O R|=1.5 ; 95 \%\) confidence inrerval \(=0.9,2.5\)). The risk of NHL increased with the average frequency of use to over threefold for those exposed 20 or more days per year (\(p\) for trend \(=0.051)\). Adjusting for use of organophosphate insecticides lowered the risk estimate for frequent users \((\mathrm{OR}=1.8)\), but adjustment for fungicide use increased the risk estimate (\(O R=4.5\)). Simultaneous adjustment for organophosphates and tungkides yelded an OR uf 3.1 for famers who mixed or apphed 2.4-D more than 20 days per year. Risk also increased with degree of exposure, ds indicated by applicatuon method and time spent in contaminated clothing, but not with the number of years of 2.4-D use or tallure to use protectse equpment. Although other pesticides, especially organophosphate insecticides, may be relared to NHL, the risk assuciated with 2.4-D dues nut appear to be explained completely by these other exposures. (Epidemiology 1990:1:349-356)
\end{abstract}

Keywords: agriculture, cancer, 2,4-dichlorophenoxyacetic acid, herbicides, insecticides, non-Hodgkin's lymphoma, occupation, pesticides.

In 1986, a case-control study conducted in Kansas thoued an association hetween the develepment fomHodgkin's lymphoma (NHL) and agricultural use of herbicides (1). Risk for NHL increased with the average number of annual days of exposure to herbicides. Farmers exposed for more than 20 days per year had a sixfold increased risk for NHL. This increased risk secmed to he related specifically to 2,4 -dichlorophenoxyacetic acid (2,4-D) use and could not be explained by differential recall, exposure to other pesticides, or veher factors. Because of the magnitude of these risks and the widespread potential for exposure to 2,4-D in agriculture.

\footnotetext{
Environmental Epidemology Branch, Divisum of Cancer Ethology. National Cancer Institute, 6130 Executuve Buslevard. Rexm 418 N , Rockulle, MD 20892. "Depattment of Pathology and Microhsology. University of Nebraska Medical Center, 42nd and Dewey Avenue, Omaha, NE 68105. 'Westat, Inc., 1050 Research Buulevard, Ruck. ville, MD 20850. Address reprint requests of Shelia Huar Zahm

This study was supported in part by the Naroonal Cancer Instutute Contract NOl-CP-95618 and State of Nebraska Department of Health Grant LB-506. Preliminary analyses of portuns of the data in thes report were presented at the annual meeting of the Society for Epide. muologic Research, Vancouver, Canada, June 15-17, 1988.
c 1990 Epidemiology Resources Inc
}
forestry, lawn care, and other uses, we undertook a similar ponularion-hased case-control srudy in Nehracka. another midwestern agricultural state.

\section*{Subjects and Methods}

Cases of NHL, Hodgkin's disease, multiple myeloma, and chronic lymphocytic leukemia among white men and women, aged 21 years or older, residing in 66 counties in eastern Nehraska, and diagnosed between July 1, 1983, and June 30, 1986, were identified through the Nebraska Lymphoma Study Group and area hospitals. Although not an ongoing population-based cancer registry, special procedures were instituted by the Nebraska Lymphoma Study Group to ascertain all cases in eastern Nebraska. The observed incidence race for NHL among white males, aged 21 years or older, in eastern Nebraska (\(18.0 / 100,000\) person-years) was \(77 \%\) of the rate reported for white men, aged 20 years or older, 19831986, by the nearby lowa component of the National Cancer Insriture-sponsored Surveillance, Epidemiology, and End Results program (23.5/100,000 person-years) (L. Ries, personal communication). This report will present data on the white male NHL cases (\(\mathrm{N}=227\)).

All cases underwent pathology review and were clas-

\section*{ZAHM ET AL}

\section*{TABLE 1. Distribution of Non-Hodgkin's Lymphomas by Histologic and Immunologic Type in Interviewed White Men}
\begin{tabular}{|c|c|c|}
\hline Histology & Number & Percent \\
\hline \multicolumn{3}{|l|}{Low grade} \\
\hline A. Small lymphocytic & 14 & (7) \\
\hline B. Follicular, predominantly small cleaved cell & 20 & (10) \\
\hline C. Follicular, mixed small cleaved and large cell & 22 & (11) \\
\hline \multicolumn{3}{|l|}{Intermediate grade} \\
\hline D. Follicular, predominantly & 15 & (8) \\
\hline E. Diffuse, small cleaved cell & 23 & (11) \\
\hline F. Diffuse, mixed small and large cell & 16 & (8) \\
\hline G. Diffuse, large cell & 51 & (25) \\
\hline \multicolumn{3}{|l|}{High grade} \\
\hline H. Large cell, immunoblastic & 30 & (15) \\
\hline 1. Lymphoblastic & 1 & (<1) \\
\hline J. Small noncleaved cell & 4 & (2) \\
\hline Miscellaneous \({ }^{\text { }}\) & \(\frac{5}{201}\) & (3) \\
\hline \multicolumn{3}{|l|}{Immunologic type} \\
\hline T & 20 & (10) \\
\hline B & 160 & (80) \\
\hline Indererminant & 11 & (5) \\
\hline Not available & 10 & (5) \\
\hline & 201 & \\
\hline
\end{tabular}
- Composite lymphomas were assigned to the follicular component if the follicular and diffuse components had the same cell type and to the moss indolent cell twne if the follicular and diffuse components ditfered.
sified according to the Working Formulation (2) (Table 1). Only histologically confirmed cases (\(N=220\)) were included. The review also included immunologic phenotyping of the NHL. All follicular lymphomas were considered to be B-cell lymphomas. The diffuse lymphomas were phenoryped using the monoclonal antibodies L26 and UCHL1 (DAKO Corporation, Santa Barbara, CA) that mark \(B\) cells and \(T\) cells, respectively, in par-affin-embedded tissues \((3,4)\).

Control subjects were selected from residents of the same 66 -county area by \(3: 1\) frequency marching by race, sex, vital status, and age (\(\pm 2\) years) to the combined age distribution of the four cancer case sertes (NHL, Hodgkin's disease, multiple myeloma, and chronic lymphocytic leukemia). For living cases under age 65 (\(\mathrm{N}=\) 73), controls were selected by two-stage random digit dialing (5). For living cases aged 65 or older (\(N=67\)), controls were selected from the Health Care Financing Administration (Medicare) records. For deceased cases (\(N=80\)), controls were selected from the Nebraska state mortality files using the additional matching factor of year of death. Persons with an underlying cause of
death of NHL, Hodgkin's disease, multuple myeloma, leukemia, malignancy of unknown site, aplastic anemia, suicide, homicide, or legal intervention were excluded as controls. A total of 831 white male controls were selected.
Telephone interviews were conducted with 201 NHL cases and 725 controls, or with their next-of-kin, between May, 1986, and October, 1987. The interviewers were not aware of the subjects' case-control status. The response rates for the cases and controls were \(91 \%\) (living: \(93 \%\); deceased: \(89 \%\)) and \(87 \%\) (living: \(89 \%\); deceased: \(85 \%\)), respectively. The overall control response rate was \(85 \%\) and consisted of a weighted average accounting for the refusals in the household census phase of the random digit dialing procedure and the refusals of the randomly selected eligible controls to provide interviews.
This investigation covers the findings related to the association between NHL and agricultural exposure to 2,4-D. The interview questions on agricultural practices included those regarding the herbicides and insecticides used, the application method used most often, use of protective equipment, duration of time wearing work clothes after handling pesticides, cattle raising, and use of fungicides, rodenticides, fumigants, wood preservatives, and fertilizers. For each herbicide and insecticide, the years of use, the average annual number of days of use on the farm, and the average annuai number of days the pesticides were personally handled were obtained. The interviewer noted whether the response about each pesticide was volunteered in answer to an open-ended question or reported only after a probe naming the specific pesticide.
All odds ratio (OR) estimates were adjusted for age by stratification (21-59, 60-69, 70-79, and greater than 80 years). Maximum likelihood estimates of a uniform odds ratio and \(95 \%\) confidence intervals (Cl) were computed by Gart's method (6). We assessed duration- and doseresponse relationships by means of Mantel's one-tailed linear trend test (7). Logistic regression was also used for the data from farmers to evaluate the effects of several pesticide factors simultaneously (8).

\section*{Results}

There was no overall excess of NHL among persons who had ever lived or worked on a farm; however, a \(50 \%\) excess risk of NHL was found among men who mixed or applied 2,4-D (Table 2). Men who lived or worked on farms where 2,4-D was used, but who did not personally handle \(2,4-\mathrm{D}\), had an OR of \(1.2(\mathrm{Cl}=0.3,4.2)\).

Among men who personally handled \(2,4-\mathrm{D}\), risk in-

TABLE 2. Number of White Men with Non-Hodgkin's Lymphoma, Number of Controls, and Odds Ratios by Farming History
\begin{tabular}{|c|c|c|c|}
\hline Farming History & Cases & Controls* & \[
\begin{gathered}
\text { OR } \\
(95 \% \mathrm{Cl}) \dagger
\end{gathered}
\] \\
\hline Never lived or worked on farm & 54 & 184 & 1.0 \\
\hline Ever lived or worked on farm & 147 & 539 & \(0.9(0.6,1.4)\) \\
\hline Insecticides used on farm & 104 & 321 & \(1.1(0.7,1.6)\) \\
\hline Herbicides used on farm & 75 & 203 & \(1.3(0.8,2.0)\) \\
\hline Mixed or applied 2,4-D & 43 & 98 & \(1.5(0.9,2.5)\) \\
\hline
\end{tabular}
- Two controls had unknown values for ever having lived or worked on a farm
+ OR \((95 \% \mathrm{Cl})=\) Age-adjusted odds ratio \((95 \%\) confidence merval).
creased according to the average annual number of days spent mixing or applying 2,4-D in comparison with men who never lived or worked on a farm (Table 3). Risk increased to more than threefold for those with 21 or more days of exposure per year (\(p=0.051\)). There was no consistent increase in risk with the number of years of 2.4-D use while the subjects lived or worked on a farm or with the first year of 2,4-D use.

Several characteristics of pesticide use that indicate potential for exposure were evaluated. Among men who personally handled \(2,4-\mathrm{D}\), risk varied by the method used most often to apply herbicides. Tractor-mounted spraying was associated with an OR of \(1.4(\mathrm{Cl}=0.8\), 2.6; 27 cases, 62 controls) and handheld spraying with an OR of \(1.7(\mathrm{Cl}=0.4,6.7 ; 4\) cases, 9 controls). Risk increased substantially the longer farmers usually waited to change into clean work clothes after handling pesticides (Table 4). Farmers who changed immediately, at the end of the work day, or the following day or later (presumably, these farmers wore the clothes for more than one work day but did not sleep in them) had ORs of 1.1, 1.5, and 4.7, respectively (\(p\) for trend \(=0.015\)). Risk did not increase if the farmers reported that they usually failed to use any protective equipment (eg, rubber gloves, rubber boots, mask, spray suit) when handling pesticides. Among farmers who mixed or applied \(2,4-\mathrm{D}\), those who typically used protective equipment while handling any pesticide had an OR of \(1.7(\mathrm{Cl}=\) \(0.9,3.1 ; 25\) cases, 48 controls), whereas farmers who did not had an OR of \(1.2(\mathrm{Cl}=0.6,2.4 ; 16\) cases, 49 controls).

Possible confounding of the results for 2,4-D by use of orher pesticides was evaluated. The risks associated with

TABLE 3. Number of White Men with Non-Hodgkin's Lymphoma, Number of Controls, and Odds Ratios by Characteristics of Exposure to 2,4-Dichlorophenoxyacetic Acid (2,4-D)
\begin{tabular}{|c|c|c|c|}
\hline Use of 2,4.D & Cases & Controls & \[
\begin{gathered}
\text { OR } \\
(95 \% \mathrm{CI})^{\circ}
\end{gathered}
\] \\
\hline \multicolumn{4}{|l|}{Never lived or worked on farm} \\
\hline \multicolumn{4}{|l|}{Days/year mixing or applying 2.4-D:} \\
\hline 1-5 & 16 & 44 & \(1.2(0.6,2.4)\) \\
\hline 6-20 & 12 & 25 & \(1.6(0.7 .3 .6)\) \\
\hline \(21^{+}\) & 3 & 4 & 3.3 (0.5,22.1) \\
\hline Unknown days/year & 12 & 25 & - \\
\hline Chi for trend =
\[
1.639, p=0.051
\] & & & \\
\hline \multicolumn{4}{|l|}{Years 2.4 -D} \\
\hline 1-5 & 3 & 12 & \(0.9(0.2,3.6)\) \\
\hline 6-15 & 11 & 15 & 2.8 (1.1,7.1) \\
\hline 16-20 & 3 & 18 & 0.6 (0.1,2.1) \\
\hline \(21+\) & 13 & 33 & \(1.3(0.6 .2 .7)\) \\
\hline Unknown years & 15 & 29 & - \\
\hline \[
\begin{aligned}
& \text { Chi for trend }= \\
& 0.601, p=0.274
\end{aligned}
\] & & & \\
\hline \multicolumn{4}{|l|}{First year of} \\
\hline 2,4-D use: & & & \\
\hline Prior to 1945 & 8 & 21 & \(1.4(0.5 .3 .5)\) \\
\hline 1946-1955 & 13 & 39 & \(1.1(0.5 .2 .3)\) \\
\hline 1956-1965 & 5 & 8 & 2.1 (0.6.7.7) \\
\hline 1965-1986 & 4 & 12 & \(1.3(0.3 .4 .9)\) \\
\hline Unknown year & 13 & 18 & - \\
\hline \multicolumn{4}{|l|}{\[
\begin{aligned}
& \text { Chi for trend }= \\
& 0.955, p=0.170
\end{aligned}
\]} \\
\hline
\end{tabular}
use of any phenoxyacetic acid herbicide (ever and average annual number of days) were identical to the risks for 2,4-D alone. All 13 cases and 27 controls who handled \(2,4,5\)-trichlorophenoxyacetic acid (\(2,4,5-\mathrm{T}\)) (ever handled 2,4,5-T: \(\mathrm{OR}=1.6, \mathrm{Cl}=0.7,3.6\); average days per year of exposure \(1-5: O R=1.1 ; 6-20: O R=\) 6.4, 4 cases, 2 controls) were also 2,4-D users. None of the subjects who handled 2,4-D more than 20 days per year was a \(2,4,5-\mathrm{T}\) user. Excluding the \(2,4,5-\mathrm{T}\) users did not change the risks for handling 2,4-D (ever handled \(2,4-\mathrm{D}: \mathrm{OR}=1.5, \mathrm{CI}=0.8,2.6\); days per year \(1-5: \mathrm{OR}\) \(=1.1 ; 6-20: \mathrm{OR}=1.3 ; 21+: \mathrm{OR}=3.3\)). Restricting the analysis to farmers and adjusting for the use of other herbicides by class (triazines, amides, benzoics, carbamates, trifluralins, and other) resulted in no meaningful changes in the ORs for those who ever handled 2,4-D or in the positive trend associated with average annual days of exposure to \(2,4-\mathrm{D}\). Adjustments for the use of insecticides by class (chlorinated hydrocarbons, carbamates, organophosphares, metals, and other) also resulted in no meaningful changes in the risk estimates for \(2,4-\mathrm{D}\), except for the use of organophosphates. Adjusting for or-

\section*{ZAHM ET AL}

TABLE 4. Number of White Men with Non-Hodgkin's Lymphoma and Controls Who Mixed and Applied 2,4-Dichlorophenoxyacetic Acid (2,4-D) by Timing of Change to Clean Work Clothes after Handling Pesticides
\begin{tabular}{|c|c|c|c|}
\hline When Subject Usually Changed to Clean Wiork Clothes & Cases & Contruls \({ }^{\text {a }}\) & \[
\stackrel{O R}{(95 \% \mathrm{Cl}) \dagger}
\] \\
\hline Never hived or worked on tarm & 54 & 184 & 1.0 \\
\hline Immedately after handling pestricides & 6 & 19 & \(1.1(0.4,3.1)\) \\
\hline Ar end of work day & 31 & 73 & \(1.5(0.8,2.6)\) \\
\hline Following day or later & 6 & 4 & 4.7 (1.1.21.5) \\
\hline \[
\begin{aligned}
& \text { Chi for trend }= \\
& 2.106, p=0.015
\end{aligned}
\] & & & \\
\hline
\end{tabular}
ganophosphate use on the farm yielded an OR of 1.1 for men who ever handled \(2,4-\mathrm{D}\) and ORs of \(0.9,1.3\), and 1.8 for men exposed to 2,4-D for \(1-5,6-20\), and more than 20 days per year (\(p\) for trend \(=0.246\)) relative to farmers with no 2,4-D exposure. Adjustments using more detaled measures of organophosphate exposure (eg, duration and average annual days spent mixing or applying! aloo resulted in approximarely rwofold increased risks of NHL among the most frequent handlers of \(2,4-\mathrm{D}\). Analysis of organophosphate use, adjusted for use of 2,4-D, showed an independent association with NHL (ever: \(\mathrm{OR}=2.4\); days per year \(1-5: \mathrm{OR}=1.7\); 6-20: \(\mathrm{OR}=1.8 ; 21+: \mathrm{OR}=3.1\)) and will be described more thoroughly in a future report. The risk among 2,4-D users compared with nonusers, excluding all organophosphate users, was similar to the adjusted 2.4-D risk for ever use (\(\mathrm{OR}=1.1\)) and for the two lower use categories (days per year \(1-5: O R=0.7\); \(6-20: \mathrm{OR}=1.5\)). There were no cases exposed to 2,4 . D for 21 or more days who were unexposed to organophosphates. Adjustments for the use of fungicides led to increases in the risk estimates associated with \(2,4-\mathrm{D}\) exposure \((\mathrm{OR}=1.8, \mathrm{Cl}=1.1,3.0)\) and with average annual days of exposure to 2,4-D (\(1-5\) days: \(O R=1.6\); \(6-20\) days: \(O R=2.2 ; 21+\) days: \(O R=4.5 ; p\) for trend \(=0.003\)). Simultaneous adjustment for use of organophosphates, fungicides, and age resulted in ORs of 0.8. 1.3, and 3.1 for farmers who mixed or applied 2.4-D \(1-5,6-20\), and more than 20 days per year, respectively. The results of logistic regression analyses, restricted to farmers and including the variables age and use of 2,4-D, organophosphates, and fungicides, were consistent with
the stratified analyses. Use of organophosphate insecticides (ever used on farm: \(O R=2.4\)) and 2,4-D (handled \(21+\) days per year: \(\mathrm{OR}=2.1\)) were independent risk factors for NHL
Approximately two-thirds of both the exposed cases \((63 \%)\) and controls (\(64 \%\)) volunteered the history of 2.4-D use on the farms where they lived or worked, whereas about one-third of the exposed cases (\(37 \%\)) and controls (\(36 \%\)) reported 2,4-D use only after a specific probe. Risk estimates were similar among the two groups for the use of 2,4-D on the farm (volunteers: \(\mathrm{OR}=1.5\); probes: \(\mathrm{OR}=1.5\)), personal handling of \(2,4-\mathrm{D}\) (volunteers: \(\mathrm{OR}=1.5\); prohes: \(\mathrm{OR}=1.5\)), and more than 20 days per year exposure to \(2,4-\mathrm{D}\) (volunteers: \(\mathrm{OR}=2.5\), 1 case, 2 controls; probes: \(\mathrm{OR}=3.8\), two cases, 2 controls)
The risk of NHL associated with personal handling of \(2,4-\mathrm{D}\)) was higher among persons with proxy interviews (\(1-5\) days per year: \(\mathrm{OR}=2.2 ; 6-20\) days: \(\mathrm{OR}=2.2\); \(21+\) days: \(\mathrm{OR}=2.4\)) than among self-respondents (\(1-\) 5 days per year: \(O R=1.0 ; 6-20\) days: \(O R=1.6 ; 21+\) days: \(\mathrm{OR}=1.4\)).
Histology, tumor grade, degree of maturation, and immunologic type of the NHLs were evaluated. The association with \(2,4-\mathrm{D}\) did not appear to be specific to any subgroup of NHL, although small numbers limited the reliabilty of the risk estimates. There was a slight suggestion that risk may he higher in intermediate grade NHL (Working Formulation groups D-G. Table 1) (ever: \(O R=1.7 ; 21+\) days per year: \(O R=5.0,2\) cases, 4 controls), follicular center cell NHL (Working Formulation groups B-D, F-G, Table 1) (ever: OR = \(1.7,21+\) days per year: \(O R=6.4,2\) cases. 4 controls), large cell NHL (Working Formulation groups G-H) (ever: \(\mathrm{OR}=1.5 ; 21+\) days per year: \(\mathrm{OR}=6.2,1\) case, 4 controls), and blastic NHL (Working Formulation groups \(\mathrm{D}, \mathrm{G}\), and J) (ever: \(\mathrm{OR}=2.3 ; 21+\) days per year: \(\mathrm{OR}=9.3,1\) case, 4 controls). Personally handling 2.4-D was associated with both T -cell \((\mathrm{OR}=2.0\); \(\mathrm{Cl}=0.5,7.3)\) and B -cell \((\mathrm{OR}=1.5 ; \mathrm{Cl}=0.9,2.6)\) lymphomas; however, the trend with days per year was significant (\(p=0.045\)) for B-cell lymphomas only. The ORs for B-cell lymphomas were 1.1, 1.6, and 4.3 for persons exposed to 2,4 -D for \(1-5,6-20\), and 21 or more days per year, respectively. There were no T-cell lymphoma cases who were exposed to \(2,4-\mathrm{D}\) more than 20 days per year.
None of the other factors covered in the interviews, including family history of cancer, prior radiation treatment, other aspects of the medical history, tobacco consumption, or use of hair coloring products, was responsible for the observed \(2,4-\mathrm{D}\) associations.

\section*{Discussion}

This population-based case-control study conducted in eastern Nebraska found a \(50 \%\) excess of NHL associated with mixing or applying 2,4-D. The risk for NHL increased with the average frequency of use to more than threefold among those exposed more than 20 days per year. These findings are consistent with those of a previous case-control study conducted in Kansas (1), although the risk estimates are lower in the present srudy. The difference in risks in the two states may he explained by statistical variation, since the confidence intervals for risk estimates obtained in Nebraska (\(\mathrm{Cl}=\) \(0.5,22.1\)) and Kansas (\(\mathrm{Cl}=1.8,32.3\)) show considerable overlap.

Some, but not all, variables that indicated the degree of exposure to 2,4-D were related to an increased risk of NHL. In addition to the average annual number of days mixing or applying 2,4-D, the potential for dermal exposure of the usual method of herhicide application \((9,10)\) and the time of change to ctean work clothes after handling pesticides were huth related to increased risk. However, the number of years of \(2,4 \cdot \mathrm{D}\) use while the subject lived or worked on rhe farm was not consistendly related to an increased risk for NHL. Interestingly, a similar lack of association with years of use was observed in the Kansas study (1). Computing years of use as a measure of exposure assumes that the level of exposure is similar throughout the year and from year to year. Pesticide use, however, is sporadic, not continuous. throughout the work year, and the amount used may vary considerably from year to year depending on the need and on the use of other farm workers to mix and apply the pestacides. Annual frequency of exposure is more strongly correlated with risk than years of use and may be a better surrogate for delivered dose.

In contrast to the findings of the Kansas study (1), failure to use protective equipment regularly was inversely associated with an increased risk of NHL among 2,4 -D users. The elevated risks for users and nonusers of protective equipment were not substantially different from one another. Certainly, one should not discourage the use of protective equipment based on the present study's results.

Exposure to other pesticides affecred risk estimates from exposure to 2,4 -D. Adjustment for the use of organophosphate insecticides reduced the observed risk associated with 2,4-D exposure, while adjustment for fungicide use increased the risk. Simultaneous adjustment for both resulted in risk estimates for average annual days of exposure similar to the values adjusted for age alone. Logistic regression analyses also indicated independent effects of 2,4-D and organophosphates. Because
of the small number of subjects and the high proportion of subjects with multiple exposures, it is not possible in this study to entirely disentangle these relationships. There may be some residual confounding. Case-control studies of larger populations with detailed data on more variable patterns of exposures are needed.

This study relied upon study subjects or their next-of-kin to recall complicated lifetime exposure histories. While there is a grear need to improve methods for estimating exposure to pesticides in epidemiologic studies (11), exposure misclassification is not likely ro have created spurious risks in this study or in the Kansas study (12). The similarity of the proportions of cases and controls who volunteered histories of 2,4-D use in response to an open-ended question as compared with those who responded to a specific probe for \(2,4-\mathrm{D}\) use and the increased risks among frequent users in borh the subjects and proxy respondents suggest that recall bias did not occur in this study. Corroboration of a sample of the exposure histories in the Kansas study (1) and methodologic studies of industrial workers (13) observed little difference in accuracy of reports from cases and controls and suggest that the exposure misclassification in this study is likely to be independent of case-control status. Such misclassification tends to decrease risk estimates and reduce exposure-response gradients (14). Thus, misclassification in the Nebraska study is likely to result in an underestimate of the true risk associated with 2,4-D exposure in addition, increasingly detalied measures of exposure to organophosphates did not further reduce the adjusted \(O R\) for 2,4-D exposure, suggesting that misclassification of organophosphate exposure did not lead to an artificial inflation of the risk estimate for 2,4-D.

The large proportion of farmers with no known history of pesticide use in this study (\(37 \%\) of the controls) suggests inaccurate recall by the study subjects. The study definition of farmers, however, included anyone who had ever lived or worked on a farm. This definition includes dependents of farmets and persons who farmed for only brief periods of time. Their opportunity to use pesticides would have been considerably less than for career farmers. Also, some of the older study subjects farmed several decades ago when pesticide use was much less common than in recent years. In addition, some subjects who reported no use of pesticides probably used them. Such misclassification would result in some exposed farmers being classified as nonexposed. In the fresence of a positive association, these improperly classified "nonexposed" farmers would reduce the true risk estimates for farmers as a group and lower risk estimates for frequent users of 2,4-D. In fact, the farmers who reported no exposure to 2,4 - D had an odds ratio of 0.8
\((\mathrm{Cl}=0.5,1.2)\). This deviation from 1.0 could result from random varation or uncontrolled negative confounding. It confounding were the explanation, the odds ratios reported for the exposed farmers are likely to be underestimates of the true risks.

\section*{Other Emilemichoric Stulifes}

There have been many epidemiologic studies evaluating the relation of pesticides to cancer which, at first glance, appear to report inconsistent results. The studies generally have not evaluated the same chemicals with the same measures of exposure, however. Only the Kansas study (1) appears comparable with the Nehraska study, ie, based on days per year of agriculrural exposure to \(2,4 \cdot \mathrm{D}\). Other case-control studies of NHL and herbcides have either treated the phenoxyacetic acid herb1cides as a group, with no specific information on 2,4-D and/or lacked information on the number of days per year of exposure (15-21). Case-control studies in Sweden, however, have also noted excess risks for NHL among persons having contact with phenoxyacetic acid herbicides (\(15,16,21\)), with an indication in one study (15) that excess risks were present among persons exposed to \(2,4,5-\mathrm{T}\) and those exposed only to phenoxys considered unlikely to be contaminated by polychlorinated dibenzodioxins and dibenzofurans, such as 2,4-D and 4 -chloro-2-methyl phenoxyaceric acid (MCPA). A siudy in westeri Wastmgion state (22) otserved a small, but significant, excess risk of NHL among farmers, hur the risk did not increase with duration in farming occupations nor with estimated level of exposure in other occupations to 2.4-D; however, no data on the annual number of days of exposure were avalable. Pearce (19), who found no association between duration or frequency of herbicide use and lymphoma among New Zealand applicarors was studying workers expused almost entirely to 2,4,5-T. Exposure to 2,4,5-T was not associated with an elevated risk of NHL in the Kansas study, but was associated with a nonsignificant increased risk in the Nebraska study. The results of the Kansas and the Nebraska studies indicate that evaluating risk by job title or duration of exposure only may be inadequate, missing important information. It is apparent that considerable variation of exposure occurs among farmers and that personal exposure histories must he obtained in such studies.

Cohort studies of manufacturers and applicators have also been subject to the problems of mixed exposures. Most of the cohorts exposed to \(2,4-\mathrm{D}\)) have also been exposed ro either 2,4,5-T (23-25) or MCPA (26-29). These investigations have generally not observed excesses of NHL, bur the small number of subjects in these
studies has limited their usefulness in examining NHL, a rare cause of death \((23,24)\). A recent cohort study of farmers in Canada reported that the risk of NHL increased with the number of acres sprayed with herbicides, particularly in smaller farming operations of less than 1,000 acres (30). Bond et al (31) studied a group of 878 chemical workers who were potentially exposed to several agricultural chemicals, including 2,4-D, and observed a nonsignificant excess of lymphatic and hematoporetic cancers. This excess occurred exclusively among workers who were employed in the 2,4-D plant (5 deaths observed, relative risk \(=3.1, p \leqslant 0.05\)). Two of the five lymphatic and hematoporetic cancers were non-Hodgkin's lymphomas.

\section*{Exferimental Stunies}

There is little evidence that 2,4-D is mutagenic or genoroxic (32,33). A 2 -year anımal feeding study of \(2,4 \cdot \mathrm{D}\) resulred in a statistically significant excess of astrocytomas in male rats at the highest dose level (Industry Task Force on 2,4-D research data, as cited in Bond et al [31]). The Intemational Agency for Research on Cancer (34) recently concluded that there is inadequate evidence of animal carcinogenicity for 2,4-D. 2,4-D has been associated with increased rates of sister chromatid exchanges and other chromosomal aberrations in vitro (35-37) and in vivo (37,38). The possibility that 2,4-D may be carcinogenic, not hy mutagenic activity, but by excessive production of hydrogen peroxide and the froliferation of peroxisomes has been suggested (39).

Immunosuppression, a well-established strong risk factor for NHL (40), could be a possible mechanism by which 2,4-D might increase the risk of NHL . Acute exposure of female mice to high levels of 2,4-D resulted in suppression of antibody production against sheep red blood cells; however, subacute exposure, more comparable with human occupational exposures, did not affect antibody production but, rather, enhanced B- and T. lymphocyte proliterative responses (41), 2,4-D has rarely been reported to be contaminated with 2,3,7,8-terrachlorodibenzo-p-dioxin (42), rhe dioxin congener that is a frequent contaminant of some other phenoxy herbicides and that has been reported to te bort immunosuppressive and carcinogenic (43-49).

The fact that the mechanism for 2,4-D's putative action is unknown should not detract from the strength and consistency of the results in Kansas and Nebraska concerning risk by days per year of herbicide use. Based on the positive results in these two studies and the likelihood that any exposure misclassification has probably decreased the risk estimates and diluted exposureresponse gradients, we believe that the weight of evi-
dence indicates that the use of \(2,4-\mathrm{D}\) in an agricultural setting increases the risk of NHL among persons handling the chemical frequently.

\section*{Acknowledgments}

The authors acknowledge the cooperation of the Nebraska Lymphoma Study Group, and Rohert Hoover and joseph F. Fraument, jr for their helpful reviews of the manuscript.

\section*{References}
1. Hoar SK. Blair A. Holmes FF, Boysen CD, Rohel RJ, Hoover R, Fraumeni JF Jr. Agricultural herbucide use and risk of lymphoma and sot-tissue sarcoma. JAMA 1986:256:1141-7.
2. The Non-Hodgkin's Lymphoma Parhologic Classification Project. National Cancer lnstitute sponsored study of classifications of non-Hodgkin's lymphomas: Summary and description of a Working Formulation for Clinical Usage. Cancer 1982;49:2112-35.
3. Linder J, Ye Y, Harrington DS, Armitage JO, Weisenburger DD. Monoclonal anribodies marking \(T\) lymphocytes in paraffinembedded tissue. Am J Pathol 1987:127:1-8.
4. Linder J. Ye Y. Armitage JO, Weisenhurger DD. Monoclonal antihodies marking B-cell non-Hodgkin's lymphoma in paraffinembedded tissue. Modern Pathol 1988;1:29-34.
5. Waksherg J. Sampling methods for random digit dialing. J Am Stat Assoc 1978;73:40-6.
6. Gart JJ. Point and interval estumation of the common odds ratio in the combination of \(2 \times 2\) tables with fixed marginals. Biometrika 1970:57:471-5.
7. Mantel N. Chi square test with 1 degree of freedom, extension of the Mantel-Haenszel procedure. Am Stat Assuc J 1963;58:690700.
8. Engelman L. Stepwise logistic regression. In: Dixon WJ, ed. BMDP statistical software. Berkeley, CA. University of California Fress, 1983.330-44.
9. Lavy TL, Shepard JS. Mattice JD. Exposure measurements of applicators spraying (\(2,4,5\)-trichlorophenoxy) acetic acid in the forest.] Agric Food Chem 1980;28:626-30.
10. Lavy TL, Norris LA, Mattice JD, Marx DB. Exposure of forestry ground workers to 2,4-D, picloram, and dichlorprop. Environ Toxicol Chem 1987:6:209-24.
11. Blart A, Zahm SH, Cantor KP, Stewart PA. Estimatıng exposure to pesticides in epidemiologic studies of cancer. In: Wang RGM, Franklin CA, Honeycurt RC, er al, eds. Biological monitoring for pesticide exposure-measurement, estimation, and risk reduc tion. Washington, DC: American Chemical Suciety, ACS Sym posium Series 382, 1989:38-46.
12. Blair A, Zahm SH. Herbicides and cancer: A review and discussion of methodologic issues. In: Band P. ed. Recenr results in cancer research: Occupational cancer epidemiology. Vancouver, Canada: 1989:120:132-45.
13. Bond GG, Bodner KM, Sobel W, Shellenherger RJ, Flores GH Validation of work histories obtained from interviews. Am J EF idemiol 1988;128:343-51.
14. Marshall JR, Priore R, Graham S. Brasure J. On the distortion of risk estimates in multiple exposure level case-control studies. Am J Epidemiol 1981;113:464-80.
15. Hardell L, Eriksson M, Lenner P, Lundgren E. Malignant lymphoma and exposure to chemicals, especially organic solvents, chlorophenols and phenoxy acids: A case-control study. Br J Can cer 1981:43:169-76.
16. Hardell L. Relation of soft-tissue sarcoma, malignant lymphuma and colon cancer to phenoxy acids, chlorophenols and other agents. Scand J Work Environ Health 1981;7:119-30.
17. Pearce NE, Smith AH, Howard JF, Sheppard RA, Giles HJ, Teague CA. Non-Hodgkin's lymphoma and exposure to phen-
oxyherbicides, chlorophenuls, fencing work, and meat works employment: A case-control study. Br J Ind Med 1986;43:75-83.
18. Pearce NE, Sheppard RA, Smith AH, Teague CA. NonHodgkin's lymphoma and farming: An expanded case-control study. Int J Cancer 1987;39:155-61.
19. Pearce N. Phenoxy herbicides and non-Hodgkin's lymphoma in New Zealand: Frequency and duration of herbicide use, Br] Ind Med 1989;46:143-44.
20. Wouds JS, Polissar L. Severson RK, Heuser LS, Kulander BG. Soft tissue sarcoma and non-Hodgkin's lymphoma in relation to phenyoxyherbicide and chlorinated phenol exposure in Westem Washington Stare. J Nat Cancer lnst 1987;78:899-910.
21. Persson B. Dahlander A.M. Fredriksson M, Brage HN, Ohlson CG, Axelson O. Malignanr lymphoma and occupational exposures. Br J Ind Med 1989:46:516-20.
22. Woods IS, Polissar L. Non-Hodgkin's lymphoma among phenoxy herbicide-exposed farm workers in Western Washingoon State. Chemosphere 1989:18:401-6.
23. Riihımaki V, Asp S. Hernberg S. Mortality of 2,4 -dichlorophenoxyacetic acid and 2,4,5-trichlorophenoxyacetic acid herbicide applicators in Finland: First report of an ongoing prospective cohort study. Scand J Work Environ Health 1982;8:37-42.
24. Ruihimaki V, Asp S, Pukkala E. Hemberg S. Mortality and cancer morbidity among chlorinated phenoxyacid applicators in Finland. Chemosphere 1983;12:779-84.
25. Bond AG. Budner KM, Cook RR. Phenoxy herbicides and cancer: Insufficient epidemiologic evidence for a causal relationship. Fund Appl Toxicol 1989;12:172-88.
26. Lynge E. Background and design of a Danish cohort study of workers in phenoxy herbicide manufacture. Am J Indus Med 1987:11:427-37.
27. Lynge \(E\). A follow-up study of cancer incidence among workers in manufacture of phenoxy herbicides in Denmark. \(\mathrm{Br} \int\) Cancer 1985;52:259-70.
28. Wiklund K. Dich J, Holm L-E. Risk of malignant lymphoma in Swedish pesticide appliers. Br J Cancer 1987;56:505-8.
70 Wiklund K Lindefors R-M Holm L-E Risk of malignant lymphoma in Swedish agricultural and forestry workers. Br I Ind Med 1988;45:19-24.
30. Wigle DT, Semenciw RM, Wilkins K, et al. Mortaliry study of Canadian male farm operators: Non-Hodgkin's lymphoma mortality and agricultural practices in Saskatchewan. J Natl Cancer Inst 1990;82:575-82.
31. Bond GG, Wetterstroem NH. Rousch GJ. McLaren EA. Lipps TE, Cook RR. Cause-specific mortality among employees engaged in the manufacture, formulation, or packaging of \(2,4-\mathrm{di}\) chlorophenoxyacetic acid and related salts. Br J Ind Med 1988;45:98-105.
32. Canadian Centre for Toxicology. Expert panel report on carcinogenicity of 2.4-D. Guelph, Ontario: 1987.
33. Seiler JP. The genetic toxicology of phenoxy acids other than 2.4,5-T. Mutat Res 1978;55:197-226.
34. International Agency for Research on Cancer. IARC monographs on the evaluation of carcinogenic risks to humans. Overall evalwarion of carcinogentity: An update of IARC monographs volumes 1 to 42. Lyon. France: IARC, 1987:156-60.
35. Korte C, Jalal SM. 2,4-D induced clastogenicity and elevated rates of sister chromatid exchanges in cultured human lymphocytes. J Hercdity 1982,73:224-6.
36. Turkula TE, Jalal SM. Increased rates of sister chromatid exchanges induced by the herbicide 2,4-D. J Heredity 1985;76: 213-4.
37. Musronen R, Kangas J, Vuojolahti P, Linnainmaa K. Effects of phenoxyaceric acids on the induction of chromosome aberrations in vitto and in vivo. Mutagenesis 1986:1:241-5
38. Yoder J, Warson M, Benson WW. Lymphocyte chromosome analysis of agricultural workers during extensive occupational exposure to pesticides. Mutation Res 1973:21:335-40.

\section*{ZAHM ET AL}
39. Vaino H. Nickels J, Linnainma K. Phenoxy acid herkicude cause peroxisome prolferation in Chinese hamsters. Scand) Work Environ Health 1482;8:70-73.
40. Greene MH. Nuri-Hadgkin's lymphoma and mecows tungendes. In: Schuttenteld II, Fraumeni JF, Jt., eds. Cancer epdemulugy and pevencoon Philadelpho: WB Saunder Cumpany, 1982:754-78
41. Blakely BR. Scheter BH. The eftect of tupically uppled \(n\) hutslester of 2.4 dichlorephenoxyaceric acd on the immune response in muce. J Apfl Texicol 1986,6:291.5
42. Hagenmater \(H\). Determinateon of 2,3,7.4-tetrachlormdibenzo-p-dioxin in commercial chiorophenols and related products. Fresentus \(Z\) Anal Chem 1986:325:603-6
43. Vos JCi, Moure JA. Zinkl JO. Effect of 2,3,7. A-retrachlo-rodibenen-r-diuxin on the immune system of laburatury animals. Envirun Health Perspect 1973:5:149-62.
44. Harts MW. Monere JA. Vos JO, Cupta BN. General howhogal etfects of TCDN in laburatory animals. Environ Health Perspect 1973:5:101-4
45. Kucita RJ, Keyes DG. Beyer JE, Carreon RM, Wade CE. Dit tenter DA. Kalnins RP. Frausun LE, Park CN. Bamard SD. Hummel RA. Humiston CG. Results of a rwo-year chronic tox-
tity and oncogenicity study of 2,3,7,8-tetrachlwioditenzo-F-diexin (TCDD) in rats. Toxicol Appl Pharmacol 1978:46:279303.
46. Kucitia RJ. Keyes DG, Beyer JE, Carreon RM. Gehring PJ. Longterm toxicologic studies of \(2,3,7,8\)-tetrachlorodihenzo-p-dioxin (TCDD) in laturatory animals. Ann NY Acad Sci 1979;320:397404.
47. Van Miller JP. Lahich JI, Allen IR. Increased incidence of neoplasms in rats exposed to low levels of 2,3,7,8-tetrachlo radikenzo-p-dioxin. Chemosphere 1977;10:625-32
48. Natemal Tuxicology Program. (Report 80-31) Carcinogenesis hisassay of 2,3,7,8-terrachlermbitenzo-p dioxin (CAS N. 1746 01-6) in Oshorne-Mendel rats and B6C3F1 mice (Gavage study), rechnical repurt sertes 209. National Institures of Health publicatmen 82-1765. Research Triangle Park, NC. Dept of Health and Human Services, 1982
49. Natoonal Tisucology Program. (Report 80-32) Carcinogenesis huastay of 2,3,7.8-tetrachloredibener-p-dioxin (CAS No. 1746 -\(01-6\)) in Swiss-Wehster mice (Dermal study), technical report series 209. Natonal Instrutes of Health publication 82-1757. Research Trangle Park, NC, Dept of Health and Human Services. 1982.

\title{
NON-HODGKIN'S LYMPHOMA AMONG ASTHMATICS EXPOSED TO PESTICIDES
}

\author{
Won Jin Lef \({ }^{1 *}\), Kenneth P. Cantor \({ }^{1}\), Jay A. Ber/ofsky \({ }^{2}\), Shelia H. Zahm \({ }^{1}\) and Aaron Blair \({ }^{1}\) \\ \({ }^{1}\) Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics National Cancer Institute, National Institutes of Health. Rockville, MD, USA \\ \({ }^{2}\) Molecular Immunogenetics and Vaccine Research Section, Metabolism Branch. National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
}

\begin{abstract}
We conducted a pooled analysis of population-based casecontrol studies in lowa, Minnesota and Nebraska to investigate whether asthma modifies risk of non-Hodgkin's lymphoma (NHL) associated with pesticide exposures. Cases (\(n=872\)) diagnosed with NHL from 1980 to 1986 and fre-quency-matched controls (\(n=2,381\)) randomly selected from the same geographic areas as the cases were included. Information on use of pesticides and history of asthma was based on interviews. Unconditional logistic regression was used to calculate ORs, adjusted for age, state and vital status. Of all subjects, 177 (45 cases, 132 controls) reported having been told by their doctor that they had asthma. Subjects with an asthma history had a nonsignificantly lower risk of NHL than nonasthmatics (\(O R=0.6,95 \% \mathrm{Cl} 0.3-\mathrm{I} .4\)), and there was no main effect of pesticide exposure (\(O R=1.0,95 \% \mathrm{Cl}\) 0.8-1.2). However, asthmatics tended to have larger ORs associated with exposure to pesticides than nonasthmatics. The OR among asthmatics was 1.8 (95\% CI I.1-3.2) for everuse of crop insecticides, 2.7 (\(95 \%\) CI 1.0-7.2) for chlordane, 2.4 (\(95 \%\) CI I.0-5.7) for lindane and 3.7 (\(95 \%\) CI 1.3-10.9) for fonofos. Among nonasthmatics, ORs were 1.1 (\(0.9-1.3\)), I.5 (1.1-2.2), 1.3 (\(0.97-1.8\)) and 1.6 (I.0-2.4), respectively. Although there is limited power for assessing interaction, our results suggest that the risk of NHL among asthmatics with pesticide exposure may be higher than among nonasthmatics with pesticide exposure.
© 2004 Wiler-Liss. Inc:
\end{abstract}

Key words: asthma; insecticide; farmer; non-Hodgkin's lymphoma; pesticide exposure

Incidence and mortality rates for non-Hodgkin's lymphoma (NHL) have been increasing worldwide over the past several decades. \({ }^{1}\) Although the reasons for this increase are not fully understood, NHL is known to be associated with a compromised immune system, particularly acquired or genetic immunodeficiencies. 2.3 Medical conditions related to more subtle immune alteration, such as asthma and other allergic conditions, have also been studied as potential risk factors for NHL. \({ }^{4-10}\) These reports have described a decreased risk for NHL among persons with a history of asthma or allergies, \({ }^{4.5}\) no association \({ }^{6-8}\) or an increase in risk. \({ }^{9.11}\) Exposure to pesticides has also been suggested as a possible risk factor for NHL. \({ }^{11-15}\) Pesticides may increase cancer risk by altering the immune system. \({ }^{16-19}\) Because both asthma and pesticide exposure may change the risk of NHL by immunologic alterations, we investigated the relation between pesticide exposure, asthma and risk of NHL.

\section*{MATERIAL AND METHODS}

\section*{Study population}

We pooled data from 2 population-based case-control studies of NHL in 3 midwestern states in the United States, which have been described in detail previously. \({ }^{20.21}\) In Lowa and Minnesota, all newly diagnosed cases of NHL among white men aged \(\geq 30\) were ascertained from records of the Iowa State Health Registry and a special surveillance system of Minnesota hospitals and pathology laboratories from 1980 to \(1983(n=530)\). In Nebraska, all cases of NHL diagnosed between July 1983 and June 1986 among white men and women aged \(\geq 21\) in 45 eastern counties were identified
through the Nebraska Lymphoma Study Group and area hospitals (\(n=346\)). All cases were reviewed by pathologists, and only histologically confirmed cases were included in this analysis. Controls were randomly selected from the same geographic areas as cases with frequency matching by race, gender, age (5-year age group) and vital status at the time of interview. Control/case matching ratios were approximately \(2: 1\) in Iowa and Minnesota and \(4: 1\) in Nebraska. For living cases under the age of 65 . controls were selected by 2 -stage random digit dialing. \({ }^{22}\) For living cases aged 65 and over, controls were selected from the records of the Health Care Financing Administration. Controls for deceased cases were selected from death records in each state, with additional matching for year of death. Persons whose underlying cause of death was NHL, Hodgkin's lymphoma, multiple myeloma. leukemia or malignancy of unknown sites were excluded as controls. A total of 2,357 controls (Nebraska 1,318, Iowa and Minnesota I,039) were identified.

\section*{Interview}

Interviews were conducted with subjects or their next-of-kin if subjects were dead or incapacitated. Interviews were held in person in Iowa and Minnesota and by telephone in Nebraska. Participation rates among cases were \(89 \%\) in Iowa and Minnesota and \(91 \%\) in Nebraska. Among controls, rates were \(78 \%\) in Iowa and Minnesota and \(85 \%\) in Nebraska. We used standardized and structured questionnaires to collect information on use of pesticides and other known or suspected risk factors for NHL. Questions included personal handling of groups of pesticides and individual pesticides used on crops or animals, with year of first and last use. We also asked whether subjects had ever been told by a doctor that they had asthma and, if so, their age at first diagnosis.

\section*{Statistical analvsis}

Subjects who did not have any information on asthma (\(n=25\)) were excluded from the pooled data set, leaving 872 cases and 2,336 controls eligible for analysis. We used unconditional logistic regression to obtain odds ratios (ORs) and \(95 \%\) confidence intervals (CIs) with Stata software (version 7.0). \({ }^{23}\) The ORs for NHL among farmers exposed to pesticides with asthma were compared to those of nonfarmers without asthma (i.e., individuals who had never lived or worked on a farm and did not have asthma) and to those of farmers without asthma. We estimated the risk of NHL by reported use of individual pesticides where sufficient numbers of exposed subjects were available. We present ORs for pesticides

\footnotetext{
*Correspondence to: Occupational and Environmental Epidemiology Branch. Division of Cancer Epidemiology and Genetics, National Cancer Institute, 6120 Executive Blvd., EPS 8111, Rockville, MD 20852, USA. Fax: +301-402-1819. E-mail: Leewj@mailnih.gov
}

Received 20 November 2003; Revised 12 February 2004: Accepted 20 February 2004

\section*{DOI 10.1002/ijc. 20273}

Published online 12 April 2004 in Wiley InterScience (www.interscience wiley.com).
that were personally handled by at least 5 exposed cases. The logistic model included age (\(<60,60-75,>75\)), state (Iowa. Minnesota. Nebraska) and vital status (alive, dead). Other variables, such as gender, smoking, having a first-degree relative with lymphohematopoietic cancer, ever having a job correlated with lymphohematopoietic cancers (e.g., painting or welding) and use of protective equipment. were also evaluated as possible confounders. Adjustments of ORs for these variables had minimal impact on risk estimates of NHL. and the latter 2 variables have some missing cases. These variables were not included in the final model. To assess possible reporting bias, risks were estimated including and excluding proxy respondents. We also explored the risk of NHL by age at first diagnosis of asthma and duration of pesticide use.

\section*{RESULTS}

Table I shows the distribution of the 872 cases and 2,336 controls by asthma history, age, gender, vital status. state of residence, having a first-degree relative with lymphohematopoietic cancer and type of NHL. Of the total subjects. \(177(5.5 \%)\) reported having been told by their doctor that they had asthma. Asthmatic NHL cases were more likely than asthmatic controls to be younger. male, alive at the time of interview and residing in Iowa. Nonasthmatic NHL cases were more likely than nonasthmatic controls to be male, to have family history of lymphohematopoietic cancer and to reside in Iowa/Minnesota.
We evaluated ORs for NHL by pesticide groups and asthma history (Table II). Among nonfarmers, subjects with asthma had a lower risk for NHL (not statistically significant) compared to nonfarmers without asthma (\(\mathrm{OR}=0.6,95 \% \mathrm{Cl} 0.3-\mathrm{l} .4\)). ORs for NHL among farmers without asthma were near 1.0 for all pesticide categories except chemical classes of insecticide. The risk of NHL was significantly increased for exposure to crop insecticides \((\mathrm{OR}=1.8 .95 \%\) CI 1.1-3.2) and nonsignificantly increased for exposure to livestock insecticides \((\mathrm{OR}=1.4,95 \% \mathrm{CI} \mathrm{0.9-2.3})\). nerbicides \((O R=1.5,95 \%\) CI \(0.9-2.5)\) and fungicades \((U R=1.4\). \(95 \%\) CI \(0.5-4.3\)) among farmers with asthma. Only organophosphate insecticides had significant ORs among both asthmatics and nonasthmatics. The pattern was consistent by state of residence or interview type, although the results were limited by small numbers of cases (data not shown).

Table III presents ORs for NHL among farmers exposed to individual pesticides by asthma history. Among insecticides, risk of NHL was significantly elevated with exposure to chlordane \((\mathrm{OR}=2.7 .95 \% \mathrm{Cl} 1.0-7.2)\), fonofos \((\mathrm{OR}=3.7 .95 \% \mathrm{Cl}\) 1.3-10.9) and lindane (\(\mathrm{OR}=2.4,95 \% \mathrm{CI} 1.0-5.7\)) in asthmatics compared to nonfarmers without asthma. Many other insecticides (aldrin, carbaryl, carbofuran, diazinon, dieldrin, flyspray, heptachlor, malathion) also had larger ORs among farmers with a history of asthma than among those without asthma. However, none of these was significantly different from the risks in nonasthmatics. Among nonasthmatics, risk of NHL was also significantly elevated with exposure to chlordane, diazinon, fonofos and malathion: but the magnitude of risk was smaller than that among asthmatics. Use of individual herbicides was also associated with increased risk of NHL among asthmatics compared to nonasthmatics, but only cyanazine had a significant OR. No fungicide had 5 or more exposed cases and was significantly associated with NHL.

Analyses of pesticide exposure and asthma history among farmers only are presented in Table IV. The reference category was nonasthmatic farmers not exposed to each pesticide. Asthmatics with exposure to crop insecticides had significantly elevated risk of NHL (\(\mathrm{OR}=2.0,95 \% \mathrm{Cl} 1.1-3.5\)), but the interaction risk for pesticide exposure and asthma was not statistically significant.

We explored the potential modifying effects of age at first diagnosis of asthma and duration of pesticide use on risk of NHL (Table V). Only asthmatic farmers exposed to pesticides were included in this analysis. Risks among subjects diagnosed with asthma after age 30 tended to be higher for all types of pesticide than those among subjects who had developed asthma relatively early. There was no clear pattern of ORs for NHL by duration of pesticide use and age at diagnosis of asthma. The results were limited due to the small number of asthmatic NHL cases, and further studies are needed to investigate these findings.

\section*{DISCI:SSION}

We found that farmers with potential exposure to pesticides and a history of asthma tended to have higher relative risks for NHL than pesticide-exposed farmers not reporting asthma. The excess risks among asthmatics with pesticide exposure were generally more pronounced when we analyzed by individual pesticides (e.g.,

TABLE I-CHARACTERISTICS OF CASES AND CONTROIS BY ASTHMA HISTORY
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristics} & \multicolumn{2}{|c|}{Nonasthmatics (\(n=3.031\))} & \multicolumn{2}{|c|}{Asthmatics (\(n=177\))} \\
\hline & Cases \((n=827)\) & Contros (\(n=2.204\)) & Caves (\(n=4.5\)) & Controls in \(=132\)) \\
\hline \multicolumn{5}{|l|}{Age (years)} \\
\hline <60 & \(231(27.9)^{2}\) & 585 (26.5) & 18 (40.0) & 24 (18.2) \\
\hline 60-75 & 348 (42.1) & 875 (39.7) & 17 (37.8) & 51 (38.6) \\
\hline \(>75\) & 248 (30.0) & 744 (33.8) & 10 (22.2) & 57 (43.2) \\
\hline \multicolumn{5}{|l|}{Gender} \\
\hline Male & 676 (81.7) & 1.594 (72.3) & 38 (84.4) & 100 (75.8) \\
\hline Female & 151 (18.3) & 610 (27.7) & 7 (15.6) & 32 (24.2) \\
\hline \multicolumn{5}{|l|}{Vital status} \\
\hline Alive & 572 (69.2) & 1.486 (67.4) & 34 (75.6) & 71 (53.8) \\
\hline Dead & 255 (30.8) & 718 (32.6) & 11 (24.4) & 61 (46.2) \\
\hline \multicolumn{5}{|l|}{State of residence \(\quad 238(28.8)\) (19,7)} \\
\hline Iowa & 238 (28.8) & 483 (21.9) & 15 (33.3) & 26 (19.7) \\
\hline Minnesota & 264 (31.9) & 491 (22.3) & 10 (22.2) & 28 (21.2) \\
\hline Nebraska & 325 (39.3) & 1,230 (55.8) & 20 (44.5) & 78 (59.1) \\
\hline \multicolumn{5}{|l|}{Family history of cancer \({ }^{1}\)} \\
\hline No & 733 (90.7) & 2.072 (95.4) & 42 (93.3) & 120 (92.3) \\
\hline Yes & 75 (9.3) & 99 (4.6) & 3 (6.7) & 10 (7.7) \\
\hline \multicolumn{5}{|l|}{Histologic type} \\
\hline Follicular & 243 (29.5) & - & 18 (40.9) & - \\
\hline Diffuse & 298 (36.1) & - & 16 (36.4) & - \\
\hline Small lymphocytic & 90 (10.9) & - & 4 (9.1) & - \\
\hline Other & 194 (23.5) & - & \(6(13.6)\) & - \\
\hline
\end{tabular}

\footnotetext{
\({ }^{\mathrm{I}}\) Lymphohematopoietic cancers diagnosed in any first-degree relative. \(-{ }^{2}\) Percentage in parentheses.
}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{4}{|c|}{Xonasthmatics} & \multicolumn{4}{|c|}{Asthmatics} \\
\hline & Cases & Controls & OR \({ }^{1}\) & 95\% CI & Cases & Controls & OR & 95\% (1) \\
\hline Nonfarmers & 2.59 & 684 & 1.0 & \(\mathrm{Ref}^{2}\) & 9 & 37 & 0.6 & 0.3-1.4 \\
\hline Farmers & 560 & \(1 . .510\) & 1.0 & 0.8-1.2 & 36 & 95 & 1.1 & 0.7-1.6 \\
\hline No pesticide use & 137 & 419 & 1.0 & 0.8-1.3 & 3 & 14 & 0.7 & 0.2-2.6 \\
\hline Pesticide use & 423 & 1,091 & 1.0 & 0.8-1.2 & 33 & 81 & 1.1 & 0.7-1.7 \\
\hline Animal insecticides & 363 & 900 & 1.0 & 0.8-1.2 & 28 & 52 & 1.4 & 0.9-2.3 \\
\hline Crop insecticides & 239 & 572 & 1.1 & 0.9-1.3 & 23 & 32 & 1.8 & 1.1-3.2 \\
\hline Organochlorine & 205 & 412 & 1.2 & 0.9-1.5 & 17 & 28 & 1.5 & 0.8-2.8 \\
\hline Organophosphate & 149 & 269 & 1.4 & 1.1-1.7 & 14 & 17 & 2.0 & \(1.0-4.2\) \\
\hline Carbamate & 79 & 154 & 1.3 & 0.9-1.7 & 8 & 9 & 2.2 & \(0.8-5.9\) \\
\hline Herbicides & 260 & 639 & 1.0 & 0.8-1.3 & 23 & 43 & 1.5 & 0.9-2.5 \\
\hline Phenoxyacetic acid & 176 & 409 & 1.0 & \(0.8-1.3\) & 17 & 33 & 1.3 & 0.7-2.4 \\
\hline Triazine & 131 & 268 & 1.1 & 0.9-1.5 & 12 & 17 & 1.7 & 0.8-3.7 \\
\hline Amides & 105 & 231 & 1.1 & 0.8-1.4 & 11 & 15 & 1.8 & 0.8-3.9 \\
\hline Fungicides & 44 & 110 & 1.0 & 0.7-1.4 & 5 & 10 & 1.4 & 0.5-4.3 \\
\hline
\end{tabular}
\({ }^{1}\) OR adjusted for age, vital status and state. \(-^{2}\) Ref, reference category was nonfarmers without asthma (259 cases, 684 controls) for all ORs.

TABLE III-RISKS OF XHI AMONG FARMERS FXPOSED TO INDIVIDLAL PESTICIDES' BY ASTHMA HISTORY
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{4}{|c|}{Nomasthmatics} & \multicolumn{4}{|c|}{Asthmatics} \\
\hline & Cases & Conerols & OR \({ }^{\text {² }}\) & 95\% Cl & Caves & Controls & OR & 95\% (1 \\
\hline Nonfarmers & 259 & 684 & 1.0 & Ref \({ }^{3}\) & 9 & 37 & 0.6 & 0.3-1.4 \\
\hline \multicolumn{9}{|l|}{Insecticides} \\
\hline Aldrin & 66 & 148 & 1.0 & 0.7-1.5 & 10 & 11 & 2.1 & 0.9-5.1 \\
\hline Carbaryl & 42 & 77 & 1.4 & 0.9-2.0 & 6 & 6 & 2.4 & 0.8-7.6 \\
\hline Carbofuran & 56 & 117 & 1.2 & 0.8-1.7 & 6 & 8 & 1.9 & 0.7-5.6 \\
\hline Chlordane & 67 & 108 & 1.5 & 1.1-2.2 & 9 & 8 & 2.7 & 1.0-7.2 \\
\hline DDT & 158 & 313 & 1.2 & 0.9-1.5 & 11 & 24 & 1.2 & 0.6-2.4 \\
\hline Diazinon & 58 & 98 & 1.6 & 1.1-2.3 & 7 & 9 & 1.9 & 0.7-5.3 \\
\hline Dieldrin & 30 & 63 & 1.2 & 0.7-1.9 & 5 & 3 & 4.2 & 0.98-18.2 \\
\hline Flyspray & 189 & 442 & 0.9 & 0.7-1.1 & 14 & 27 & 1.1 & 0.6-2.2 \\
\hline Fonofos & 41 & 69 & 1.6 & 1.0-2.4 & 8 & 6 & 3.7 & 1.3-10.9 \\
\hline Heptachlor & 44 & 84 & 1.3 & 0.9-2.0 & 6 & 6 & 2.6 & 0.8-8.4 \\
\hline Lindane & 84 & 146 & 1.3 & 0.97-1.8 & 11 & 11 & 2.4 & 1.0-5.7 \\
\hline & 89 & 141 & 1.5 & 1.1-2.1 & 7 & 9 & 1.9 & 0.7-5.1 \\
\hline \multicolumn{9}{|l|}{Herhicides 172 (\({ }^{\text {c }}\)} \\
\hline 2.4-D & 172 & 402 & 1.0 & \(0.8-1.3\) & 17 & 33 & 1.3 & 0.7-2.5 \\
\hline 2.4.5.-T & 36 & 77 & 1.1 & 0.7-1.8 & 7 & 8 & 2.2 & 0.8-6.1 \\
\hline Alachlor & 96 & 210 & 1.1 & 0.8-1.4 & 10 & 14 & 1.7 & 0.8-4.0 \\
\hline Atrazine & 119 & 225 & 1.3 & 0.96-1.6 & 9 & 16 & 1.4 & 0.6-3.3 \\
\hline Butylate & 38 & 75 & 1.1 & 0.7-1.7 & 5 & 6 & 2.0 & 0.6-6.9 \\
\hline Chloroamben & 52 & 103 & 1.1 & \(0.8-1.6\) & 9 & 10 & 2.3 & 0.9-5.7 \\
\hline Cyanazine & 53 & 131 & 0.9 & 0.6-1.3 & 8 & 7 & 2.8 & \(1.0-8.1\) \\
\hline Dicamba & 49 & 106 & 1.0 & 0.7-1.5 & 6 & 7 & 2.0 & 0.6-6.0 \\
\hline Glyphosate & 53 & 91 & 1.4 & 0.98-2.1 & 6 & 12 & 1.2 & 0.4-3.3 \\
\hline Trifluralin & 73 & 168 & 1.0 & 0.7-1.3 & 8 & 10 & 1.9 & 0.7-4.8 \\
\hline
\end{tabular}
\({ }^{1}\) At least 5 cases handled each individual pesticide were included in this analysis. \(-{ }^{2}\) OR adjusted for age, vital status and state. \(-{ }^{3}\) Ref, reference category was nonfarmers without asthma (259 cases, 684 controls) for all ORs.
chlordane, fonofos, lindane, cyanazine) and occurred when either "nonfarmers" or "farmers" was used as the reference.

Although we had limited power for assessing effect modification, there might be synergism between asthma and pesticide exposure for developing NHL. One possible explanation is that there is immune deviation in asthma toward T-helper 2 (Th2) predominance, with elevated IL-4. IL-5 and IL-13, which might inhibit Thl responses that could protect against cancer. \({ }^{24.25}\) This skewing of the immune response toward the Th2 phenotype could exacerbate the effects of the pesticides, which may partly act as carcinogens, and may also inhibit the immune response, acting synergistically with the asthma. Some pesticides might also inhibit a different arm of the immune response, e.g., cytotoxic T lymphocytes or natural killer (NK) cells, \({ }^{26.27}\) so that the combination of asthma and pesticides exposure eliminates more than one mechanism of immunosurveillance. Moreover, IL-13, which is prominent in asthma, can also downregulate cytotoxic T lymphocyte-mediated tumor immunosurveillance, \({ }^{28}\) reducing 2 arms of the immune response to cancer and specifically crippling immunosurveillance against cancer in a murine tumor model.

Various characteristics, such as history of allergy and serum IgE levels, between late-onset and early-onset asthma \({ }^{24}-31\) might be related to higher risk of NHL among individuals diagnosed with asthma over age 30 . Exposure to pesticides may influence the induction and aggravation of asthma through modification of autonomic control of airways. \({ }^{32}\) Associations between asthma and use of cholinesterase-inhibiting pesticides were observed among Canadian farmers \({ }^{33}\) and U.S. pesticide applicators. \({ }^{34}\)

The strengths of our pooled study are a population-based design, high response rates and detailed information on pesticide use and potential etiologic factors for NHL. The relatively large sample size facilitated the simultaneous evaluation of asthma and pesticide use but was still not enough to carefully evaluate individual pesticides and asthma in relation to NHL.

We used self-reported information concerning prior asthma history. The sensitivity of ascertainment of physician-diagnosed asthma has been estimated at about \(68 \%\) and the specificity at about \(94 \%\) when validated against clinical diagnosis. \({ }^{35}\) This type of misclassification is likely to cause underestimation of the asso-
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|c|}{Nonasthmatics} & \multicolumn{3}{|c|}{Asthmatics} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Interaction OR } \\
(95 \% / \mathrm{CD})
\end{gathered}
\]} \\
\hline & Cawes & OR \({ }^{2}\) & 95\% Cl & Cases & OR & 95\% (I) & \\
\hline Any pesticide & & & & & & & \\
\hline No & 137 & 1.0 & Ref \({ }^{3}\) & 3 & 0.7 & 0.2-2.5 & \\
\hline Yes & 423 & 1.0 & 0.8-1.2 & 33 & 1.1 & 0.7-1.7 & 1.6 (0.4-6.2) \\
\hline Crop insecticides & & & & & & & \\
\hline No & 252 & 1.0 & Ref & 12 & 0.9 & 0.5-1.8 & \\
\hline Yes & 239 & 1.2 & 0.9-1.4 & 23 & 2.0 & 1.1-3.5 & \(1.9(0.8-4.6)\) \\
\hline Animal insecticides & & & & & & & \\
\hline No & 143 & 1.0 & Ref & 6 & 0.8 & 0.3-2.1 & \\
\hline Yes & 363 & 1.0 & 0.8-1.3 & 28 & 1.4 & 0.9-2.4 & 1.7 (0.6-4.9) \\
\hline Herbicides & & & & & & & \\
\hline No & 232 & 1.0 & Ref & 12 & 1.0 & 0.5-1.9 & \\
\hline Yes & 260 & 1.1 & 0.9-1.4 & 23 & 1.6 & 0.9-2.8 & 1.4 (0.6-3.4) \\
\hline Fungicides & & & & & & & \\
\hline No & 433 & 1.0 & Ref & 28 & 1.2 & 0.8-1.9 & \\
\hline Yes & 44 & 1.0 & 0.7-1.5 & 5 & 1.5 & 0.5-4.5 & 1.2 (0.4-4.2) \\
\hline
\end{tabular}
\({ }^{1}\) Nonfarmers were excluded from this analysis. \(-{ }^{2}\) OR, adjusted for age, vital status and state. \(-{ }^{3}\) Ref. reference category was nonasthmatic farmers not exposed to each pesticide.

TABLE V-RISKS OF NHI. AMONG ASTHMATIC FARMFRS BY AGF AT HIRST DIAGNOSIS OF ASTHMA AND)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Age at lirst diagnoms
(years)} & \multicolumn{6}{|c|}{Duration of pesticide use} \\
\hline & \multicolumn{3}{|c|}{\(\leq 50\) h percentile} & \multicolumn{3}{|c|}{250h percentile} \\
\hline & Canes & \(\mathrm{OR}^{2}\) & 95\% (l) & Cases & OR & 95\% CI \\
\hline \multicolumn{7}{|l|}{\multirow[t]{2}{*}{Any pesticide}} \\
\hline & 3 & 1.0 & Ref \({ }^{3}\) & 8 & 4.5 & 0.7-27.3 \\
\hline \(>30\) & 6 & 16.3 & 1.7-156.8 & 6 & 5.0 & 0.7-37.1 \\
\hline \multicolumn{7}{|l|}{Crop insecticides 4} \\
\hline \(\leq 30\) & 4 & 1.0 & Ref & 6 & 2.5 & 0.3-19.6 \\
\hline \(>30\) & 3 & 2.3 & 0.2-31.1 & 4 & 14.1 & 0.8-257.7 \\
\hline \multicolumn{7}{|l|}{Animal insecticides} \\
\hline \[
\leq 30
\] & \[
3
\] & 1.0 & Ref & 6 & 2.8 & 0.4-19.5 \\
\hline \(>30\) & 4 & 15.1 & 0.95-240.2 & 8 & 5.0 & 0.7-37.8 \\
\hline \multicolumn{7}{|l|}{Herbicides} \\
\hline \[
<30
\] & ? & 10 & Ref & 6 & 1.7 & 0.120 .4 \\
\hline \(>30\) & 4 & 3.2 & 0.1-99.5 & 4 & 2.3 & \(0.1-51.3\) \\
\hline
\end{tabular}
\({ }^{1}\) Only asthmatic farmers exposed to pesticides were included in this analysis.- \({ }^{2}\) OR adjusted for age, vital status and state. \({ }^{3}\) Ref. reference eategory was asthmatic farmers in the category of \(\leq 30\) years of age at first diagnosis of asthma and \(\leq 50\) th percentile of each pesticide use.
ciation between asthma history and NHL risk. However, we think misclassification per se is unlikely to explain the observed effect of asthma because the reported prevalence of asthma in our study (\(5.5 \%\)) was consistent with that reported in other populations. ranging from \(5 \%\) in the Agricultural Health Study in the United States \({ }^{34}\) to \(4-6 \%\) in rural Saskatchewan in Canada. \({ }^{33.36}\) Asthma prevalence was also similar by self (\(5 \%\)) and proxy (\(6 \%\)) respondents.

Although farmers provide considerably accurate detail regarding past pesticide use, \({ }^{37.39}\) misclassification of exposure is a concern. Use of proxy respondents may introduce nondifferential misclassification bias, \({ }^{40}\) however, responses from proxies are reported to be adequate for epidemiologic studies of pesticides and cancer. \({ }^{41}\) Our analyses based on direct interviews found the same pattern of results as seen for proxy respondents (data not shown). Based on a study of the quality of information on pesticide use provided by farmers or their proxy respondents, \({ }^{42}\) the degree of misclassification was generally in the range observed for other factors obtained by interview in epidemiologic studies of such
factors as diet and use of tobacco and alcohol. Therefore, it appears unlikely that misclassification of exposure could explain the observed increase in the risk of NHL among asthmatics exposed to pesticides.

Differential reporting bias is also a concern in case-control studies and could have resulted from an increased likelihood of cases to remember pesticide exposures compared to controls. However, comparison of reporting by cases and controls regarding pesticide use among our subjects provided no evidence of differential response bias. \({ }^{37}\)

In summary, our findings suggest that the risk of NHL among asthmatics with pesticide exposure may be higher than that among nonasthmatics with pesticide exposure. Considering the widespread use of pesticides and the relatively high prevalence of asthma, further studies, particularly with carefully defined asthma diagnosis and biomarkers, such as cytokine levels and activity of different T and NK cells, are needed to confirm these findings and clarify the mechanisms involved.

\section*{REFERENCES}
1. Parker DM, Whelan SL, Ferlay J, Raymond L, Young J. Cancer incidence in five continents. vol. VII. Lyon: IARC, 1997.
2. Hoover RN. Lymphoma risks in populations with altered immuni-ty-a search for mechanism. Cancer Res 1992:52(Suppl 19): S5477-8.
3. Scherr PA, Mueller NE. Non-Hodgkin's lymphomas. In: Schottenfeld D. Fraumeni JF Jr, eds. Cancer epidemiology and prevention, 2nd ed. New York: Oxford University Press, 1996. 920-45.
4. Bernstein L, Ross RK. Prior medication use and health history as risk factors for non- Hodgkin`s lymphoma: preliminary results from a
case-control study in Los Angeles County. Cancer Res 1992:52(Suppl 19): S5510-5.
5. Holly EA, Lele C, Bracci PM, McGrath MS. Case-control study of non-Hodgkin's lymphoma among women and heterosexual men in the San Francisco Bay area, California. Am J Epidemiol 1999:150:37589.
6. La Vecchia C, Negri E, Franceschi S. Medical history and the risk of non-Hodgkin's lymphomas. Cancer Epidemiol Biomarkers Prev 1992:1:533-6.
7. Vesterinen E, Pukkala E, Timonen T. Aromaa A. Cancer incidence among 78,000 asthmatic patients. Int J Epidemiol 1993:22:976-82.
8. Briggs NC, Levine RS, Brann EA. Allergies and risk of nonHodgkin's lymphoma by subtype. Cancer Epidemiol Biomarkers Prev 2002;11:401-7
9. McWhorter WP. Allergy and risk of cancer. A prospective study using NHANESI follow-up data. Cancer 1988:62:451-5
10. Mills PK, Beeson WL, Fraser GE, Phillips RL. Allergy and cancer: organ site-specific results from the Adventist Health Study. Am J Epidemiol 1992;136:287-95.
11. Pearce N, Bethwaite P. Increasing incidence of non-Hodgkin`s lymphoma: occupational and environmental factors. Cancer Res 1992; 52(Suppl 19):S5496-500.
12. Zahm SH, Blair A. Pesticides and non-Hodgkin's lymphoma. Cancer Res 1992;52(Suppl 19):S5485-8.
13. McDuffie HH, Pahwa P, McLaughlin JR, Spinelli JJ, Fincham S, Dosman JA, Robson D, Skinnider LF, Choi NW. Non-Hodgkin's lymphoma and specific pesticide exposures in men: cross-Canada study of pesticides and health. Cancer Epidemiol Biomarkers Prev 2001:10:1155-63.
14. Zheng T, Zahm SH, Cantor KP, Weisenburger DD, Zhang Y, Blair A. Agricultural exposure to carbamate pesticides and risk of nonHodgkin lymphoma. J Occup Environ Med 2001;43:641-9.
15. Hardell L, Eriksson M, Nordstrom M. Exposure to pesticides as risk factor for non-Hodgkin's lymphoma and hairy cell leukemia: pooled analysis of two Swedish case-control studies. Leuk Lymphoma 2002: 43:1043-9.
16. Colosio C, Corsini E, Barcellini W, Maroni M. Immune parameters in biological monitoring of pesticide exposure: current knowledge and perspectives. Toxicol Lett 1999;108:285-95.
17. Voccia I, Blakley B, Brousseau P, Fournier M. Immunotoxicity of pesticides: a review. Toxicol Ind Health 1999:15:119-32.
18. Klucinski P, Kossmann S, Tustanowski J, Friedek D, KaminskaKolodziej B. Humoral and cellular immunity rates in chemical plant workers producine dust pesticides. Med Sci Monit 2001:7:1270-4.
19. Thrasher JD. Heuser G, Broughton A. Immunological abnormalities in humans chronically exposed to chlorpyrifos. Arch Environ Health 2002:57:181-7.
20. Zahm SH, Weisenburger DD, Babbitt PA, Saal RC, Vaught JB, Cantor KP, Blair A. A case-control study of non-Hodgkin's lymphoma and the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) in eastern Nebraska. Epidemiology 1990;1:349-56.
21. Cantor KP, Blair A. Everett G, Gibson R, Burmeister LF, Brown LM, Schuman L. Dick FR. Pesticides and other agricultural risk factors for non-Hodgkin's lymphoma among men in lowa and Minnesota. Cancer Res 1992:52:2447-55.
22. Hartge P, Brinton LA, Rosenthal JF, Cahill JI, Hoover RN, Waksberg J. Random digit dialing in selecting a population-based control group. Am J Epidemiol 1984;120:825-33.
23. StataCorp. Stata reference manual: release 7. College Station, TX: Stata Press, 2001.
24. Grunig G, Warnock M, Wakil AE, Venkayya R, Brombacher F, Rennick DM, Sheppard D, Mohrs M. Donaldson DD. Locksley RM, Corry DB. Requirement for IL-13 independently of IL-4 in experimental asthma. Science 1998;282:2261-3.
25. Finotto S, Neurath MF, Glickman JN, Qin S, Lehr HA, Green FH, Ackerman K, Haley K, Galle PR, Szabo SJ, Drazen JM, De Sanctis GT, et al. Development of spontaneous airway changes consistent with huntan asthma in mice lacking T-bet. Science 2002;295:336-8.
26. Whaten MM, Hariharan S, Loganathan BG. Phenyltin inhibition of the cytotoxic function of human natural killer cells. Environ Res 2000:84:162-9.
27. Li Q. Nagahara N, Takahashi H, Takeda K. Okumura K, Minami M. Organophosphorus pesticides markedly inhibit the activities of natural killer, cytotoxic T lymphocyte and lymphokine-activated killer: a proposed inhibiting mechanism via granzyme inhibition. Toxicology 2002:172:181-90
28. Terabe M, Matsui S, Noben-Trauth N, Chen H, Watson C, Donaldson DD, Carbone DP, Paul WE, Berzofsky JA. NKT cell-mediated repression of tumor immunosurveillance by IL-13 and the IL-4RSTAT6 pathway. Nat Immunol 2000:1:515-20.
29. Bauer BA, Reed CE, Yunginger JW, Wollan PC, Silverstein MD Incidence and outcomes of asthma in the elderly. A population-based study in Rochester, Minnesota. Chest 1997:111:303-10.
30. Papi A, Corbetta L. Fabbri LM. What can we learn from late-onset and occupational asthma? Clin Exp Allergy 1998:28(Suppl 5):S174 80.
31. Kitch BT, Levy BD, Fanta CH. Late onset asthma: epidemiology, diagnosis and treatment. Drugs Aging 2000:17:385-97.
32. Barnes PJ. Is asthma a nervous disease? The Parker B. Francis Lectureship. Chest 1995;107(Supp1 3):S119-25.
33. Senthilselvan A, McDuffie HH, Dosman JA. Association of asthma with use of pesticides. Results of a cross-sectional survey of farmers. Am Rev Respir Dis 1992;146:884-7.
34. Hoppin JA, Umbach DM, London SJ, Alavanja MC, Sandler DP Chemical predictors of wheeze among farmer pesticide applicators in the Agricultural Health Study. Am J Respir Crit Care Med 2002;165: 683-9.
35. Toren K, Brisman J, Jarvholm B. Asthma and asthma-like symptoms in adults assessed by questionnaires. A literature review. Chest 1993; 104:600-8.
36. Masley ML, Semchuk KM, Senthilselvan A, McDuffie HH, Hanke P Dosman JA, Cessna AJ, Crossley MF, Irvine DG, Rosenberg AM, Hagel LM. Health and environment of rural families: results of a Community Canvass survey in the Prairie Ecosystem Study (PECOS). J Agric Saf Health 2000;6:103-15.
37. Blair A, Zahm SH. Patterns of pesticide use among farmers: implications for epidemiologic research. Epidemiology 1003:4:55 62.
38. Blair A, Tarone R, Sandler D. Lynch CF. Rowland A, Wintersteen W, Steen WC, Samanic C, Dosemeci M, Alavanja MC. Reliability of reporting on life-style and agricultural factors by a sample of participants in the Agricultural Health Study from Iowa. Epidemiology 2002:13:94-9
39. Hoppin JA. Yucel F. Dosemeci M, Sandler DP. Accuracy of selfreported pesticide use duration information from licensed pesticide applicators in the Agricultural Health Study. J Expo Anal Environ Epidemiol 2002:12:313-8.
40. Johnson RA, Mandel IS, Gibson RW, Mandel JH, Bender AP, Gunderson PD, Renier CM. Data on prior pesticide use collected from self- and proxy respondents. Epidemiology 1993;4:157-64.
41. Brown LM, Dosemeci M. Blair A, Burmeister L. Comparability of data obtained from farmers and surrogate respondents on use of agricultural pesticides. Aın J Epidemiol 1991:134:348-55.
42. Blair A, Kross B, Stewart PA. Ogilivie L, Falk R, Popendorf W, Ward MH. Zahm SH. Comparability of information on pesticide use obtained from farmers and their proxy respondents. J Agric Saf Health 1995:1:165-76.

\title{
Cancer Epidemiology, Biomarkers \& Prevention
}

\section*{Non-Hodgkin's Lymphoma and Specific Pesticide Exposures in Men : Cross-Canada Study of Pesticides and Health}

Helen H. McDuffie, Punam Pahwa, John R. McLaughlin, et al.
Cancer Epidemiol Biomarkers Prev 2001;10:1155-1163. Published online November 1, 2001.

Updated Version Access the most recent version of this article at: http://cebp. aacrjournals.org/content/10/11/1155

Cited Articles This article cites 36 articles, 22 of which you can access for free at: http://cebp.aacrjournals. org/content/10/11/1155.full.html\#ref-list-1
Citing Articles This article has been cited by 17 HighWire-hosted articles. Access the articles at: http://cebp.aacrjournals.org/content/10/11/1155.full.htmi\#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.
Reprints and Subscriptions

To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.

\title{
Non-Hodgkin's Lymphoma and Specific Pesticide Exposures in Men: Cross-Canada Study of Pesticides and Health \({ }^{1}\)
}

\author{
Helen H. McDuffie, \({ }^{2}\) Punam Pahwa, John R. McLaughlin, John J. Spinelli, Shirley Fincham, James A. Dosman, Diane Robson, Leo F. Skinnider, Norman W. Choi \({ }^{3}\) \\ Centre for Agricultural Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 0W8 [H. H. M., P. P., J. A. D.]; National Cancer Institute or Canada, Epidemiology Unit, University of Toronto, Toronto, Ontario, M5S 1A8 [J. R. M.]; Centre for Health Evaluation and Outcome Sciences, St. Pauls Hospital, Vancouver, British Columbia, V6Z 1 Y6 [J. S.]; Alberta Cancer Board, Division of Epidemiology, Prevention and Screening, Edmonton, Alberta, T6G IZ2 [S. F.]; Saskatchewan Cancer Agency, Allan Blair Memorial Centre, Regina, Saskatchewan, S4T 7T1 [D. R.]; Department of Pathology, University of Saskatchewan, Saskatoon, Saskatchewan, S7N OW8 [L. F. S.]; and Manitoba Cancer Treatment and Research Foundation, Winnipeg, Manitoba, R3E 0V9 [N. W. C.], Canada
}

\begin{abstract}
Our objective in the study was to investigate the putative associations of specific pesticides with non-Hodgkin's Lymphoma [NHL; International Classification of Diseases, version 9 (ICD-9) 200, 202]. We conducted a Canadian multicenter population-based incident, case (\(n=517\))-control (\(n=1506\)) study among men in a diversity of occupations using an initial postal questionnaire followed by a telephone interview for those reporting pesticide exposure of \(10 \mathrm{~h} /\) year or more, and a \(15 \%\) random sample of the remainder. Adjusted odds ratios (ORs) were computed using conditional logistic regression stratified by the matching variables of age and province of residence, and subsequently adjusted for statistically significant medical variables (bistory of measles, mumps, cancer, allergy desensitization treatment, and a positive history of cancer in first-degree relatives). We found that among major chemical classes of herbicides, the risk of NHL was statistically significantly increased by exposure to phenoxyberbicides [OR, 1.38; 95\% confidence interval (Cl), 1.06-1.81] and to dicamba (OR, 1.88; 95\% CI, 1.32-2.68). Exposure to carbamate (OR, 1.92; 95\% CI, 1.22-3.04) and to organophosphorus insecticides (OR, 1.73; 95\% CI, 1.27-2.36), amide fungicides, and the fumigant carbon tetrachloride (OR, 2.42; 95\% CI, 1.19-5.14) statistically significantly increased risk. Among individual
\end{abstract}

\footnotetext{
\({ }^{1}\) This research was funded by Health Canada Grant 6608-1258, the British Columbia Health Research Foundation, and the Centre for Agricultural Medicine, University of Saskatchewan.
\({ }^{2}\) To whom requests for reprints should addressed, at Centre for Agricultural Medicine, 103 Hospital Drive, P. O. Box 120, Royal University Hospital, Saskatoon, S. K., S7N 0W8, Canada. Phone: (306) 966-6154; Fax: (306) 966-8799; E-mail: mcduffie@sask usask ca.
Received \(12 / 20 / 00\); revised \(8 / 13 / 01\); accepted \(8 / 22 / 01\).
The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
}
compounds, in multivariate analyses, the risk of NHL was statistically significantly increased by exposure to the herbicides 2,4 -dichlorophenoxyacetic acid (2,4-D; OR, 1.32; 95\% CI, 1.01-1.73), mecoprop (OR, 2.33; 95\% CI, 1.58-3.44), and dicamba (OR, 1.68; 95\% CI, 1.00-2.81); to the insecticides malathion (OR, 1.83; 95\% CI, 1.312.55), 1,1,1-trichloro-2,2-bis (4-chlorophenyl) ethane (DDT), carbaryl (OR, 2.11; 95\% CI, 1.21-3.69), aldrin, and lindane; and to the fungicides captan and sulfur compounds. In additional multivariate models, which included exposure to other major chemical classes or individual pesticides, personal antecedent cancer, a history of cancer among first-degree relatives, and exposure to mixtures containing dicamba (OR, 1.96; 95\% CI, 1.40-2.75) or to mecoprop (OR, 2.22; 95\% CI, 1.493.29) and to aldrin (\(\mathrm{OR}, 3.42\); 95\% CI, \(1.18-9.95\)) were significant independent predictors of an increased risk for NHL, whereas a personal history of measies and of allergy desensitization treatments lowered the risk.
We concluded that NHL was associated with specific pesticides after adjustment for other independent predictors.

\section*{Introduction}
\(\mathrm{NHL}^{4}\) has been epidemiologically associated with farming (18), with certain farm practices (9), with pesticide exposure (\(10-13\)), and with certain other occupations (14-17). The term pesticide is used to denote a wide variety of chemicals used to destroy weeds (herbicides), insects (insecticides), and mold (fungicides). Such chemicals are widely used in agriculture, horticulture, and forestry, and in the secondary processing of the products of these primary industries. Many of the NHL and pesticide case-control or cohort studies focused either on a small geographical area \((1,2,4)\) or on one occupational group (\(2,4,5,9\)). Our study encompassed six provinces of Canada with diverse agricultural practices and a number of different types of occupational and nonoccupational exposures to pesticides. Non-Hodgkin's lymphoma incidence rates have been increasing in Canada for the last 25 years reflecting a worldwide trend (18) that has not been explained by improved diagnostic (19) methods or record-keeping (20).

\section*{Materials and Methods}

Study Population. We conducted a population-based casecontrol study among men resident in six Canadian provinces to

\footnotetext{
\({ }^{3}\) Dr. Choi was a collaborator who is now deceased.
\({ }^{4}\) The abbreviations used are: NHL, non-Hodgkin's lymphoma; DDT, 1,1,1-trichloro-2,2-bis (4-chlorophenyl) elhane; STS, sof tissue sarcoma; HD, Hodgkin's disease; MM, multiple myeloma; 2,4-D, 2,4-dichlorophenoxyacetic acid; MCPA, 4-chloro-2-methylphenoxyacetic acid; 2,4,5-T, 2,4,5-trichlorophenoxyacetic acid; OR, odds ratio; \(\mathrm{OR}_{\text {adj }}\), adjusted \(\mathrm{OR} ; 95 \% \mathrm{CI}, 95 \%\) confidence interval.
}
test the pesticide-exposure hypothesis related to four rare tumors. Incident cases among men, ages 19 years or over, with a first diagnosis of STS, HD, NHL [International Classification of Diseases, version 9 (ICD-9), code 200 or 202], or MM diagnosed between September 1, 1991, and December 31, 1994, were eligible. To balance the number of cases by geographical rcgions, each province was assigned a target number of cases in each tumor category. Each province ceased to ascertain cases when their preassigned target was reached. This report is based solely on cases diagnosed with NHL. Cases were ascertained from provincial Cancer Registries except in Quebec, for which hospital ascertainment was used. The Cancer Registries and hospitals provided information, including pathology reports, to confirm the diagnosis. Pathological material was revicwed and classified according to the working formulation by the reference pathologist. Misclassified and ineligible (e.g., Kaposi's sarcoma, known HIV-positive) cases were excluded. Subjects for whom pathological material was unavailable remained in the study. After physician consent was received, postal questionnaires and informed consent forms were mailed to potential cases. Surrogates for deceased cases were not contacted.

Men, ages 19 years and older, selected at random within age constraints from the provincial Health Insurance records (Alberta, Saskatchewan, Manitoba, Quebec), computerized telephone listings (Ontario), or voters' lists (British Columbia) were potential controls. The random control subject selection was stratified by age \(\pm 2\) years to be comparable with the age distribution of the entire case group (STS, HD, NHL, and MM) within each province. Postal questionnaires and informed consent forms were mailed to potential controls. Surrogates for deceased persons were ineligible as controls. All of the participating controi subjects were used in the statistical analyses of each cancer site.
Pilot Study. We conducted a pilot study (21) in each provincial region to test study procedures and to determine an operational definition of pesticide exposure to distinguish between environmental (which includes bystander and incidental) and more intensive exposure. Nonoccupational use of pesticides (home, garden, hobby) was included. There were few individuals who were completely free of being exposed to pesticides. Therefore, we constructed graphs that demonstrated that the most efficient definition of pesticide exposure, which discriminated (a) between incidental, bystander, and environmental exposure as compared with more intensive exposure and (b) between cases and controls, was a cumulative total of 10 h per year to any combination of pesticides. The screening questions in the postal questionnaire werc used to trigger telephone interviews among those with cumulative exposure of \(\geq 10 \mathrm{~h} /\) year to any combination of herbicides, insecticides, fungicides, fumigants, and/or algicides. The 68 cases and 103 controls who participated in the pilot study are not included in this report.
Pesticides. Pesticide is a generic term describing a variety of compounds of diverse chemical structures and biological modes of action. In this study, the term pesticide refers primarily to herbicides, insecticides, fungicides, and fumigants.

We conducted a validation pilot study of the modified questionnaires (21). Volunteer farmers (\(n=27\)) completed the qucstionnaires and granted permission for us to access their records of purchases through their local agrochemical supplier. The concordance between the two sources was excellent and discordance was explainable by (\(a\)) the farmer paid in cash and the supplier discarded the record; (b) the farmer purchased the agrochemical in the United States, and, therefore, the local
supplier did not have a record; (c) the farmer paid for professional ground or aerial spraying, and the account was listed in another name; or (d) the supplier had destroyed the records.
Questionnaires. The questionnaires were modified versions of the telephone interview questionnaire that was used in studies of pesticide exposure and rare tumors in Kansas (11) and Nebraska (13). With permission, we modified the questionnaire to create postal and telephone interview questionnaires. To control for the effects of other variables known or suspected to be associated with the development of NHL after conducting an extensive literature review, we used the postal questionnaire to capture demographic characteristics, antecedent medical history, family history of cancer, detailed lifetime job history, and occupational exposure history to selected substances, accidental pesticide spills, and use of protective equipment, as well as details of cigarette smoking history. The telephone questionnaire characterized exposure to individual pesticides. The pesticide data were collected at several levels beginning with the broadest categories (e.g., minimal exposure, occupations with potential pesticide exposure) and progressing sequentially to major classes (e.g., herbicides); to chemical groups (e.g., phenoxy herbicides); and finally to individual compounds (e.g., 2,4-D, MCPA, and 2,4,5-T).

In this report, we focus on lifetime exposure to individual pesticides classified by active ingredients and to major chemical classes of herbicides, insecticides, fungicides, and fumigants. We classified exposure by the number of herbicides, insccticides, fungicides, and fumigants reported by cases and controls as well as by the number of days per year of exposure to individual compounds.

Each subject who reported 10 h per year or more of exposure to pesticides (any combination of compounds) as defincd by the screening questions, and a \(15 \%\) random sample of the remainder was mailed a list of pesticides (both chemical and brand names) and an information letter. Each subject was subsequently telephoned to obtain details of pesticide use.

The listed pesticides were chosen for inclusion (22-25): (a) if the compound was ever registered for use in Canada and reviewed by the IARC; (b) if the pesticide was recently banned or restricted in Canada by the federal licensing agency; or (c) if the pesticide was commonly used in Canada for specific purposes.

To ensure consistency, we developed and distributed manuals for provincial study coordinators, interviewers, and data managers. Before commencing data collection, we held a 2 -day workshop with provincial coordinators to review data collection procedures and policies, to practice interviewing skills, and to review SPSS-DE (Statistical Packages for the Social Sciences-Data Entry), \({ }^{5}\) the custom data entry program that we used On receipt of a postal questionnaire, the provincial coordinator reviewed it for intemal consistency and completeness. Data were computer-entered and verified in the province of origin, transported to the coordinating center, and rechecked for completeness, after which statistical analyses were performed.

Copies of the questionnaires and additional information on pesticides that were not included in this report are available from the corresponding author.
Pathology Review. Pathologists in participating provinces were requested to send blocks or slides of tumor tissue removed at surgery to the reference pathologist. Ten subjects with Ka-

\footnotetext{
\({ }^{5}\) SPSS-Data Entry II Statistical Package for the Social Sciences: Statistical Data Analysis. SPSS Inc., Chicago, Illinois, 1998.
}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Table 1 Comparisons of demographic, antecedent personal medical, general pesticide exposures and cigarette smoking history between cases of NHL and control subjects based on the postal questionnaire} \\
\hline & \multicolumn{2}{|c|}{\(\mathrm{NHL}, n=517\)} & \multicolumn{2}{|l|}{Controls, \(n=1506\)} & \multirow[b]{2}{*}{OR \({ }^{\text {a }}\) (95\% CI)} \\
\hline & \(n\) & \% & \(n\) & \% & \\
\hline \multicolumn{6}{|l|}{Age, yr} \\
\hline \(<30\) & 64 & 12.4 & 356 & 23.6 & \\
\hline 30-39 & 87 & 16.8 & 255 & 16.9 & \\
\hline 40-49 & 111 & 21.5 & 238 & 15.8 & \\
\hline 50-59 & 143 & 27.7 & 370 & 25.6 & \\
\hline \(>60\) & 112 & 21.7 & 287 & 19.0 & \\
\hline Mean \(\pm\) SD & \(57.7 \pm 14\) & & \(55.0 \pm 16\) & & \\
\hline \multicolumn{6}{|l|}{Residence on a farm at any time} \\
\hline Yes & 235 & 45.5 & 673 & 44.7 & \\
\hline No (reference) & 279 & 54.0 & 828 & 55.0 & 1.06 (0.86-1.20) \\
\hline Missing & 3 & 0.6 & 5 & 0.3 & \\
\hline \multicolumn{6}{|l|}{Pesticide exposure (screening question)} \\
\hline \(<10 \mathrm{~h} / \mathrm{yr}\) (reference) & 379 & 73.3 & 1142 & 75.8 & \\
\hline \(\geq 10 \mathrm{~h} / \mathrm{yr}\) & 138 & 26.7 & 364 & 24.2 & 1.22 (0.96-1.55) \\
\hline \multicolumn{6}{|l|}{Smoking History} \\
\hline Nonsmoker (reference) & 160 & 30.9 & 526 & 34.9 & \\
\hline Ex-smoker & 254 & 49.1 & 648 & 43.0 & 1.10 (0.86-1.41) \\
\hline Current smoker & 91 & 17.6 & 298 & 19.8 & 0.98 (0.72-1.33) \\
\hline Missing data & 12 & 2.3 & 34 & 2.3 & \\
\hline Current or ex-smoker & 345 & 66.7 & 946 & 62.8 & 1.06 (0.86-1.20) \\
\hline \multicolumn{6}{|l|}{Medical History \({ }^{b}\)} \\
\hline Measles (yes) & 251 & 48.5 & 888 & 59.0 & 0.64 (0.51-0.79) \\
\hline Mumps (yes) & 194 & 37.5 & 588 & 39.0 & 0.75 (0.60-0.93) \\
\hline Previous cancer (yes) & 73 & 14.1 & 87 & 5.8 & 2.43 (1.71-3.44) \\
\hline Skin-prick allergy test & 34 & 6.6 & 196 & 13.0 & 0.52 (0.34-0.76) \\
\hline Allergy desensitization shots (yes) & 18 & 3.5 & 114 & 7.6 & 0.49 (0.29-0.83) \\
\hline Family history of cancer any firstdegree relative (yes) & 219 & 42.4 & 497 & 33.0 & 1.31 (1.05-1.62) \\
\hline
\end{tabular}
\({ }^{a}\) OR stralified by age and by province of residence.
\({ }^{b}\) Also tested and found to be unassociated: acne; asthma; celiac disease; chickenpox; diabetes; hay fever, mononucleosis; rheumatic fever; rheumatoid arthritis; ringworm; shingles; syphilis; tuberculosis; urinary tract infections; whooping cough; allergies; drug treatment for overactive thyroid; treatment for head lice, body lice, or scabies; medical implants; drug treatment for epilepsy; tonsillectomy; positive allergy prick skin test, patch skin test, or positive patch skin test for allergy.
posi's sarcoma were omitted on the basis of the etiological association with HIV infection. Any other known HIV-positive subjects had been previously excluded. Eighty-four \% (436 of 517) of the NHL tumors were validated. Because of a change midstudy in some hospitals' policies regarding supplying pathological material without charge, we were unable to obtain the remaining samples.
Statistical Analyses. Data from the postal and telephone interviews were merged by using the identification number. Of the individuals selected randomly for a telephone interview, most had used one or no chemical pesticides. We reviewed these data and decided to include them in the statistical analyses because they might be informative with respect to low levels of exposure to pesticides and their inclusion maximized our sample size with respect to other known or suspected risk factors for NHL. We conducted descriptive analyses of each variable, which included, where applicable, frequencies, ranges, means \(\pm\) SD, and median values for cases and controls separately.

To evaluate putative risk factors for NHL, conditional logistic regression was used to compute ORs and \(95 \%\) CIs, stratifying by age groups and province of residence. \({ }^{6}\) ORs were calculated for categorical variables related to medical history that were selected based on previous studies (e.g., measles,

\footnotetext{
\({ }^{6}\) EGRET Intuitive Software for DOS Micros Statistics and Epidemiology Research Corporation, 1993.
}
mumps, previous cancer, allergy desensitization treatment, skin prick allergy test); pesticide exposure (\(<10\) and \(\geq 10 \mathrm{~h}\) per year); and smoking history. Using conditional logistic regression, ORs were also calculated for (a) major chemical classes of herbicides, insecticides, fungicides, and fumigants; and (b) for individual active chemicals. The statistically significant (\(P<0.05\)) medical variables were used to adjust the effect of exposure to pesticides classified by major chemical group and by individual active chemical. Given the study sample size and the case-control ratio, a priori power calculations indicated that we had sufficient statistical power to detect an OR of 2 when at least \(1 \%\) of the controls was exposed to a specific pesticide or chemical class of pesticide. Conditional logistic analyses (26) were conducted that retained in the model, all covariates for which the \(P\) was \(\leq .05\). The criterion for entry into models was a \(P \leq 0.20\) in bivariate age and province stratified analyses.

We created dose-response levels based on days/year of personally mixing or applying selected herbicides, insecticides, fungicides, and fumigants. We reported ORs stratified by age and province of residence. We created exposure categories for exposures to multiple different herbicides, insecticides, fungicides, and fumigants. For these analyses, the unexposed category was specific to the class of pesticide. We also created exposure categories for exposures to combinations of herbicides, insecticides, fungicides, and fumigants for which the reference group did not report exposure to any of those classes of pesticides.

\({ }^{a}\) ORs calculated with strata for the variables of age and province of residence.
\({ }^{b}\) ORs adjusted for statistically significant medical variables (history of measles, mumps, cancer, allergy desensitization shots, and a positive family history of cancer in
a first-degree relative), and with strata for the variables of age and province of residence.
\({ }^{c}\) Phenoxyherbicides include the phenoxyacetic acids (e.g., 2,4-D and MCPA), the phenoxy-2-propionic acids (e.g., mecoprop); the phenoxybutanoic acids (e.g., 2,4-DB) and other phenoxyalkanoic acids (e.g., diclofopmethyl).
\({ }^{d}\) Glyphosate is the only phosphonic acid herbicide reported by more than \(1 \%\) of responders. Round-up, Touchdown, Victor, Wrangler, Laredo do not include dicamba, and Rustler is a mixture of dicamba and glyphosate.
- Thiocarbamate herbicides include diallate and triallate.
\({ }^{\prime}\) Bromoxynil is the only phenol herbicide included.
\({ }^{g}\) Dicamba as a major chemical class includes Banvel, and Target, and a mixture of dicamba and glyphosate (Rustler), or mixtures of dicamba, 2,4-D, and mecoprop (Dynel
DS, Killex).
\({ }^{\text {b }}\) Dinitroaniline herbicides include ethalfluralin and trifluralin.

Ethics. The protocol, letters of informed consent, questionnaires, and all other correspondence with potential subjects were approved by the relevant agencies in each province. All of the information that could be used to identify individuals remained within the province of origin under the control of the provincial principal investigators.

\section*{Results}

Data from postal questionnaires based on responses from 517 NHL cases (\(67.1 \%\) of those contacted) and 1506 control subjects (\(48.0 \%\) of those contacted) were analyzed. Similar percentages of potential subjects resident in rural and urban areas responded. There were higher percentages of responders in the middle-age group than at either extreme among both cases and controls. Detailed information related to their pesticide exposure history was obtained by telephone interview from 119 NHL cases and 301 control subjects who indicated pesticide exposure of 10 h per year or more. A \(15 \%\) random sample of cases and controls who indicated pesticide exposure of less than \(10 \mathrm{~h} /\) year was also interviewed by telephone, resulting in detailed pesticide exposure information on 60 cases of NHL and on 155 controls. The total telephone interviewed sample consisted of 179 cases of NHL and 456 controls.

A summary of selected demographic, antecedent personal and familial medical history, general pesticide exposure as measured by the screening questions, and cigarette smoking
history comparisons of NHL cases and population-based controls is shown in Table 1. Because all of the controls (agematched for STS, MM, HD, and NHL) were used in the analysis, cases were older than controls. Cases and controls were similar in their smoking patterns. Cases were less likely to have a history of measles or mumps and more likely to have a personal history of a previous primary cancer. Cases were more likely than controls to have a positive family history of cancer, whereas more controls had undergone allergy desensitization injections. A slightly higher proportion of cases than controls indicated cumulative exposure to pesticides of \(\geq 10 \mathrm{~h}\) per year.

Table 2 summarizes reported exposure to herbicides classified by major chemical classes (phenoxy, phosphonic acid, thiocarbamates, phenols, dicamba, and dinitroaniline) and by individual compounds for which at least \(1 \%\) of responders reported exposure. ORs are also shown after adjustment for the statistically significant \((P<0.05)\) variables reviewed in Table 1 , which included a history of measles, mumps, cancer, and allergy desensitization shots and a positive history of cancer in a first-degree relative. Cases experienced a significantly higher frequency of exposure to phenoxyherbicides, to dicamba or a mixture including dicamba, to \(2,4-\mathrm{D}\), and to mecoprop.

Table 3 summarizes the insecticide exposure data. Exposure to two major chemical classes, carbamates and organophosphates, was statistically significantly associated with NHL, whereas exposure to organochlorines as a group was not.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Major chemical classes} & \multicolumn{2}{|r|}{NHL \(n=517\)} & \multicolumn{2}{|l|}{Controls \(n=1506\)} & \multirow{2}{*}{OR \({ }^{\text {a }}\) (95\% CI)} & \multirow{2}{*}{OR \({ }_{\text {ajo }}{ }^{\text {b }}\) (95\% CI)} \\
\hline & \(n\) exposed & \% exposed & \(n\) exposed & \% exposed & & \\
\hline Carbamates, \({ }^{\text {c }}\) exposed & 37 & 7.2 & 60 & 4.0 & 1.95 (1.25-3.05) & 1.92 (1.22-3.04) \\
\hline \multicolumn{7}{|l|}{Individual carbamate insecticides} \\
\hline Carbaryl & 25 & 4.8 & 34 & 2.3 & 2.05 (1.18-3.55) & 2.11 (1.21-3.69) \\
\hline Cartofuran & 9 & 1.7 & 18 & 1.2 & 1.58 (0.68-3.67) & 1.64 (0.70-3.85) \\
\hline Methomyl & 6 & 1.2 & 13 & 0.9 & 1.86 (0.67-5.17) & 1.65 (0.54-5.03) \\
\hline Organochlorine, (1) \({ }^{\text {d }}\) exposed & 50 & 9.7 & 134 & 8.9 & 1.16 (0.81-1.66) & 1.27 (0.87-1.84) \\
\hline \multicolumn{7}{|l|}{Individual organochlorine (1) insecticides} \\
\hline Chlordane & 36 & 7.0 & 105 & 7.0 & 1.06 (0.71-1.59) & 1.11 (0.74-1.69) \\
\hline Lindane & 15 & 2.9 & 23 & 1.5 & 2.05 (1.01-4.16) & 2.06 (1.01-4.22) \\
\hline Aldrin & 10 & 1.9 & 6 & 0.4 & 3.81 (1.34-10.79) & 4.19 (1.48-11.96) \\
\hline Organochlorine (2) diphenylchloridese exposed & 86 & 16.6 & 233 & 15.5 & 1.24 (0.94-1.65) & 1.21 (0.90-1.62) \\
\hline \multicolumn{7}{|l|}{Individual organochlorine (2) diphenylchiorides} \\
\hline Methoxychlor & 65 & 12.6 & 201 & 13.3 & 1.08 (0.79-1.47) & 1.02 (0.74-1.41) \\
\hline DDT & 32 & 6.2 & 59 & 3.9 & 1.63 (1.03-2.57) & 1.73 (1.08-2.76) \\
\hline Orgarophosphorus,' exposed & 90 & 17.4 & 167 & 11.1 & 1.69 (1.26-2.27) & 1.73 (1.27-2.36) \\
\hline \multicolumn{7}{|l|}{Individual organophosphorus insecticides} \\
\hline Malathion & 72 & 13.9 & 127 & 8.4 & 1.77 (1.28-2.46) & 1.83 (1.31-2.55) \\
\hline Dimethoate & 22 & 4.3 & 50 & 3.3 & 1.20 (0.71-2.03) & 1.20 (0.70-2.06) \\
\hline Diazinon & 18 & 3.5 & 28 & 1.9 & 1.72 (0.92-3.19) & 1.69 (0.88-3.24) \\
\hline
\end{tabular}
\({ }^{a}\) ORs calculated with strata for the variables of age and province of residence.
\({ }^{\text {b }}\) ORs adjusted for statistically significant medical variables (history of measles, mumps, cancer, aliergy desensitization shots and a positive family history of cancer in a first-degree relative), and with strata for the variables of age and province of residence.
\({ }^{c}\) Carbamate insecticides include carbaryl, carbofuran, and methomyl.
\({ }^{\text {d O }}\) Organochlorine insecticides class one includes aldrin; chlordane; dieldrin; endrin; heptachlor; lindane; and a mixture of lindane, carbathiin, and thiram (Vitavex)
- Organochlorine (2) diphenylchloride insecticides include DDT and methoxychlor.
\({ }^{\prime}\) Organophosphorus insecticides include malathion, chlorpyrifos, diazinon, dimethoate, parathion, methidathion, and trichlorfon.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Major chemical classes} & \multicolumn{2}{|c|}{NHL \(n=517\)} & \multicolumn{2}{|l|}{Controls \(n=1506\)} & \multirow{2}{*}{OR \({ }^{\text {(}}\) (95\% CI)} & \multirow[b]{2}{*}{\(\mathrm{OR}_{\text {adj }}{ }^{\text {b }}\) (95\% Cl \()\)} \\
\hline & \(n\) exposed & \% exposed & \(n\) exposed & \% exposed & & \\
\hline Amide, \({ }^{c}\) exposed & 30 & 5.8 & 58 & 3.9 & 1.69 (1.05-2.73) & 1.70 (1.04-2.78) \\
\hline \multicolumn{7}{|l|}{Individual amide fungicides} \\
\hline Captan & 20 & 3.9 & 24 & 1.6 & 2.48 (1.33-4.63) & 2.51 (1.32-4.76) \\
\hline Vitavax & 10 & 1.9 & 39 & 2.6 & 0.88 (0.42-1.85) & 0.88 (0.41-1.87) \\
\hline Aldehyde, \({ }^{\text {d }}\) exposed & 7 & 1.4 & 25 & 1.7 & 0.85 (0.35-2.07) & 0.92 (0.37-2.29) \\
\hline \multicolumn{7}{|l|}{Individual aldehyde fungicides} \\
\hline Formaldehyde & 7 & 1.4 & 255 & 1.7 & 0.85 (0.35-2.07) & 0.92 (0.37-2.29) \\
\hline Mercury Containing, exposed & 18 & 3.5 & 48 & 3.2 & 1.09 (0.61-1.95) & 1.28 (0.70-2.27) \\
\hline \multicolumn{7}{|l|}{Mercury-containing fungicides} \\
\hline Mercury dust (\(n\) exposed) & 15 & 2.9 & 39 & 2.6 & 1.08 (0.57-2.04) & 1.23 (0.64-2.35) \\
\hline Mercury liquid (\(n\) exposed) & 8 & 1.5 & 22 & 1.5 & 1.15 (0.49-2.69) & 1.40 (0.74-3.22) \\
\hline Sulphur Compounds & 17 & 3.3 & 21 & 1.4 & 2.26 (1.16-4.40) & 2.80 (1.41-5.57) \\
\hline
\end{tabular}
a ORs calculated with strata for the variables of age and province of residence.
\({ }^{b}\) ORs adjusted for statistically significant medical variables (history of measles, mumps, cancer, allergy desensitization shots, and a positive family history of cancer in a first-degree relative), and with strata for the variables of age and province of residence.
\({ }^{\text {r }}\) Amide fungicides include captan and a mixture of carbathiin, thiram, and lindane (Vitavax).
\({ }^{d}\) Aldehyde fungicides include formaldehyde and a mixture of formaldehyde and iprodione (Rovral Flo).
- Mercury-containing fungicides include mercury dusts (Ceresan, Reytosan, and Agrox) and mercury liquids (Panogen, Leytosol, and PMAS).

Among individual carbamate compounds, exposure to carbaryl was statistically significantly associated with NHL. Among organochlorines, exposure to lindane, to aldrin, and to DDT was significantly associated with NHL. Malathion was the only individual organophosphate exposure statistically significantly associated with NHL.

Exposure to fungicides is summarized in Table 4. The fungicides with an amide group (\(\mathrm{OR}_{\text {edj, }} 1.70 ; 95 \% \mathrm{Cl}, 1.04-\) 2.78) were associated with NHL, whereas aldehydes and those
containing mercury were not. Among individual amidecontaining compounds, exposure to captan (\(\mathrm{OR}_{\text {adj; }}\) 2.51; \(95 \%\) \(\mathrm{Cl}, 1.32-4.76\)) was associated with NHL.

Malathion used as a fumigant was not associated with NHL (Table 5). There were fewer users of malathion as a fumigant compared with its use on crops. Carbon tetrachloride fumigant exposure (\(\mathrm{OR}_{\text {adj }}, 2.42 ; 95 \% \mathrm{CI}, 1.19-5.14\)) was associated with NHL.

Table 6 shows the results of a conditional logistic regres-
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Table 5 Frequency of exposure to fumigants: individual compounds} \\
\hline \multirow[b]{2}{*}{Individual compounds+} & \multicolumn{2}{|c|}{NHL \(n=517\)} & \multicolumn{2}{|l|}{Controls \(n=1506\)} & \multirow[b]{2}{*}{OR \({ }^{\text {c }}\) (\(95 \% \mathrm{Cl}\))} & \multirow[b]{2}{*}{OR \({ }_{\text {edj }}{ }^{\text {b }}\) (95\% Cl \()\)} \\
\hline & \(n\) exposed & \% exposed & \(n\) exposed & \% exposed & & \\
\hline Malathion \({ }^{\text {c }}\) & 12 & 2.3 & 23 & 1.5 & 1.49 (0.72-3.11) & 1.54 (0.74-3.22) \\
\hline Carbon tetrachloride \({ }^{\text {d }}\) & 13 & 2.5 & 18 & 1.2 & 2.13 (1.02-4.47) & 2.42 (1.19-5.14) \\
\hline
\end{tabular}
\({ }^{a}\) ORs calculated with strata for the variables age and province of residence.
\({ }^{b}\) ORs adjusted for statistically significant medical variables (history of measles, mumps, cancer, allergy desensitization shots, and a positive family history of cancer in a first-degree relative) and with strata for the variables age and province of residence.
\({ }^{c}\) Malathion is an organophosphorus insecticide which has been used indoors as a fumigant.
\({ }^{d}\) Carbon tetrachloride was used as a grain fumigant.
Table 6 Most parsimonious model: conditional logistic regression analyses
that contained major chemical classes of pesticides and important covariates
\[
(P<0.05)
\]

Phenoxyherbicides as a group, carbamate, and organophosphate insecticides, amide group containing fungicides, and carton tetrachloride users/nonusers were included in the initial multivariate model and found not to contribute significantly to the risk of NHL.
\begin{tabular}{lrr}
\hline \multicolumn{1}{c}{ Variable } & \multicolumn{1}{c}{\begin{tabular}{c}
Parameter \\
Estimate \(\pm\) SE
\end{tabular}} & OR (95\% CI) \\
\hline Measles (yes) & \(-0.47 \pm 0.11\) & \(\mathbf{0 . 6 2 (0 . 5 0 - 0 . 7 8)}\) \\
Previous cancer (yes) & \(0.79 \pm 0.18\) & \(\mathbf{2 . 2 0 (1 . 5 4 - \mathbf { 3 . 1 5 })}\) \\
First-degree relative with cancer (yes) & \(0.32 \pm 0.11\) & \(\mathbf{1 . 3 7 (1 . 1 0 - 1 . 7 1)}\) \\
Allergy desensitization shots (yes) & \(-0.65 \pm 0.27\) & \(\mathbf{0 . 5 2 (0 . 3 1 - 0 . 8 9)}\) \\
Dicamba mixtures (user) & \(0.67 \pm 0.17\) & \(\mathbf{1 . 9 6 (1 . 4 0 - \mathbf { 2 . 7 5 })}\) \\
\hline
\end{tabular}
sion model that included major chemical classes of pesticides and all other covariates for which \(P<0.05\). The variables that remained statistically significantly associated with increased risk of NHL were a previous personal history of another malignancy, a history of cancer among first-degree relatives, and exposure to dicamba and mixtures containing dicamba. ORs for a personal history of measles or of allergy desensitization injections were significantly lower than those without this history. Table 7 summarizes a similar model that included individual pesticides and all of the other covariates for which \(P<\) 0.05 and in which mecoprop and aldrin exposure as well as the same covariates as in Table 6 were associated with NHL.

Table 8 shows the frequency of exposure to selected individual herbicides, insecticides, fungicides, and fumigants, stratified by the average number of days per year of exposure. In general, the results of these dose-responsc analyses are consistent with the exposed/nonexposed findings. Those compounds for which we found statistically significant case-control differences also have elevated ORs based on strata of the variable "days per year of exposure" (mecoprop, dicamba, malathion, DDT, captan, carbon tetrachloride, and sulfur). The exceptions were 2,4-D, for which there was no dose-response relationship, and glyphosate, which was not significant for exposure but for which we demonstrated a dose-response relationship.

Table 9 compares the frequencies of multiple herbicide, insecticide, fungicide, and fumigant use among cases and controls. Cases are significantly more likely to report exposure to between two and four herbicides or insecticides but not to five and more of either. An elevated OR was found for exposure to two or more fungicides. Table 9 also shows a dose-response relationship in comparisons of subjects who reported no pesticide exposure and those who reported using five or more pesticides.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Table 7 Most parsimonious model: conditional logistic regression analyses that contained individual chemical pesticides and important covariates
\[
(P<0.05)
\]} \\
\hline \multicolumn{3}{|l|}{Among individual pesticides, carbaryl, lindane, DDT, and malathion insecticides, and captan fungicide user/nonuser were included in the initial multivariate model and found not to contribute significantly to the risk of NHL.} \\
\hline Variable & \[
\begin{gathered}
\text { Parameter } \\
\text { estimate } \pm \mathrm{SE}
\end{gathered}
\] & OR (95\% CI) \\
\hline Measles (yes) & \(-0.48 \pm 0.11\) & 0.50 (0.45-0.83) \\
\hline Previous cancer (yes) & \(0.80 \pm 0.18\) & 2.23 (1.56-3.19) \\
\hline First-degree relative with cancer (yes) & \(0.32 \pm 0.11\) & 1.38 (1.11-1.72) \\
\hline Allergy desensitization shots (yes) & \(-0.68 \pm 0.27\) & 0.51 (0.30-0.87) \\
\hline Mecoprop (user) & \(0.80 \pm 0.20\) & 2.22 (1.49-3.29) \\
\hline Aldrin (user) & \(1.23 \pm 0.54\) & 3.42 (1.18-9.95) \\
\hline
\end{tabular}

\section*{Discussion}

The hypothesis that farming (1-8), agricultural practices (9), and pesticide exposure (\(10-13,22-25\)) are associated with NHL has been tested in a number of occupational studies. Not all of the studies confirm an association (27-29). Pesticides have diverse chemistry and biological modes of action In addition to the active ingredients, there are emulsifiers, carriers, dispersants, and a variety of agents used to formulate liquids, granular and mists. The major chemical classes of a priori interest based on epidemiological studies (\(10-13,22-25\)) were phenoxyherbicides, organophosphorus, organochlorines, aldehydes, and carbon tetrachloride. Occupational exposure to 2,4-D, 2,4,5-T, carbaryl, chlordane, DDT, diazinon, dichlorvos, lindane, malathion, nicotine, and toxaphene has been reported to be associated with NHL. In addition, our interest focused on pesticides classified as possibly or probably carcinogenic to humans based on evaluations by the IARC expert panels (Refs. \(22-25\); phenoxyherbicides including \(2,4-\mathrm{D}\), MCPA, and 2,4,5-T as a group, atrazine, chlordane, DDT, dichlorvos, heptachlor, and pentachlorophenol). Our bivariate results for exposure to groups of phenoxyherbicides or dicamba-containing herbicides, for carbamates and organophosphorus insecticides, and for amide fungicides and for carbon tetrachloride were not attenuated when simultaneously adjusted for the important medical covariates (history of measles, mumps, cancer, allergy desensitization shots, and a positive history of cancer in a first-degree relative).

Among individual compounds, our results that related to exposure to 2,4-D, mecoprop, dicamba, malathion, DDT, carbaryl, lindane, aldrin, captan, and sulfur compounds were not attenuated after simultaneous adjustment for the same medical covariates. Clearly, we had few exposed men whose exposure was limited to one pesticide or to one class of pesticides. Our results show elevated risk for exposure to multiple herbicides, insecticides, and fungicides.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Models that included the time variable "days per year" and stratification for age and province of residence were also assessed for the individual herbicide compounds bromoxynil, 2,4-DB, diallate, MCPA, triallate, and treflan. No significant associations were found.} \\
\hline \multirow{2}{*}{Individual compounds} & \multirow{2}{*}{Days/yr} & \multicolumn{2}{|c|}{NHL} & \multicolumn{2}{|c|}{Controls} & \multirow{2}{*}{OR \({ }^{\text {a }}\) (95\% CI)} \\
\hline & & \(n\) & \% & \(n\) & \% & \\
\hline \multicolumn{7}{|l|}{Herbicides} \\
\hline \multirow[t]{5}{*}{2,4-D} & Unexposed & 406 & 78.5 & 1213 & 80.5 & 1 \\
\hline & \(>0\) and \(\leq 2\) & 55 & 10.6 & 160 & 10.6 & 1.17 (0.83-1.64) \\
\hline & \(>2\) and \(\leq 5\) & 36 & 7.0 & 82 & 5.4 & 1.39 (0.91-2.13) \\
\hline & \(>5\) and \(\leq 7\) & 9 & 1.7 & 20 & 1.3 & 1.38 (0.60-3.15) \\
\hline & \(>7\) & 11 & 2.1 & 31 & 2.1 & 1.22 (0.60-2.49) \\
\hline \multirow[t]{3}{*}{Mecoprop} & Unexposed & 464 & 89.8 & 1425 & 94.6 & \[
1
\] \\
\hline & \[
>0 \text { and } \leq 2
\] & 31 & 6.0 & 48 & 3.2 & \[
2.27(1.40-3.68)
\] \\
\hline & \(\geq 2\) & 22 & 4.3 & 33 & 2.2 & 2.06 (1.17-3.61) \\
\hline \multirow[t]{3}{*}{Phosphonic acid: glyphosate} & Unexposed & 466 & 90.1 & 1373 & 91.2 & 1 \\
\hline & \(>0\) and \(\leq 2\) & 28 & 5.4 & 97 & 6.4 & \(1.00(0.63-1.57)\) \\
\hline & \(>2\) & 23 & 4.5 & 36 & 2.4 & 2.12 (1.20-3.73) \\
\hline \multirow[t]{2}{*}{Dicamba} & Unexposed & 491 & 95.0 & 1456 & 96.7 & \[
1
\] \\
\hline & \[
\geq 1
\] & 26 & 5.0 & 50 & 3.3 & \[
1.58(0.96-2.62)
\] \\
\hline \multicolumn{7}{|l|}{Insecticides} \\
\hline \multirow[t]{3}{*}{Malathion} & Unexposed & 445 & 87.0 & 1379 & 91.6 & 1.00 \\
\hline & \(>0\) and \(\leq 2\) & 50 & 9.7 & 88 & 5.8 & 1.82 (1.25-2.68) \\
\hline & \(\geq 2\) & 22 & 4.3 & 39 & 2.6 & 1.75 (1.02-3.03) \\
\hline \multirow[t]{3}{*}{DDT} & Unexposed & 485 & 93.8 & 1447 & 96.1 & 1.00 \\
\hline & \(>0\) and \(\leq 2\) & 18 & 3.5 & 32 & 2.1 & 1.75 (0.96-3.21) \\
\hline & \(>2\) & 14 & 2.7 & 27 & 1.8 & 1.50 (0.77-2.91) \\
\hline \multicolumn{7}{|l|}{Fungicides} \\
\hline \multirow[t]{3}{*}{Captan} & Unexposed & 497 & 96.1 & 1482 & 98.4 & \[
1.00
\] \\
\hline & \[
>0 \text { and } \leq 2
\] & 11 & 2.1 & 12 & 0.8 & 2.69 (1.17-6.19) \\
\hline & \(>2\) & 9 & 1.7 & 12 & 0.8 & 2.80 (1.13-6.90) \\
\hline \multirow[t]{2}{*}{Sulphur} & Unexposed & 500 & 96.7 & 1485 & 98.6 & 1.00 \\
\hline & Exposed \(\geq 1\) & 17 & 3.3 & 21 & 1.4 & 2.26 (1.16-4.40) \\
\hline \multicolumn{7}{|l|}{Fumigant} \\
\hline \multirow[t]{2}{*}{Carbon tetrachloride} & Unexposed & 504 & 97.5 & 1488 & 98.8 & 1.00 \\
\hline & \(>0\) and 52 & 13 & 2.5 & 18 & 1.2 & 2.13 (1.02-4.47) \\
\hline
\end{tabular}
\({ }^{a}\) ORs calculated with strata for the variables age and province of residence.

The strength of our results is enhanced by their internal consistency as we applied the strategy of assessing risk by different analytic approaches progressing from exposure to: (a) major chemical classes of herbicides, insecticides, fungicides, and fumigants; (b) individual compounds within those major chemical classes; and (c) individual compounds stratified by days per year of exposure. We constructed models that included potential confounders (e.g., positive history of cancer in a first-degree relative). Generally, the same individual compounds or class of compounds was associated with case status. The risk estimates based on exposure to major chemical classes or to individual compounds tended to be precise, as indicated by the \(95 \%\) CIs.

Our results confirm previously reported associations of NHL and a personal history of cancer \((30,31)\), of NHL and a history of cancer among first-degree relatives \((32,33)\), and of NHL and exposure to selected pesticides (1, 3, 5, 9-13). We were unable to find a previous report suggesting a protective effect of allergy desensitization shots. Kocpsell et al. reported little association of the number of allergy desensitization shots and MM (34). The relationship between allergy and cancer is complex with well-designed studies reporting opposite results (35-38). Cigarette smoking was not a risk factor overall, confirming one study (39) and contradicting others (40,41), although certain subtypes \((39,40)\) of NHL may be associated with cigarette smoking.

The limitations of this study relate to those inherent in the case-control design, specifically the potential for recall bias and
for misclassification of pesticide exposure. Hoar et al. and Zahm et al. \((11,13)\), as well as others (27-29, 42-45), have dealt extensively with these issues among farmers. We have included individuals in many different occupations as well as home and garden users. These are groups for whom we did not find extensive validation studies. Their inclusion may have biased our dose-response findings toward the null, although the yes/no responses to individual pesticides would be less affected. We reduced the number of surrogate responders by excluding deceased persons from our definition of eligible subjects. This strategy was useful in decreasing the potential for misclassification of exposure.

A second limitation is the less-than-optimal response rates. We continued to recruit subjects in each province until the target numbers were achieved. We compared respondents to nonrespondents using postal codes as an indicator of nural residence, and we did not find a rural bias among respondents.

We reported results for a number of chemical agents and exposures, not all of which were specified in the hypothesis. Therefore, the statistical analyses related to these unspecified agents should be considered exploratory. As a consequence of conducting multiple comparisons, a small number of statistically significant results may be attributable to chance.

The two-tiered study design permitted us to obtain detailed information related to factors other than pesticides that are known or suspected of being etiologically associated with NHL. The mailing of a list of pesticides with both trade and generic chemical names followed by a telephone interview
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Table 9 Distribution of numbers of exposures to multiple types of pesticides among cases and controls} \\
\hline & \multicolumn{2}{|c|}{NHL} & \multicolumn{2}{|c|}{Controls} & \multirow{2}{*}{\(\mathrm{OR}^{\text {a }}\) (\(95 \% \mathrm{Cl}\))} \\
\hline & \(n\) & \% & \(n\) & \% & \\
\hline \multicolumn{6}{|l|}{Multiple herbicide use} \\
\hline Unexposed \({ }^{\text {b }}\) & 374 & 72.3 & 1148 & 76.2 & 1.00 \\
\hline Exposed 1 & 45 & 8.7 & 146 & 9.7 & 1.02 (0.70-1.47) \\
\hline Exposed 2-4 & 73 & 14.1 & 151 & 10.0 & 1.75 (1.27-2.42) \\
\hline Exposed \(\geq 5\) & 25 & 4.8 & 61 & 4.1 & 1.41 (0.84-2.35) \\
\hline \multicolumn{6}{|l|}{Multiple insecticide use} \\
\hline Unexposed & 370 & 71.6 & 1154 & 76.6 & 1.00 \\
\hline Exposed 1 & 44 & 8.5 & 127 & 8.4 & 1.24 (0.85-1.80) \\
\hline Exposed 2-4 & 86 & 16.6 & 189 & 12.6 & 1.58 (1.17-2.13) \\
\hline Exposed \(\geq 5\) & 17 & 3.3 & 36 & 2.4 & 1.46 (0.79-2.69) \\
\hline \multicolumn{6}{|l|}{Multiple fungicide use} \\
\hline Unexposed & 457 & 88.4 & 1361 & 90.4 & 1.00 \\
\hline Exposed 1 & 32 & 6.2 & 90 & 6.0 & 1.08 (0.70-1.67) \\
\hline Exposed \(\geq 2\) & 28 & 5.4 & 55 & 3.7 & 1.61 (.99-2.63) \\
\hline \multicolumn{6}{|l|}{Multiple fumigant use} \\
\hline Unexposed & 487 & 94.2 & 1440 & 95.6 & 1.00 \\
\hline Exposed \(\geq 1\) & 30 & 5.8 & 66 & 4.4 & 1.45 (0.91-2.63) \\
\hline \multicolumn{6}{|l|}{Multiple pesticide use \({ }^{\text {c }}\)} \\
\hline Unexposed & 357 & 69.1 & 1095 & 72.7 & 1.00 \\
\hline Exposed 1-4 & 77 & 14.9 & 230 & 15.3 & 1.09 (0.81-1.46) \\
\hline Exposed \(\geq 5\) & 83 & 16.1 & 181 & 12.0 & 1.57 (1.16-2.14) \\
\hline
\end{tabular}
\({ }^{a}\) ORs calculated with strata for the variables age and province of residence.
\({ }^{b}\) With the exception of the variable multiple pesticide use, the "urexposed" referent category is specific to the class of pesticides.
\({ }^{c}\) The unexposed referent category contains those who did not report exposure to herbicides, insecticides, fungicides, or fumigants.
allowed the collection of detailed information concerning pesticide exposure. The statistical power of our study was enhanced by the large number of cases and controls. In instances of rare exposures (\(<1 \%\) exposed), we had limited statistical power to detect associations. We restricted our analyses of individual pesticide compounds to those for which at least \(1 \%\) of respondents indicated exposure.

The study was not restricted to pesticide exposure experienced by a specific occupational group. Occupational exposure was quite diverse; single versus multiple pesticides; indoor versus outdoor applications. For example, men who work in animal confinement buildings, grain elevators, and pesticide manufacturing have different exposure patterns in comparison with grain farmers and commercial applicators. Because this study encompassed a large geographical area of Canada, there was substantial diversity among agricultural enterprises and in the patterns and types of pesticide exposure.

Delineating the putative relationship between exposure to pesticides and NHL is complicated: (a) by the subject's exposure to a variety of different pesticides many of which are not mutagenic, teratogenic, or carcinogenic when tested as a single compound; (b) by the complexity of formulations of pesticides, the details of which are privileged proprietary information; (c) by the diversity of routes of possible exposure, which include ingestion, dermal, inhalation, and ocular; (d) by unexpected interactions among seemingly unrelated exposures, such as the increased permeability of rubber gloves to 2,4-D when exposed simultaneously to the insect repellent DEET and sunlight (46); and (e) by the role of differential genetic susceptibility.

Garry et al. (47) describe a potential mechanism to explain the relationship between exposure to specific pesticides and an increased risk of developing NHL. They have demonstrated specific chromosomal alterations in the peripheral lymphocytes of pesticide applicators exposed to a variety of pesticide classes. A higher frequency of chromosomal breaks involving band 18q21 was found in men who applied only herbicides
compared with nonoccupationally exposed controls. Higher frequencies of rearrangements and breaks involving band 14 q 32 were found among men who applicd herbicides, insecticides, and fumigants compared with controls. Reciprocal translocations between chromosomes 14 q 32 and 18 q 21 are frequently found in NHL patients.

Our results support previous findings of an association between NHL and specific pesticide exposures. Our strategy of assessing risk by several different approaches, beginning with general categories (e.g., herbicides), proceeding through cumulative pesticide exposure to specific chemical classes, and proceeding further to specific chemicals, proved effective in delineating complex rclationships. In our final models, NHL was associated with a personal history of cancer; a history of cancer in first-degree relatives; and exposure to dicamba-containing herbicides, to mecoprop, and to aldrin. A personal history of measles and of allergy desensitization treatments lowered risk.

\section*{Acknowledgments}

We are indebted to the members of the Advisory Committee for this project for the sharing of their experiences (Drs. G. B. Hill, A. Blair, L. Burmeister, H. Morrison, R Gallagher, and D. White); to the provincial coordinators and data managers for their meticulous attention to detail (T. Switzer, M. Gantefor, J. Welyklolowa, J. Ediger, I. Fan, M. Ferron, E. Houle, S. de Freitas, K. Baerg, L. Lockinger, E. Hagel, P. Wang, and G. Dequiang), and to Dr. G. Theriault for supervising the collection of data in Quebec. We appreciate the care and dedication of \(S\). de Freitas in preparation of the manuscript. The study participants gave frecly of their time and shared personal details with us, and we sincerely thank each of them.

\section*{References}
1. Cantor, K. P., Blair, A., Everett, G., Gibson, R., Burmeister, L. F., Brown, L. M., Schuman, L., and Dick, F. R. Pesticides and other agricultural risk factors for non-Hodgkin's lymphoma among men in lowa, and Minnesota. Cancer Res., 52: 2447-2455, 1992.
2. Saftlas, A. F., Blair, A., Cantor, K. P., Manrahan, L., and Anderson, H. A. Cancer and other causes of death among Wisconsin farmers. Am. J. Ind. Med, 1l: 119-129, 1987.
3. Pearce, N. E., Smith, A. H., and Fisher, D. O. Malignant lymphoma and multiple myeloma linked with agricultural occupation in a New Zealand cancer registration-based study. Am. J. Epidemiol., 121: 225-237, 1985.
4. Burmeister, L. F., Everett, G. D., Van Lier, S. F., and Isacson, P. Selected cancer mortality and farm practices in lowa Am. J. Epidemiol., 118: 72-77, 1983.
5. Cantor, K. P. Farming and mortality from non-Hodgkin's lymphorna: a casecontrol study. Int. J. Cancer, 29: 239-247, 1982.
6. Delzell, E., and Grufferman, S. Mortality among white and non-white farmers in North Carolina 1976-78. Am. J. Epidemiol., 121: 391-402, 1985.
7. Buesching, D. P., and Wallstadt, L. Cancer mortality among farmers. J. Natl. Cancer Inst. (Bethesda), 72: 503-504, 1984.
8. Schumacher, M. C. Farming occupations and mortality from non-Hodgkin's lymphoma in Utah: a case-control study. J. Occup. Med., 27: 580-584, 1985.
9. Wigle, D. T., Semenciw, R. M., Wilkins, K., Riedel, D., Ritter, L., Morrison, H., and Mao, Y. Mortality study of Canadian farm operators: non-Hodgkin's lymphoma mortality and agricultural practices in Saskatchewan. J. Natl. Cancer Inst. (Bethesda), 82: 575-580, 1990.
10. Hardell, L., Eriksson, M., Lenner, P., and Lundgren, E. Malignant lymphoma and exposure to chemicals especially organic solvents, chlorophenols and phenoxy acids: a case-control study. Br. J. Cancer, 43: 169-176, 1981.
11. Hoar, S. K., Blair, A., Holmes, F., Boysen, C., Robel, R. J., Hoover, R, and Fraumeni, J. F. Agricultural herbicide use and risk of lymphoma and soft tissue sarcoma J. Am. Med Assn., 256: 1141-1147, 1986.
12. Woods, J. S., Polissar, L., Severson, R. K., Heuser, L. S., and Kulander, E. G. Sof tissue sarcoma and non-Hodgkin's lymphoma in relation to phenoxyherbicide and chlorinated phenol exposure. J. Natl. Cancer Inst., 78: 899-910, 1987.
13. Zahm, S. H., Weisenburger, D. D., Babbit, P. A., Saal, R. C., Vaught, J. B., Cantor, K. P., and Blair, A. A case control study of non-Hodgkin's lymphoma and agricultural factors in Eastern Nebraska Epidernioiogy, 1: 349-356, 1990.
14. Alavanja, M. C. R., Blair, A., Merkle, S., Teske, J., Eaton, B., and Reed, B Mortality among forest and soil conservationists. Arch. Environ. Health, 44: 94-101, 1989.
15. Gallagher, R. P., Threlfall, W. J., Band, P. R., and Spinelli, J. J. Cancer mortality experience of woodworkers, loggers, fishermen, farmers and miners in British Columbia. Natl. Cancer Inst. Monogr., 69: 163-167, 1985.
16. Kross, B. C., Burmeister, L. F., Ogilvie, L. K., Fuortes, L. J., and Fu, C. M. Proportionate mortality study of golf course superistendents. Am. J. Ind. Med. 29: 501-506, 1996
17. Schen, P. A., Hutchison, G. B., and Neiman, R. S. Non-Hodgkin's lymphoma and occupational exposure. Cancer Res., 52 (Suppl.): 5503s-5509s, 1992.
18. Devesa, S. S., and Fears, T. Non-Hodgkin's lymphoma time trends: United States and intemational data Cancer Res., 52 (Suppl): 5432s-5440s, 1992.
19. Banks, P. M. Changes in diagnosis of non-Hodgkin's lymphoma over time. Cancer Res., 52 (Suppl.): \(5453 \mathrm{~s}-5455 \mathrm{~s}, 1992\).
20. Holford, T. R., Zheng, T., Magne, S. T., and McKay, L. A. Time trends of non-Hodgkin's lymphoma: are they real? what do they mean? Cancer Res., 52 (Suppl.): 5443s-5446s, 1992.
21. Dosman, J. A., McDuffie, H. H., Pahwe, P., Fincham, S., McLaughlin, J. R., Robson, D., and Theriault, G. Pesticides, Sof Tissue Sarcoma, Lymphoma, and Multiple Myeloma A Case Control Study in Three Regions of Canada Report to Health and Welfare Canada on Project 6008-1223. Saskatoon, Canada: University of Saskatchewan, 1990.
22. LARC Working Group. An evaluation of chemicals and industrial processes associaled with cancer in humans based on human and animal data Cancer Res., 40: 1-12, 1980.
23. IARC. Some halogenated hydrocarbons and pesticide exposures. In: Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans, Vol 41. Lyon, France: IARC, 1986.
24. LARC. Overall Evaluation of Carcinogenicity: An Updating of IARC Monographs, Volumes 1-42, Suppl. 7. Lyon, France: IARC, 1987.
25. IARC. Occupational exposures in insecticide application and some pesticides. In: Monographs on the Evaluation of Carcinogenic Risks to Humans, Vol. 53. Lyon, France: LARC, 1991.
26. Breslow, N. E., and Day, N. E. The analysis of case-control studies. In: Statistical Methods in Cancer Research, Vol. 1, IARC Sci. Publ. 32. Lyon, France: IARC, 1980.
27. Bond, G. C., Bodner, K. M., and Cook, R. R. Phenoxy herbicides and cancer: insufficient epidemiologic evidence for a causal relationship. Fundam. Appl. Toxicol., 12: 172-188, 1989.
28. Wiklund, K., Dich, J., and Holm, L-E. Risk of malignant lymphoma in Swedish pesticide appliers. Br. J. Cancer, 56: 505-508, 1987.
29. Wiklund, K., and Holm, L-E. Trends in cancer risks among Swedish agricultural workcrs. J. Natl. Cancer Inst. (Bethesda), 77: 657-664, 1986.
30. Cehtan, J. R., Wallace, R. B., Folsom, A. R., Potter, J. D., Sellers, T. A., Zheng, W., and Lutz, C. T. Medical history risk factors for non-Hodgkin's lymphoma in oider wornen. J. Natl. Cancer Inst. (Bethesda), 89: 314-318, 1997.
31. Berstein, R., and Ross, R. K. Prior medication use and health history as risk factors for non-Hodgkin's lymphoma: preliminary results from a case-control study in Los Angeles County. Cancer Res., 52 (Suppl.): \(5510 \mathrm{~s}-5515 \mathrm{~s}, 1992\).
32. Linet, M. S., and Pottern, L. M. Familial aggregation of hematopoietic malignancies and risk of non-Hodgkin's lymphoma Cancer Res., 52 (Suppl.): 5465s-5473s, 1992.
33. Goldgar, D. E., Easton, D. F., Cannon-Aliright, L. A., and Skolnick, M. H. Systematic population-based assessment of cancer risk in first degree relatives of cancer probands. J Nall Cancer Inst. (Bethesda), 86: 1600-1608, 1994.
34. Koepsell, T. D., Daling, J. R., Weiss, N. S., Taylor, S. W., Olshan, A. F., Swanson, G. M., and Child, M. Antigenic stimulation and the occurrence of multiple myeloma Am. J. Epidemiol., 126: 1051-1062, 1987.
35. Vena, J. E., Bona, J. R., Byers, T. E., Middleton, E., Swanson, M. K., and Graham, S. Allergy-related diseases and cancer: an inverse association. Am. J. Epidemiol., 122: 66-74, 1985.
36. Mills, P. K., Beeson, W. L., Fraser, G. E., and Phillips, R. L. Allergy and cancer: organ site-specific results from the Adventist health study. Am. J. Epidemiol., 136: 287-295, 1992.
37. Severson, R. K., Davis S., Thomas, D. B., Stevens, R. G., Heuser, L., and Sever, L. E. Acute myelocytic leukemia and prior allergies. J Clin. Epidemiol., 42: 995-1001, 1989.
38. McDuffie, H. H., Cockcroft, D. W., Talebi, Z., Klaassen, D. J., and Dosman, J. A. Lower prevalence of positive atopic skin tests in lung cancer patients. Chest, 93: 241-246, 1988.
39. Herrinton, L. J., and Friedman, G. D. Cigarette smoking and risk of nonHodgkin's lymphoma subtypes. Cancer Epidemiol. Biomark. Prev., 7: 25-28, 1998.
40. Brown, L. M., Fverett, G. D., Gibson, R., Burmeister, L. F., Schuman, L. M., and Blair, A. Smoking and risk of non-Hodgkin's lymphoma, and multiple myeloma. Cancer Causes Control, 3: 49-55, 1992.
41. Linet, M. S., McLaughlin, J. K., Hsing, A. W., Wacholder, S., CoChien, H. T., Schuman, L. M., Bjelke, E., and Blot, W. J. Is cigarette smoking a risk factor for non-Hodgkin's lymphoma? results from the Lutheran Brotherhood Cohorl Study. Leuk. Res., 16: 621-624, 1992.
42. Blair, A., and Zahm, S. H. Epidemiologic studies of cancer among agricultural populations. In: H. H. McDuffie, J. A. Dosman, K. M. Semchuk, S. Olenchock, and A. Senthilselvan (eds.), Agricultural Health and Safety: Workplace, Environment, Sustainability, pp. 111-117. Boca Raton, FL: CRC Lewis Publishers, 1994.
43. Brown, L. M., Dosemeci, M., Blair, A., and Burmeister, L. Comparability of data obtained from farmers and surrogate respondents on use of agricultural pesticides. Am. J. Epidemiol., 134: 348-355, 1991.
44. Blair, A., and Zahm, S. H. Herbicides and cancer: a review and discussion of methodologic issues. Recent Results Cancer Res., 120: 132-145, 1990.
45. Blair, and A., Zahm, S. H. Methodologic issues in exposure assessment for case-control studies of cancer and herbicides. Am. J. Ind. Med, 18: 285-293, 1990.
46. Moody, R. P., and Nadeau, B. Effect of the mosquito repellent DEET and long-wave ultraviolet radiation on permeation of the herbicide \(2,4-\mathrm{D}\) and the insecticide DDT in natural nubber gloves. Am. Ind. Hyg. Assn. J., 53; 436-441, 1992.
47. Garry, V. F., Tarone, R. E., Long, L., Griffith, J., Kelly, J. T., and Burroughs, B. Pesticide appliers with mixed pesticide exposure: G-banded analysis and possible relationship to non-Hodgkin's lymphoma. Cancer Epidemiol. Biomark. Prev., 5: 11-16, 1996.

\title{
An Evaluation of Glyphosate Use and the Risk of Non-Hodgkin Lymphoma Major Histological SubTypes in the North American Pooled Project
}

\author{
Manisha Pahwa, John J. Spinelli, Laura Beane Freeman, Paul A. Demers, Aaron Blair, Punam Pahwa, James A. Dosrnan, John R. McLaughlin, Shelia Hoar Zahm, Kenneth P. Cantor, Dennis D. Weisenburger, Shelley A. Harris
}

International Society for Environmental Epidemiology Conference | Sao Paulo, Brazil|August 31, 2015 \#868 (Pesticides and Other POPs)

\section*{Towards a cancer-free workplace}

\section*{Disclosure of Competing Financial Interests}

\author{
None
}

\section*{IARC Evaluation of Glyphosate}
- Limited evidence of NHL in humans and sufficient evidence of cancer in animals
- Mechanistic evidence of genotoxicity and oxidative stress
- Classified as Group 2A (probably carcinogenic)
```

Carcinogenicity of tetrachlowinphos, parathion, malathion,
diazinon, and glyphosate
in March, 2015, 17 experts from to the bioactive metabolite, paraoxon, aggressive cancers after adjustment for
11 countries met at the International is similar across species. Although other pesticides.s in mice, malathion Agency for Research on Cancer (LARC; bacterial mutagenesis tests were increased hepatocellular adenonia Lyon, France) to assess the carcinogenicity of the organophosphate pesticides tetrachlorvinphos, parathion, malathion, diazinon, and glyphosate (ttable). These assessments will be published as volume 112 of the IARC Monographs. ${ }^{\text {. }}$
The insecticides tetrachlorvinphos negative, parathion induced DNA and chromosomal damage in human cells in vitro. Parathion markedly increased rat mammary gland terminal end bud density. Parathion use has been severely restricted since the 1980 s. The insecticides malathion and diazinon were classified as "probably

``` and mammary gland adenocarcinoma after subcutaneous injection in fema'er Matathion rapily abs ema es.' Malathion is rapidly absobed and distributed. Metabolism to the


Toments a cancor-frea workplace

\section*{North American Pooled Project}

\section*{General Design of Case-Control Studies}

INCIDENT CASES

Cancer registries, hospitals

POPULATION-BASED CONTROLS

Telephone lists, voters' lists, health insurance records, mortality records

\section*{QUESTIONNAIRE}
(in person, phone, mail)

\section*{Glyphosate Use Information}
\begin{tabular}{ccccc}
& EVER/NEVER & \begin{tabular}{c}
DURATION \\
\# Years
\end{tabular} & \begin{tabular}{c}
FREQUENCY \\
\# Days/Year
\end{tabular} & \begin{tabular}{c}
LIFETIME \\
DAYS
\end{tabular} \\
Iowa/Minnesota & \(\checkmark\) & \(\checkmark\) & X & \begin{tabular}{c}
\# Years x \\
\# Days/Year
\end{tabular} \\
Kansas & \(\checkmark\) & \(X\) & X & X \\
Nebraska & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
Canada & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\)
\end{tabular}

\section*{Conceptual Framework for Analysis}

\section*{Glyphosate Use}

Ever/Never

\author{
Duration
}

Frequency
Lifetime days

\section*{NHL Risk}

Overall
FL
DLBCL
SLL
Other

\section*{Covariates}

Age, sex, state/province, lymphatic/hematopoietic cancer in a firstdegree relative, proxy respondent use, any PPE use; 2,4-D, dicamba, malathion use

\section*{Selected Characteristics of NHL Cases ox and Controls}

\section*{Glyphosate Use and NHL Risks}

Number of cases who
NHL sub-type
reportedly ever used
glyphosate
\begin{tabular}{cccc}
Overall & 113 & \(1.43(1.11,1.83)\) & \(1.13(0.84,1.51)\) \\
\hline FL & 28 & \(1.00(0.65,1.54)\) & \(0.69(0.41,1.15)\) \\
\hline DLBCL & 45 & \(1.60(1.12,2.29)\) & \(1.23(0.81,1.88)\) \\
\hline SLL & 15 & \(1.77(0.98,3.22)\) & \(1.79(0.87,3.69)\) \\
Other & 25 & \(1.66(1.04,2.63)\) & \(1.51(0.87,2.60)\)
\end{tabular}
a. ORs adjusted for age, sex, state/province, lymphatic or hematopoietic cancer in a first-degree relative, use of a proxy respondent, use of any personal protective equipment; b. ORs adjusted for all covariates in model (a) plus use of 2,4-D, use of dicamba, use of malathion

\section*{Duration (\#Years) of Glyphosate Use and NHL Risks}
\begin{tabular}{ccccccc}
\# years & \multicolumn{5}{c}{ OR* \(^{(95 \% ~ C I)}\)} \\
& Overall & FL & DLBCL & SLL & Other \\
0 & 1 & 1 & 1 & 1 & 1 \\
\(>0\) and \(\leq 3.5\) & 1.59 & 0.95 & 2.02 & 1.49 & 2.08 \\
& \((1.13,2.22)\) & \((0.52,1.74)\) & \((1.28,3.21)\) & \((0.63,3.58)\) & \((1.14,3.78)\) \\
\(>3.5\) & 1.20 & 0.88 & 1.19 & 1.98 & 1.32 \\
& \((0.82,1.75)\) & \((0.46,1.71)\) & \((0.67,2.12)\) & \((0.89,4.39)\) & \((0.64,2.71)\) \\
P-trend & 0.03 & 0.96 & 0.03 & 0.08 & 0.14 \\
\hline
\end{tabular}
*ORs adjusted for age, sex, state/province, lymphatic or hematopoietic cancer in a first-degree relative, use of a proxy respondent, use of any personal protective equipment

\section*{Frequency (\#Days/Year) of Glyphosate Handling and NHL Risks}
\# days/year
handled
\begin{tabular}{cccccc}
& Overall & FL & DLBCL & SLL & Other \\
0 & 1 & 1 & 1 & 1 & 1 \\
\(>0\) and \(\leq 2\) & 1.03 & 0.81 & 0.95 & 1.27 & 1.49 \\
& \((0.67,1.60)\) & \((0.35,1.84)\) & \((0.49,1.81)\) & \((0.42,3.89)\) & \((0.66,3.32)\) \\
\(>2\) & 2.42 & 2.21 & 2.83 & 2.29 & 2.26 \\
P-trend & \((1.48,3.96)\) & \((0.99,4.93)\) & \((1.48,5.41)\) & \((0.66,7.98)\) & \((0.85,5.99)\) \\
& 0.02 & 0.07 & 0.04 & 0.21 & 0.85
\end{tabular}
*ORs adjusted for age, sex, state/province, lymphatic or hematopoietic cancer in a first-degree relative, use of a proxy respondent, use of any personal protective equipment

\section*{Lifetime Days (\#Years x \#Days/Year) of Glyphosate Use and NHL Risks}
\begin{tabular}{ccccccc}
Lifetime days & \multicolumn{5}{c}{\(\mathrm{OR}^{*}(\mathbf{9 5 \% ~ C I})\)} \\
& Overall & FL & DLBCL & SLL & Other \\
0 & 1 & 1 & 1 & 1 & 1 \\
\(>0\) and \(\leq 7\) & 1.20 & 1.03 & 1.14 & 1.04 & 1.93 \\
& \((0.74,1.95)\) & \((0.43,2.48)\) & \((0.56,2.30)\) & \((0.24,4.58)\) & \((0.82,4.51)\) \\
\(>7\) & 1.55 & 1.33 & 1.51 & 2.13 & 1.69 \\
P-trend & \((0.99,2.44)\) & \((0.60,2.94)\) & \((0.79,2.88)\) & \((0.76,5.96)\) & \((0.68,4.15)\) \\
\hline
\end{tabular}
*ORs adjusted for age, sex, state/province, lymphatic or hematopoietic cancer in a first-degree relative, use of a proxy respondent, use of any personal protective equipment

\section*{Challenges}
- Uncollected information about duration and frequency of glyphosate use in some locations
- Small numbers for certain stratified analyses
- Measurement error
- Potential recall bias and unmeasured confounding

\section*{Strengths}
- Larger sample size = more statistical power to incorporate evaluations of NHL sub-types with detailed glyphosate use metrics
- Risk estimates adjusted for other pesticide uses (results not presented)
- Evaluated ORs based on data from self-respondents only and assessed effect modification of PPE use on glyphosate-NHL associations (results not presented)

\section*{Conclusions}
- Glyphosate use may be associated with \(\uparrow\) risk of NHL
- Some differences in risk by sub-type, but not consistent across different glyphosate use metrics
- Large sample size yielded more precise results than possible in previous smaller studies

\section*{Further Considerations}
- Glyphosate use is projected to increase worldwide, especially in emerging large-scale agricultural economies in Latin America, Asia, and South Africa
- Use of glyphosate is important for global food supply

\section*{BUT...}
- Glyphosate-resistant weeds are a concern and threat to its prolonged and isolated use
- The human (and environmental) health effects of newer herbicide formulations that contain glyphosate with \(\geq 1\) other active ingredient are largely unknown

\section*{Ackriowledgements}
- Canadian investigators: Drs. Shelley A. Harris, John J. Spinelli, Paul A. Demers, Punam Pahwa, James A. Dosman, John R. McLaughlin
- U.S. investigators: Drs. Laura Beane Freeman, Aaron Blair, Shelia Hoar Zahm, Kenneth P. Cantor, Dennis D. Weisenburger
- NAPP Executive Committee: Drs. Shelley A. Harris, Laura Beane Freeman, John J. Spinelli
- Data pooling: Mr. Joe Barker (IMS Inc.)

This analysis was funded by the Canadian Cancer Society Research Institute
(Prevention Research Grant \#703055)

\section*{Contact}

Manisha Pahwa, Research Associate Occupational Cancer Research Centre, Cancer Care Ontario 620 University Avenue, Toronto, Ontario, M5G 2 L7 manisha.pahwa@occupationalcancer.ca
www.occupationalcancer.ca

\title{
Towards a cancer free workplace www.occupationalcancer.ca
}

\section*{About NHL and Glyphosate}

\section*{NHL}
- A cancer that starts in the lymphocytes
- Heterogeneous, according to type of cell affected

\section*{Glyphosate}
- A broad-spectrum herbicide
- Commonly known as "Roundup"

- The most frequently used herbicide in the world

Estimated Agricultural Use for Glyphosate, 2012

Source: U.S. Geological Survey. 2012 Pesticide Use Maps.
https://water.usgs.gov/nawqa/pnsp/usage/maps/show_map.php?year=2012\&map=GLYPHOSATE\&hilo=L

\section*{Glyphosate-Resistant Weed Species in North America}

\section*{Proxy Respondent Analysis}

\section*{Glyphosate Use}

Ever/Never
Duration
Frequency
Lifetime days

\section*{NHL Risk}

Overall
FL
DLBCL
SLL
Other

Age, sex, state/province, lymphatic/hematopoietic cancer in a firstdegree relative, use of any PPE, use of \(2,4-\mathrm{D}\), use of dicamba, use of malathion

\section*{Selected Characteristics of NHL Cases \(\propto \times\) and Controls (Continued)}
\begin{tabular}{lccc}
\hline Variable & Cases (N) & Controls (N) & OR (95\% CI) \\
\hline Ever lived or worked on a farm or ranch & & & \\
No & 577 & 1840 & 1 \\
Yes & 1102 & 3276 & \(1.06(0.94,1.20)\) \\
\(\quad\) Unknown/missing & 11 & 15 & \\
Ever used any type of PPE & & & \\
\(\quad\) No & 374 & 1127 & 1 \\
Yes & 105 & 310 & \(1.12(0.86,1.45)\) \\
Unknown/missing & 1211 & 3694 &
\end{tabular}

\section*{Proxy vs. Self Respondents}

OR (95\% CI) for NHL Overall

Glyphosate Use
Never used
Ever used
Duration (\# years)
\(>0\) and \(\leq 3.5\)
>3.5

\section*{Proxy and Self \\ Respondents \({ }^{\text {a }}\)}

1
1.13 (0.84, 1.51)
\(1.28(0.88,1.84)\)
0.94 (0.62, 1.42)
\(0.66(0.39,1.12)\)
1.77 (0.99, 3.17)

Lifetime days (\# years x \# days/year)
\begin{tabular}{cll}
0 and \(\leq 7\) & \(0.87(0.52,1.45)\) & \(0.82(0.46,1.44)\) \\
\(>7\) & \(1.08(0.66,1.77)\) & \(1.06(0.62,1.81)\)
\end{tabular}
a. ORs adjusted for age, sex, state/province, lymphatic or hematopoietic cancer in a first-degree relative, use of a proxy respondent, use of any PPE, use of 2,4-D, use of dicamba, use of malathion; b. ORs adjusted for age, sex, state/province, lymphatic or hematopoietic cancer in a first-degree relative, use of any PPE, use of 2,4-D, use of dicamba, use of malathion

\section*{Future Research Priorities}

- Evaluation of other agricultural exposures, confounding, and interactions
- Non-occupational exposures
- Factors that modify exposure, e.g. immune conditions

\section*{Acknowledgements}

Canadian investigators
- Shelley A. Harris
- John J. Spinelli
- Paul A. Demers
- Punam Pahwa
- James A. Dosman
- John R. McLaughlin
U.S. investigators
- Laura Beane Freeman
- Aaron Blair
- Shelia Hoar Zahm
- Kenneth P. Cantor
- Dennis D. Weisenburger

\section*{Introduction to Cohort Studies}

\author{
Beate Ritz MD PhD
}

Epi 200A
Fall 2012

MacMahon and Pugh, 1970
Definition of cohort studies (in public health epidemiology)
- The group or groups of persons to be studied are defined in terms of characteristics manifest prior to the appearance of the disease under investigation
- The study group so defined are observed over a period of time to determine the frequency of disease among them

\section*{Cohort design:}

Retrospective (historical) in terms of
a) timing of events or
b) data collection

Cohort is enumerated some time in the past and followed over historical time (to today)
- time of follow-up long (20-40 years), often extends across decades
- cohort can be large i.e. \(10,000+\) members

But, how do we:
- "reconstruct" the cohort - who belongs into the cohort?
- Obtain exposure and outcome information

Note: a historical cohort is often restricted to investigations of fatal disease (why!)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Table 1. Validity for etiologic inference according to study designs} \\
\hline Validity ranking & Types of study design \\
\hline \begin{tabular}{l}
Highest \\
Lowest
\end{tabular} & \begin{tabular}{l}
Randomized clinical trial Prospective cohort study Retrospactive cohort study Nested case-control study \\
Time-series analysis \\
Cross-sectional study \\
Ecologic study \\
Cluster analysis \\
Case study \\
Anecdote
\end{tabular} \\
\hline
\end{tabular}
 Studies EHP 1997, 105 (10)

\section*{Cohort studies}

Simplistic description
- A cause 'looking' for a disease
- (versus case-control study: "A disease 'looking' for a cause")

\section*{Cohort design:}

Prospective in terms of
a) timing of events or
b) data collected

This design is best to be used for
- short-term (common) health outcomes; e.g. for:
- physiological changes (blood pressure and noise)
- acute neurotoxic effects (OP pesticides)
- pulmonary function (cotton dust)
- skin rashes (irritants, e.g. solvents, metals)
- injuries
- allergic reactions, asthma attacks
- prospective medical surveillance

EXHIBIT 19-17
RITZ
Date: 9/18/2017
Reporter: Lisa Moskowitt CSR 10816. RPR. CRR. C'

\section*{Cohort design:}

Prospective or retrospective in terms of
a) timing of events or
b) data collected

The major issue we want to convey is whether disease status could have influenced exposure measurement/information (such as via recall of exposure by a diseased subject)

Note that retrospective often is considered a 'less reliable' design; thus, be clear about how you use this term

\section*{Cohort study: examples}
```

Cohort: "Any cesignated group of indwiduals whe are followed or traced over a
period of time
Historically:
John: Snow: Cholera in London (1854)
Pariam: Neasles or the Faroe Islands {1345)
Mare recent
Framingham: carcovase,jar diseases (N=5,209); bi-arnuai exams, medica
records and teaths info
Brisn doctors: smoking and lung cancer among Britsh; doctors {N=34.439
Perinalal colaborate s1
Penatal coilaccrafive stuy; pregnarcy and chta health, cerebral jaisy and
al i2 hospitals across the Unitea' Stales)
- Nurses Healli Sluty: estabisned : }1976\mathrm{ from female US registered nurses
ages 30-55 years who responded tc a malled cuestionnaire tat inquired
ages 30-55 years who resporced teat maled cuestionmaire
- HN cchorts: 1984-2005, Muticente: AIDS Conot Stury NO=4,955
*mosextar men who vomieered in Baltmore, Chicago, Los Angeles, and
gcmosexta:
EP!S stucy: cancer Conort (125,000 in 1955): Breasl cancer
- Anc many more

```

\section*{Experimental vs. Observational Studies: Why not conduct a randomized trial?}

Trials
- cannot obtain evidence for harmful agents (and sometimes for beneficial ones as well)
- deal by nature with (very) selected populations
- not practical for
- rare outcomes (hote: wa would expect only 50-200 Iung or colon carcers and \(\%\) Parkinson's cases per 100,000 persen years of observalion in most working age cohorts)
- long follow-up times that allow for latency
- effects that occur late in disease progression
- focus on one (or several) specific doses only - expensive to conduct

\section*{Cohort studies: recruitment}
- Recruitment to the cohort may be mandatory/ automatic
- All in public registers = mortality, births, deaths, cancer (without informed consent;
- Occupational cohorts using employment data from occupational plants (assess exposures retrospectively from recordis and outcomes from registers;
- NOTE: cohorts using "primary" data (i.e. collected during/for the investigation) are usually based upon informed consent Examples:
- via General Practitioner-e.g. Danish National Birth Cohort
- Letters - e.g. to members of an organization (British doctors, CA Teachers, Nurses Health Study, Harvard Alumni)
- Advertisements - e.g. people with a given disease
- Local community: ALSPAC, Framingham
- Visitors to a website
- Participants in L.A. Marathon

\section*{Cohort studies: foliow-up}
- Compliance to follow-up procedures
- frequent contacts needed!
- Are (health) benefil incentives given?
- Recording of endpoints
- rely on diagnoses made by the health care system
- repeated measurements necessary?
- Changes in other determinants/ covariates
- questlonnaires
- interviews
- measurements
- Participation is voluntary, participants are free to leave the cohort at any point in time
- right to remove data from the study?
\begin{tabular}{|c|c|c|}
\hline incuction pariod ruverstelity & \[
\begin{gathered}
\text { Evant } \\
\text { (achelomous) }
\end{gathered}
\] & Change in ulisatis (eormboum) \\
\hline \multicolumn{3}{|l|}{Short (days to monthy)} \\
\hline Revaruible & Asthma attack Tandonitis & Crosesthent function (FEV,*) Temporary thresthold heusith: \\
\hline & Contact dermatitis & \\
\hline Intwarxibie & Asthma diagnosis Spontimeous abortion Amputation & Annual change in FEV , \\
\hline \multicolumn{3}{|l|}{Long (years)} \\
\hline Raverabla & Chronie brenchilis Erxome liosis & Sparm couni Blood pressure \\
\hline Inaveruilla & \begin{tabular}{l}
Stiesels \\
Nyocardial infarction Intartidity
\end{tabular} & Naise-incueed hasring loata Atherusciaroshs Hepatic fibrosis \\
\hline \multicolumn{3}{|l|}{*FEV, , forcud expiratory voleme in 1 second.} \\
\hline
\end{tabular}

Source: Cheekoway Hand Eisen EA. Develooments in Occupalional Cohorl Studies. Epidermotogic Reviews 1998, 20(1).
```

TABLE 1. Types of outcomes for cohort
Discrete events
Single ovents
First occurrence of a disease or health-related outcomb
Incidence (density)
Cumudative fincidence (risk)
Ratios (incidence density and cumulative Incidance)
Multiphe occurrances:
Of flscase outcome
Of transitons between states of health/cisaase
Of transitions betwean functional status
Leval of a marker for disease or state of haalth
Change in a functional'physiotogic/biochemkavanatomic marker for disease or health
Rate of change
Patlams of growth andfor decline
Patturns of growth andior declins
Change in level with timve (age)

```

\section*{Cohort Entry Definitions}

Entry to a cohort can be defined at a fixed point in time:
- All subjects are selected at a given point (range) in time, e.g.
from a registry of a type of people
- All atomic bomb survivors in Japan on Jan 1st 1950 living in Nagasaki and Hiroshima
- European Prospective Investigation into Cancer and Nutrition (EPIC), a multi-centre prospective cohort study in 23 study centers in ten European countries
- E.g in Germany, recruilment was based on a random sample of subjects in targeted age range (women aged 35-65, men 40-65) from population registers between 1994 and 1998
- participation rate was \(38.5 \%\) (i.e. observed cohort is a self-selected subgroup of the underlying population)
or
- subjects enter the cohort at different points in time; e.g.: alt inhabitants of Framingham/MA that reach a certain age

\section*{Cohort Exit Definitions}

\section*{Subjects can be follow-up}
- until a fixed point in calendar time (end of study);
- note: some subjects are observed for a shorter time i.e. due
- incidence of the disease under investigations,
- death,
- migration or
- loss of follow-up
- or as long as they are
- employed
- live in the city
- have the exposure (are "right censored" when this changes) (e.g. use of a certain type of medication)

Study Design Overview:
Identifying Diseased Subjects in a Population

\(\longrightarrow\) Healhy Subject
\(\Longrightarrow \quad \begin{aligned} & \text { Diseased Subject } \\ & \text { Start of Disease }\end{aligned}\)

\section*{Cohort studies: exposure assessment}
- Exposures can be lagged (i.e. exclude exposure during time irrelevant for the disease)
- E.g. exposure too close to disease onset
- Exposure contrast
- Generally we like to examine as large an exposure contras: as possible - thus, we want to establish a cohort with different exposure eveis (e.g. workers in a copper-smelter compared to the general popuation)
- Select the non-exposed subjects as close to the counterfactual ideal as possible
- Non-exposer subjects shculd have the same disease risk as the exposed had they not been exposed

Start of follow-up in a cohort study

\section*{Cohort studies: exposure assessment}
- Exposure may have started at a given point in time:
- E.g. at caseine or any other measurement poiml
- and remains fixed ("erer smoker")
- or changes over time (amount of smoking)
- Exposure can be measured as:
- Average or cumulative exposure over time
- exposure level at baseline
 be numerous ways of anaiyzing exposure cata

Person time 'iagged' by \(x\) years (after the of hire) - immortal PT

End of follow-up in a cohort

\section*{Summary: Cohort Studies}
- Select non-exposed as close to the counterfactual ideal as possible:
- Non-exposed should have the same disease risk as the exposed had they not been exposed
- Recruitment to the cohort
- based upon informed consent if primary data are collected
- Without informed consent if all are followed in public registers = mortality, births, deaths
- Historical cohorts: e.g. use existing data but need not be 'retrospective'

\section*{Summary: Cohort Studies}
- Generally most accepted in scientific community
- Include the entire available study population
- Most similar to standard experimental strategies
- determine (rather than apply) a toxin or preventative agent
among subjects disease-free at baseline
- follow-up subjects over time
- observe adverse or positive health effects in exposed and non-exposed subjects

The goal is to estimate the risk of (various or one) disease/s among the exposed subjects relative to the background risk experienced by "comparable" unexposed persons:
- comparable refers to the "exchangeability assumption" or "counterfactual"
- what would have happened to this group of exposed subjects if they had NOT been exposed?

\section*{Advantages of the cohort method}
- In principle, can provide a complete description of experience of cohort members subsequent to exposure, including rates of progression to and staging of disease, and natural history of disease
- Allows study of multiple potential effects of a given exposure, thereby obtaining information on potential benefits as well as risks
- Allows for the calculation of rates of disease in exposed and unexposed individuals and time to event
- Permits flexibility in choosing variables to be systematically recorded
- Allows for thorough quality control in measurement of study variables (not in historical cohort studies though)

\section*{Example: The Agricultural \\ Health Study Cohort (AHS)}
- Collaborative effort to study the effects of pesticide exposures among farmers
- National Cancer Society (NCI)
- National Institute of Environmental Health Sciences (NIEHS)
- U.S. Environmental Protection Agency (EPA)
http:/laghealth.nci.nih.gov/

The AHS Cohort study:
Retro- and prospective data collection
Phase 1, initia! conori recrultr?ent, 1994-1997:
89,658
- Frivate pesticide appicalors and
spzuses of private applicatcrs, and
kecruted at lowa and Notr. Carolina state pesticide applicato- licensing facilities
Each oesticide acplicator asked to complete a 21-page enro!'ment questionraire
a. Demograpric data
b. Pestilioes used (50 pesticides), cher pesteide-related questicms

o. Brief medical fistcry
e. Famity histry cf carcer. kidney fallure, diabeles, and heat tiseose
f. Farm exposures other than pestcices thot in ccmmercial pesticide applicator version:
9. Persenai idenifers, spouse identiters, chitrer identifers

Farmer appliiators comple:ing the envolment auestionnaire are given three take-home
questonnaires (scanab e) for
the applicator (licensing exam taker)
spouse, and
femaie and family heain zuestionraires

\section*{The AHS Cohort}
- Cancer and non-cancer outcomes
- Linkage with
" cancer registries
" vital statistic
" United States Renal Data Systern (USRDS)
- Exposure data colection
" Baseline cuestionnare at licensing exam
A: follow-up
* teiephone interviews (CAT)
* fooc frequency questionnaire and
" oneek celi; collestion
- Phase II: follow-up in 1999-2003
- Phase III: follow-up in 2004-2008

The AHS Cohort
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{--- *} & Phase 1 (Complete) & \multicolumn{3}{|c|}{\[
\begin{aligned}
& \text { Phase II } \\
& \text { (In Progross) }^{2}
\end{aligned}
\]} \\
\hline & Contacts Completed & Maln Ox Admin & Euccal
Cell
Collection & Dietary
Health
Ox Admin \\
\hline Privale Applicators & 52,395 & 26.575 & 14,577 & 14,882 \\
\hline Spauses & 32,347 & 20,85E & 12.030 & 13,224 \\
\hline Commercial Applicators \({ }^{1}\) & 4,916 & 0 & \(\therefore\) & 0 \\
\hline Total & 89,658 & 47,431 & 26,607 & 28,106 \\
\hline
\end{tabular}
\({ }^{1}\) Phase II data collection on Commercial Applicators not yet begun
\({ }^{2}\) Progress through October 12,2001

\section*{The AHS Cohort}

\section*{Take Home Questionnaires:}

Farmer Applicalor/Commercial Applicator
a. Farm exposures (comprenensive)
b. Pesticide use information (i.e., melhocis of application, adcitional pesticices useci)
c. Work practices usec currently versus those used 10 years ago
e. Other occupational exposures
e. Leisure and work physical activity, pnysica atributes (e.g.,
height, weight, eye color, skin pigmentation category)
f. Dietary and cooking practices
g. Medical history (comprenens/ve)
f. Personal identifiers

\section*{The AHS Cohort}
1. Cohort studies
- All cause and cancer mortality
\(\square\) cancer incidence
2. Cross-sectional studies:
- Using questionnaire data, functional measures, biomarkers, and GIS
E.g. cross sectional immunology study of atrazine applicators/corn farmers in lowa
3. Nested case-control studies
- High pesticide exposure events
- Parkinson's disease study
4. Exposure assessment and validation studies

\section*{The AHS Cohort}

Table 2a: Post-mnrollment (Incident only) Malignant Cancer Cases by She and Phase it Data Coliectlon progrese \({ }^{1,2,3}\)
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{4}{|c|}{Past-nrollment Casas Only} \\
\hline Cancer Stite & Total with Cancer & \[
\begin{gathered}
\text { Completed } \\
\text { Phase Il } \\
\text { Ox } \\
\hline
\end{gathered}
\] & Roturned Buceal Sample & Returned Dlatary History Qx \\
\hline Preast & 288 & 181 & 131 & 142 \\
\hline Prastate & 572 & 337 & 215 & 210 \\
\hline Colon & 224 & 106 & 54 & 73 \\
\hline Lung & 180 & 41 & 21 & 23 \\
\hline NHL & 78 & 29 & 23 & 25 \\
\hline Other \({ }^{4}\) & 789 & 320 & 217 & 216 \\
\hline Total & 2112 & 1014 & 671 & 889 \\
\hline
\end{tabular}

Table 2b: Pre- and Post-anroilment (Prevalent and Incident) Malignant Cencer Cases by Site and Phase II Data Collection progress \({ }^{1,2,3}\)

\section*{Ag-Health study topics}

Cancer mortality and incidence in Applicators and Spouses
Pesticide Exposure Assessment, Applicators, Spouses and Children questionnaires
Pesticlde Exposure Assessment - Field Studies - Acute exposures
Biologic and Functional Effects of Chronlc Pesticide Exposure
Biomarkers and Molecular Genetics
Injury
Lifestyle and Diet
Non-pesticide Exposures, Exposure to Animals
Respiratory Disease and Function
Neurological Disease and Function
Reproductive Health, Child and Adolescent Health
Autoimmune Disease and Immune Function
Other Non-cancer Chronic Disease

Vid D and type 2 diabetes: meta-analysis

\section*{Pooling of cohorts}

\section*{Advantages}
- Can study rare outcomes
- Conduct subgroup analyses for effect measure modifiers (e.g. sex, race etc)
- Wide geographic distribution allows spread of exposures
- Availability of prospective data; stored serum blood samples can be analyzed by same lab
Disadvantages
- Usually no common data elements, i.e. diverse data collection methods need to be reconciled
- Some variables may not have been collected at all; how to handle missing data?

Person time
Incidence Proportion: A/N
\(\mathrm{A}=\) case number \(\mathrm{N}=\) initial population size Person-time instead of persons:
A/T observed rate [\(A=\) observed cases and \(T=\) person-time units in study group]

\section*{Poisson model}
\(\operatorname{Pr}(A=a)=\exp \left(-1^{\wedge} T\right)\left(l^{*} T\right)^{\alpha} a!\)
I = the rate parameter (average rate we would observe if we repeated the study over and over under the same conditions with the same amount of person-time \(T\) observed each time(i.e. end the follow-up when we reach \(T\))
Note: Under the Poisson model A/T is the MLE estimator of \(I\)
Immortal person time
The study has a criterion for a minimum of time before a subject is eligible to be in the study:
E.g. in occupational cohort studies when workers are required to have worked for a minimum of \(x\)-years. All warkers who did not wark for this length of time are automatically not enrolled in this cohort and all of those who are could not be censored prior to 2 years i.e. could not have died if included in the cohort.

This time should not be used to calculate person-time for those included in the cohort

\section*{Person-time calculations}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Poinz & Coordinates (year, age) & Quinquinquenn & & Person-Y & \\
\hline & & Year & Ag* & Exact & Approximate \\
\hline A & (1956.03, 43.71) & 1955-1959 & 40-44 & 1.29 & 1.50 \\
\hline B & (1957.32, 45.00) & 1955-1959 & 45-49 & 2.68 & 2.00 \\
\hline C & (1960.00, 47.68) & 1960-1984 & 45-49 & 2.32 & 3.00 \\
\hline 0 & (1962.32, 50.00) & 1960-1964 & 50-54 & 2.68 & 2.00 \\
\hline E & (1965.00, 52.68) & 1965-1969 & 50-54 & 2.15 & 2.50 \\
\hline \(F\) & (1967.15, 54.83) & 1965-1965 & 50-54 & 2,5 & \\
\hline \multicolumn{4}{|l|}{Total} & 11.12 & 11.00 \\
\hline \multicolumn{6}{|l|}{\({ }^{\text {S See Figura } 2.1}\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Pre aciampsia Erdarmpia} & \multicolumn{5}{|c|}{Enlisa Sirth Cothart} & \multicolumn{4}{|l|}{Cohot of thildren withoul cerebral pelsy on a low Afgar sccre \(\dagger\)} \\
\hline & Persen years & No. of epiep \begin{tabular}{c}
3y \\
عases \\
\hline
\end{tabular} & IR & \[
\begin{gathered}
\text { Crude } \\
\text { 1RR } \\
(95 \% \mathrm{C})
\end{gathered}
\] & & Person years & No of epilepsy cases & IR & Adjusled* IRR (95\% C) \\
\hline Nenexposed & 17,850,197 & 19.44 & 108.9 & 1.00 & 1.00:Rof] & 48,951,803 & 75,734 & 94.5 & 1.50 (Ref) \\
\hline \multicolumn{10}{|l|}{Pro eclampsia} \\
\hline Mic & 458,558 & 629 & 135.2 & 1.27 & \[
\begin{gathered}
1.20 \\
(1.11-1.30)
\end{gathered}
\] & 4:8,7e4 & 495 & 115.8 & \[
\begin{gathered}
120 \\
(1.10-1.32)
\end{gathered}
\] \\
\hline Severa & 78,336 & 135 & 172.2 & 1.54 & \[
\begin{gathered}
: .74 \\
(0.36-: .36)
\end{gathered}
\] & 68,957 & 94 & 136.3 & \[
\begin{gathered}
1.2 \pi \\
(0.99-1.49)
\end{gathered}
\] \\
\hline Eclampsia & 7,672 & 15 & 195.5 & ¢.78 & \[
\begin{gathered}
1.35 \\
(0.84-2.24)
\end{gathered}
\] & 6,604 & 10 & 151.4 & \[
\begin{gathered}
1.35 \\
(0.73-2.52
\end{gathered}
\] \\
\hline Unspec. & 43.328 & 49 & 113.4 & 1.44 & \[
\begin{gathered}
0.95 \\
(0.72-1.26)
\end{gathered}
\] & 40.062 & 42 & 105.0 & \[
\begin{gathered}
1.05 \\
(6.77-1.42)
\end{gathered}
\] \\
\hline
\end{tabular}

Incorrect vs. correct person-time calculations
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Causen ol death} & \multirow[t]{2}{*}{Duratian of empessis? (y)} & \multirow[t]{2}{*}{No. of observed deallits} & \multicolumn{2}{|l|}{No. of expected deaths} & \multicolumn{2}{|l|}{SMR} \\
\hline & & & Original & Hevisuat & Originel & fuvised \\
\hline \multirow[t]{2}{*}{All causes} & 0-14 & 111 & 100.92 & 118.97 & 110 & 94 \\
\hline & 15+ & 25 & 41.30 & 24.15 & 81 & 104 \\
\hline \multirow[t]{2}{*}{Total cancers} & 0-14 & 27 & 25.55 & 29.93 & 106 & 90 \\
\hline & 15+ & 8 & 10.89 & 6.51 & 73 & 123 \\
\hline \multirow[t]{2}{*}{Digestive system cancers} & 0-14 & 7 & 7.77 & 9.10 & 90 & 77 \\
\hline & \(15+\) & 4 & 3.31 & 1.98 & 121 & 202 \\
\hline \multirow[t]{2}{*}{Lung cancer} & 0-14 & 13 & 10.73 & 12.57 & 121 & 103 \\
\hline & \(15+\) & 3 & 4.80 & 2.96 & 62 & 101 \\
\hline
\end{tabular}

\section*{Role of Statistical Modeling}

Construction of a probability model that explicitly recognizes
- the role of chance mechanism in producing some variation in the rates;
- i.e. observed rates are regarded as just one of the many possible realizations of an underlying random process.

Parameters in the model describe systematic effects of
- exposure of interest
- confounding variables such as age, period, length of follow-up etc.

Estimates of these parameters, obtained during the process of fitting the model, serve as summary statistics analogous to SMR or MH estimates of relative risk.

\section*{Role of Statistical Modeling}

Advantage of model fitting over standardization:
- facilitates simultaneous consideration of several different exposure variables at risk
- estimates of relative risk obtained by model fitting generally have greater numerical stability than those computed from standardized rates.

Disadvantage of model fitting:
- parametric specification of the model due to statistical rather than biological criteria. Note: epidemiologic data are rarely extensive enough to allow to discriminate between closely related models (according to model fit criteria).

\section*{Risk set approach in a cohort study}
- each subject that enters the cohort at some entry time is at risk each subject exits the study elther as a failure l.e. contracting or dying of the disease of interest or is censored, i.e. is alive at the end of study, is lost to follow-up or does not contract the disease
- associated with each subject is a covariate history - fixed or time-dependent --, including factors that are known or believed to be related to the rate of the
disease of interest

At each failure a risk set is formed of the size \(m\) that included the case (failure at that failure time) and all controls, i.e. any other cohort member
who is at risk at the failure time.

Note: The approach that organizes the cohort data by risk sets leads to data which looks ust like a matched case-control study and hence we can use the conditional logistic likelihood for the analysis
also note: the risk sets are not independent, i.e. subjects can be sampled as conirols in multiple risk sets and failures can serve as controls in risk sets prior to their failure times.

Risk set approach in a cohort study
Confounder control can be achieved by either
- Modeling the effect of the confounder
- Restricting each risk set to those who have similar (or the same) confounder values (=matching).
Note: if the matching factors are categorical this approach corresponds to stratification in the Cox model

\section*{Sampling from Risk Sets}
- Risk set sampling designs are intrinsicaly related to semiparametric
estimation methocs for parameters in the Cox proportonal hazards mocie usec in the analysis of thi cohort cata.
- A sampled risk set of size \(m\) is a subset of the risk set that contains - the case and \(m\)-t sampled contros
- e \(9.1: 1\) simple nestec case-cortrol sarpiing: each risk set consists of the
case and one control randomly sampled from al the contrcis in the risk set. ncte: one can use the '(m-1)/m' relaive efficiency fule for oontroi samping ver
futicohert araiysis for testing assocaations between single oxposures ano diseases (Bresiow and Pation , 979)
Thus, we have for 1 case and 4 cantrols (or \(4 / 5=0.8\) or \(80 \%\) efficiency but ther
for che sase and 5 controls \(5 / 6=0.83\) or \(83 \%\) power, and for \(9 / 10=0.90\) or \(90 \%\) poper, thus, we reed to add 4 contrists to gain \(10 \%\) efficierc, i.e doutle your afforts to increase efficiensy oniy sligntiy; ;igets worse after that ad

\title{
Cancer Incidence among Glyphosate-Exposed Pesticide Applicators in the Agricultural Health Study
}

\author{
Anneclaire J. De Roos, \({ }^{1}\) Aaron Blair, \({ }^{2}\) Jennifer A. Rusiecki, \({ }^{2}\) Jane A. Hoppin, \({ }^{3}\) Megan Svec, \({ }^{1}\) Mustafa Dosemeci, \({ }^{2}\) Dale P. Sandler, \({ }^{3}\) and Michael C. Alavanja \({ }^{2}\)
}
\({ }^{1}\) Program in Epidemiology, Fred Hutchinson Cancer Research Center and the Department of Epidemiology, University Seattle, Washington, USA; \({ }^{2}\) Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institut Department of Health and Human Services, Bethesda, Maryland, USA; \({ }^{3}\) Epidemiology Program, National Institute of E EXHIBIT 19-18
RITZ

Date: 9/18/2017
Reporter Lisa Moskowitz

\begin{abstract}
Glyphosate is a broad-spectrum herbicide that is one of the most frequently applied pesticides in the world. Although there has been little consistent evidence of genotoxicity or carcinogenicity from in vitro and animal studies, a few epidemiologic reports have indicated potential health effects of glyphosate. We evaluated associations between glyphosate exposure and cancer incidence in the Agricultural Health Study (AHS), a prospective cohort study of 57,311 licensed pesticide applicators in Iowa and North Carolina. Detailed information on pesticide use and other factors was obtained from a self-administered questionnaire completed at time of enrollment (1993-1997). Among private and commercial applicators, \(75.5 \%\) reported having ever used glyphosate, of which \(>97 \%\) were men. In this analysis, glyphosate exposure was defined as a) ever personally mixed or applied products containing glyphosate; \(b\)) cumulative lifetime days of use, or "cumulative exposure days" (years of use \(\times\) days/year); and \(c\)) intensity-weighted cumulative exposure days (years of use \(\times\) days/year \(\times\) estimated intensity level). Poisson regression was used to estimate exposure-response relations between glyphosate and incidence of all cancers combined and 12 relatively common cancer subtypes. Glyphosate exposure was not associated with cancer incidence overall or with most of the cancer subtypes we studied. There was a suggested association with multiple myeloma incidence that should be followed up as more cases occur in the AHS. Given the widespread use of glyphosate, future analyses of the AHS will allow further examination of long-term health effects, including less common cancers. Key words: cancer, cohort study, farming, glyphosate, pesticide. Environ Health Perspect 113:49-54 (2005). doi:10.1289/ehp. 7340 available via \(h_{t t p}: / / d x\).doi.org/ [Online 4 November 2004]
\end{abstract}

Glyphosate \(\{N\)-(phosphonomethyl)glycine], commonly sold in the commercial formulation named Roundup (Monsanto Company, St. Louis, MO), has been a frequently used herbicide on both cropland and noncropland areas of the world since its introduction in the 1970 s (Williams et al. 2000). Roundup is a combination of the acrive ingredient and other chemicals, including a surfactant (polyoxyethyleneamine) that enhances the spreading of spray droplets when they contact foliage. Glyphosare is a broad-spectrum herbicide of which the primary mechanism is inhibition of the enzyme 5 -enolpyruvoylshikimate 3-phosphate synthase, which is essential for the formation of aromatic amino acids in plants (Steinrucken and Amrhein 1980). Because this specific biologic pathway operates only in plants and microorganisms, the mechanism is not considered to be a risk for humans. Nevertheless, genocoxic, hormonal, and enzymatic effects in mammals have been reported (Bolognesi ct al. 1997; Daruich et al. 2001; El Demerdash er al. 2001; Hietanen et al. 1983; Lioi et al. 1998a, 1998b; Olorunsogo et al. 1979; Peluso et al. 1998; Walsh et al. 2000; Yousef et al. 1995).

Results from genoroxicity studies of glyphosate have been conflicting. Glyphosate did not show any genotoxic activity in a
battery of assays (Garry et al. 1999; Grisolia 2002; Li and Long 1988; Wildeman and Nazar 1982). However, other studies observed that glyphosate treatment of human lymphocytes in vitro resulted in increased sister chromarid exchanges (Bolognesi et al. 1997), chromosomal aberrations (Lioi et al. 1998b), and indicators of oxidative stress (Lioi et al. 1998b). Some studies found slightly greater toxicity of the Roundup formulation compared with glyphosate, in terms of both acute toxicity (Folmar et al. 1979; Martinez et al. 1990; Mitchell et al. 1987) and genoroxicity (Bolognesi et al. 1997; Vigfusson and Vyse 1980). Roundup was associated with increased DNA adducts in mice (Peluso et al. 1998) and a weak mutagenic effect in the Salmonella assay (Kale et al. 1995; Moriya et al. 1983; Rank et al. 1993), whereas glyphosate alone did not show these effects. Chronic feeding studies of glyphosate have not provided evidence of a carcinogenic effect in mice or rats (Williams et al. 2000).

The U.S. Environmental Protection Agency (U.S. EPA 1993) and the World Health Organization (WHO 1994) reviewed the toxicology data on glyphosate and concluded that glyphosate is not muragenic or carcinogenic. The U.S. EPA classified glyphosate as category E, indicating "evidence
of noncarcinogenicity for nuna 10816 RPR. CRR CLR EPA 1993). Despite this conclusion, three recent case-control studies suggested an association berween reported glyphosate use and the risk of non-Hodgkin lymphoma (NHL) (De Roos et al. 2003b; Hardell and Eriksson 1999; Hardell et al. 2002; McDuffie et al. 2001). Considering the widespread and frequent use of glyphosate in both the United States and the rest of the world, ongoing risk assessment is of importance. We studied sitespecific cancer incidence associated wirh glyphosare use among pesticide applicators in the Agricultural Health Study (AHS) cohort.

\section*{Materials and Methods}

Cohort enrollment and follow-up. The AHS is a prospective cohort study in lowa and North Carolina, which includes 57,311 private and commercial applicators who were licensed to apply restricred-use pesticides at the time of enrollment. Recruitment of the applicators occurred berween 1993 and 1997 (Alavanja et al. 1996). Cohort members were matched to cancer registry files in Iowa and North Carolina for case identificarion and to the state death registries and the National Dearh Index (National Center for Health Statistics 1999) to ascertain vital status. Incident cancers were identified for the time period from the date of enrollment until 31 December 2001 and were coded according to the International Classification of Diseases, 9th Revision (WHO 1977). If cohort members had moved from the state, they were censored in the year they left. The median time of follow-up was 6.7 years.

Exposure assessment. Using a self-administered enrollment questionnaire, we collected comprehensive-use data on 22 pesticides, ever/never use information for 28 additional pesticides, and general information on pesticide application methods, personal protective equipment, pesticide mixing, and equipment repair. Data were also collected on basic demographic

\footnotetext{
Address correspondence to A.J. De Roos, Fred Hurchinson Cancer Research Center and University of Washington Department of Epidemiology, 1100 Fairview Ave. N, M4-B874, Seattle, WA 98109 USA. Telephone: (206) 667-7315. Fax: (206) 667-4787. E-mail: derooseu.washington.edu
The authors declare they have no competing financial interests.
Received 21 June 2004; accepted 3 November 2004.
}
and lifestyle factors. Applicators who completed this questionnaire were given a selfadministered take-home questionnaire, which contained additional questions on occupational exposures and lifestyle factors. The questionnaires are available from the AHS website (National Instirutes of Health 2004).

We constructed three glyphosate exposure metrics for this analysis: \(a\)) ever personally mixed or applied products containing glyphosate (ever/never); b) cumulative lifetime days of use, or "cumulative exposure days" (years of use \(\times\) days per year, categorized in tertiles among users: \(1-20,21-56,57-2,678\)); and \(c\)) intensity-weighted cumulative exposure days (years of use \(\times\) days per year \(\times\) intensiry level, categorized in tertiles: \(0.1-79.5\), 79.6-337.1, 337.2-18,241). Tertiles were chosen a priori as the cut points with which to
categorize exposure data, to avoid sparse data for rare cancers in the high-exposure categories. Intensity levels were estimated using questionnaire data from enrollment and measurement data from the published pesticide exposure literature, as follows: intensiry level = [(mixing status + application merhod + equipment repair status) \(\times\) personal protective equipment use] (Dosemeci et al. 2002).

Data analysis. Persons whose first primary cancer occurred before the time of enrollment (\(n=1,074\)) were excluded from analyses, as were subjects who were lost to follow-up or otherwise did not contribute any person-time (\(n=298\)) and applicators who did not provide any information on age (\(n=7\)) or whether they had ever used glyphosate (\(n=1,678\)). After exclusions, 54,315 subjects were available for inclusion in the age-adjusted analyses

Table 1. Selected characteristics of applicators in the AHS by glyphosate exposure, based on data from the enrollment questionnaire (1993-1997). \({ }^{a}\)
\begin{tabular}{|c|c|c|c|}
\hline & Never exposed
\[
(n=13,280)
\] & Lowest exposed
\[
(n=15,911)^{b}
\] & Higher exposed
\[
(n=24,465)^{\circ}
\] \\
\hline Characteristic & No. (\%) & No. (\%) & No. (\%) \\
\hline \multicolumn{4}{|l|}{State of residence} \\
\hline lowa & 9,987 (75.2) & 9,785 (61.5) & 15,336 (62.7) \\
\hline North Carolina & 3,293 (24.8) & 6,126 (38.5) & 9,129 (37.3) \\
\hline \multicolumn{4}{|l|}{Age (years)} \\
\hline \(<40\) & 2,279 (17.2) & 2.226 (14.0) & 4,190(17.1) \\
\hline 40-49 & 3,420 (25.8) & 4,279 (26.9) & 7.899 (32.3) \\
\hline 50-59 & 2,989 (22.5) & 3,931 (24.7) & 6,035 (24.7) \\
\hline 60-69 & 2.715 (20.4) & 3,266 (20.5) & 3,997 (16.3) \\
\hline 70 & 1,877 (14.1) & 2,209 (13.9) & 2,344 (9.6) \\
\hline \multicolumn{4}{|l|}{Sex} \\
\hline Niaie & \(12.1 / 8190.21\) & 15,5ub (9/3) & 23,924 (9) 8) \\
\hline Female & 502 (3.8) & 406 (2.6) & 541 (2.2) \\
\hline \multicolumn{4}{|l|}{Applicator type \({ }^{\text {d }}\)} \\
\hline Private & 12,067 (90.9) & 15,008 (94.3) & 21,938 (89.7) \\
\hline Commercial & 1,213 (9.1) & 903 (5.7) & 2,527 (10.3) \\
\hline \multicolumn{4}{|l|}{Education} \\
\hline High school graduate or GED & 8.898 (68.7) & 8,997 (57.9) & 11,975 (50.1) \\
\hline Beyond high school & 4,060 (31.3) & 6,530 (42.1) & 11,936 (49.9) \\
\hline \multicolumn{4}{|l|}{Smoking history} \\
\hline Never & 7,298 (57.3) & 8.241 (53.2) & 12.751 (53.7) \\
\hline \(\leq 12\) pack-years & 2,866 (22.5) & 3,597 (23.2) & 5,572 (23.5) \\
\hline > 12 pack-years & 2,567 (20.2) & 3,643 (23.5) & 5.439 (22.9) \\
\hline \multicolumn{4}{|l|}{Alcohol consumption in past year} \\
\hline None & 4.087 (32.7) & 5,352 (35.6) & 7.023 (29.8) \\
\hline \(\leq 6\) drinks/month & 4.461 (35.7) & 5,291 (35.2) & 8,149 (34.5) \\
\hline \(>6\) drinks/month & 3,936 (31.5) & 4,387 (29.2) & 8,422 (35.7) \\
\hline \multicolumn{4}{|l|}{Family history of cancer} \\
\hline No & 8,701 (65.5) & 9,520 (59.8) & 14,668 (60.0) \\
\hline Yes & 4,579 (34.5) & 6,391 (40.2) & 9,797 (40.0) \\
\hline \multicolumn{4}{|l|}{Use of other common pesticides} \\
\hline 2,4-D & 7,030 (53.3) & 11,879 (75.2) & 20,699 (85.1) \\
\hline Alachlor & 4,896 (39.7) & 7,321 (50.9) & 13,790 (59.7) \\
\hline Atrazine & 7.707 (58.5) & 10,533 (66.6) & 18,237 (75.0) \\
\hline Metolachlor & 3,890 (31.6) & 6,172 (43.1) & 12.952 (56.2) \\
\hline Trifluralin & 4,239 (34.0) & 7,109 (49.7) & 14.675 (63.5) \\
\hline Carbaryl & 4,110 (33.7) & 8,515 (58.1) & 15,139 (64.8) \\
\hline Benomyl & 510 (4.3) & 1.418 (9.9) & 3,397 (14.8) \\
\hline Maneb & 492 (4.1) & 1.412(9.9) & 2,929 (12.9) \\
\hline Paraquat & 1,067 (9.0) & 3.021 (21.2) & 8,031 (35.2) \\
\hline Diazinon & 1,906 (16.0) & 4,615 (32.4) & 9,107 (40.0) \\
\hline
\end{tabular}
ancludes observations for subjects included in age-adjusted Poisson regression models of cancer incidence (\(n=54,315\)). \({ }^{b}\) Lowest tertile of cumulative exposure days. \({ }^{\text {chighest two tertiles of cumulative exposure days; the sum of the three ter- }}\) tiles of cumulative exposure days (\(n=40,376\)) does not equal the total number of subjects who reported having ever used glyphosate (\(n=41,035\)) because of missing data on duration and frequency of use. "Private" refers primarity to individual farmers, and "commercial" refers to professional pesticide applicators.
of cancer incidence in relation to glyphosare use; however, other analyses contained fewer observations because of missing data for duration and frequency of glyphosare use or for covariates.

We compared certain baseline characteristics among three types of pesticide applicators: a) those applicators who never personally used glyphosate; \(b\)) applicators with the lowest glyphosare exposure, defined as being in the lowest tertile of cumulative exposure days; and c) those with higher glyphosate exposure, defined as being in the middle or highest tertile of cumulative exposure days. The purpose of the comparison was to identify potential confounders of glyphosate exposure-disease associations for the vatious analyses we conducted. Differences between the exposure groups were tested using the chi-square statistics and associated \(p\)-values.

Poisson regression analyses were carried out for all cancers combined and specific cancer sites to estimate rate ratios (RRs) and 95\% confidence inrervals (Cls) associated with glyphosate exposure metrics; the effect of each metric was evaluated in a separate model for each cancer. We analyzed tertile exposure variables in separate models using either the lowest-tertile-exposed or never-exposed subjects as rhe reference category. We investigated specific cancer sites for which there were at least 30 cases with sufficient information for inclusion in age-adjusted analyses. These cancers were then evaluated for all rhe exposure metrics and in adjusted analyses, despite smaller numbers of cases upon further adjustment. For each exposure metric, RRs were adjusted for demographic and lifesryle factors, including age at enrollment (continuous), education (dichotomous: \(\leq\) high school graduate or GED/education beyond high school), pack-years of cigarette smoking [indicator variables: never, pack-years at or below the median (12 packyears), pack-years above the median], alcohol consumprion in the past year [indicator variables: none, frequency at or below the median (72 drinks), frequency above the median], family history of cancer in first-degree relatives (dichotomous: yes/no), and state of residence (dichotomous: Iowa/North Carolina). There was insufficient variability in sex or applicator type to adjust for these factors.

Potencial confounding from exposure to other pesticides was explored by adjusting for the five pesticides for which cumulative-exposure-day variables were most highly associated wirh glyphosate cumulative exposure days [(2,4-dichlorophenoxy)acetic acid (2,4-D), alachlor, atrazine, metolachlor, trifluralin]; these pesticide exposures were coded as variables indicating never, low, and high, with the split berween low and high as the median of their cumulative exposure days. Additionally, of the pesticides for which only ever/never use
information was available, we adjusted for the five pesticides that were most highly associated with ever use of glyphosate (benomyl, maneb, paraquat, carbaryl, diazinon). Where inclusion of all 10 other pesticides in a model changed a glyphosate exposure estimate by at least \(20 \%\) (compared with a model restricted to the same observations), these results were presented as the final results for that cancer; otherwise, estimates adjusted only for demographic and lifestyle factors are presented.

Tests for trend across tertiles were conducted by creating a continuous variable with assigned values equal to the median value of cumulative exposure days (or intensityweighted exposure days) within each tertile; the \(p\)-value for the trend test was that from the Poisson model coefficient for this continuous variable. We considered \(p\)-values \(<0.10\) as indicative of a trend.

Additional analyses were conducted for cancers for which we observed elevated RRs, and for NHL because of its association with glyphosate in previous studies. These included analyses stratified by state and analyses across quartiles and quintiles (where numbers allowed) of exposure days metrics.

\section*{Results}

Selected characteristics of the glyphosateexposed and never-exposed applicators are presented in Table 1. Among 54,315 subjects included in age-adjusted analyses, 41,035 (\(75.5 \%\)) reported having ever personally mixed or applied products containing glyphosate, and 13,280 (24.5\%) did not. The cohort, both exposed and never exposed, was composed of primarily of male, middle-aged, private applicators. This is a population with relatively low smoking prevalence; in both the exposed and never-exposed groups, more than half of the subjects reported that they had never smoked. Significant differences (\(p<0.05\)) existed between never-exposed and lowest-exposed subjects for all of the characteristics in Table 1. Lowest- and higher-exposed subjects (\(p<0.05\)) also differed on several factors, the most notable being that higher-exposed subjects were more likely to be commercial applicators, to have consumed greater amounts of alcohol in the past year, and to have used orher specific pesticides. However, lowest- and higherexposed subjects were similar to each other (\(p \geq 0.05\)) in characteristics including smoking and family history of cancer in a first-degree relative. In addition, lowest- and higherexposed subjects were more similar to each other than to their never-exposed counterparts (by qualitative comparison of percentages only) in factors including North Carolina residence, education beyond high school, and use of other pesticides. Becausc of relative similarities between lowest- and higher-exposed in factors associated with socioeconomic status and other
exposures, we decided to conduct some analyses using lowest-exposed rather than neverexposed applicators as the reference group, in order to avoid residual confounding by unmeasured covariates. However, we decided a priori that any association should be apparent regardless of which reference group was used.

RRs for the association of all cancers combined and specific cancers with having ever used glyphosate are presented in Table 2. RRs adjusted for age only are presented, as well as RRs adjusced for demographic and lifestyle factors and, in some cases, for other pesticides. The incidence of all cancers combined was not associated with glyphosate use, nor were most specific cancers. There was an \(80 \%\) increased risk of melanoma associated with glyphosate use in the age-adjusted analysis, which diminished slightly upon further adjustment. Adjusted risk estimates for colon, rectum, kidney, and bladder cancers were elevated by \(30-60 \%\), but these estimates were not staristically significant. There was more than 2 -fold increased risk of multiple myeloma associated with ever use of glyphosate in adjusted analyses, although this is based on a small number of cases. The association between myeloma incidence and glyphosare exposure was consistent in both states (ever used glyphosate, fully adjusted analyses: Iowa \(R R=2.6\); North Carolina RR = 2.7).

Results from analyses of tertiles of increasing glyphosare exposure level are presented in Table 3. A decreased risk of lung cancer was suggested for the highest tertile of both cumulative and intensity-weighted exposure days (\(p\)-value for trend \(=0.02\)); however, a similar
trend was not observed in analyses using never exposed as the referent (results not shown). There was a \(40 \%\) increased risk of colon cancer for the highest tertile of intensity-weighted exposure; however, no clear monotonic trend was observed for either exposure metric. Elevared risks of leukemia and pancreas cancer were observed only for the middle rertiles of both cumulative and intensity-weighted exposure days, with no increased risk among those with the highest exposure. The associations we observed in the analysis of ever use of glyphosate (Table 2) for melanoma, rectum, kidney, and bladder cancers were not confirmed in analyses based on exposure-day metrics; similarly, no exposure-response patterns were observed in analyses using never exposed as the referent or in analyses across quintiles of exposure (results not shown). No association was observed between NHL and glyphosate exposure in any analysis, including an analysis comparing the highest with the lowest quintile of exposure (\(>108\) vs. \(>0-9\) cumulative exposure days: \(R R=0.9 ; 95 \% \mathrm{CI}, 0.4-2.1)\).

Elevared RRs were estimated for mulciple myeloma, with an approximate 2 -fold increased risk for the highest tertile of both cumulative and intensity-weighted exposure days (Table 3); however, small numbers precluded precise effect estimation (\(n=19\) in adjusted analyses of exposure-day metrics). The estimated intensitylevel component of the intensity-weighted exposure-day metric was not associated with multiple myeloma (highest vs. lowest tertile: \(\mathrm{RR}=0.6 ; 95 \% \mathrm{Cl}, 0.2-1.8\)), and observed positive associations of the intensity-weighted exposure-day metric with myeloma relied solely

Table 2. Association of glyphosate exposure (ever/never used) with common cancers \({ }^{\text {a }}\) among AHS applicators.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Cancer site} & \multirow[b]{2}{*}{Total no. of cancers \({ }^{c}\)} & \multirow[b]{2}{*}{Ever used glyphosate (\% of total)} & \multicolumn{2}{|r|}{RR \((95 \% \mathrm{Cl})^{6}\)} \\
\hline & & & Effect estimates adjusted for age \((n=54,315)^{d}\) & Adjusted for age, demographic and lifestyle factors, and other pesticides \({ }^{d}\) \\
\hline All cancers & 2,088 & 73.6 & 1.0 (0.9-1.1) & \(1.0(0.9-1.2)\) \\
\hline Lung & 204 & 72.1 & \(1.0(0.7-1.3)\) & \(0.9(0.6-1.3)\) \\
\hline Oral cavity & 59 & 76.3 & 1.1 (0.6-2.0) & \(1.0(0.5-1.8)\) \\
\hline Colon & 174 & 75.3 & 1.1 (0.8-1.6) & \(1.4(0.8-2.2)^{e}\) \\
\hline Rectum & 76 & 77.6 & 1.2(0.7-2.1) & \(1.3(0.7-2.3)\) \\
\hline Pancreas & 38 & 76.3 & \(1.2(0.6-2.5)\) & \(0.7(0.3-2.0)^{e}\) \\
\hline Kidney & 63 & 73.0 & \(1.0(0.6-1.7)\) & \(1.6(0.7-3.8)^{e}\) \\
\hline Bladder & 79 & 76.0 & \(1.2(0.7-2.0)\) & \(1.5(0.7-3.2)^{e}\) \\
\hline Prostate & 825 & 72.5 & \(1.0(0.8-1.1)\) & 1.1 (0.9-1.3) \\
\hline Melanoma & 75 & 84.0 & 1.8(1.0-3.4) & 1.6(0.8-3.0) \\
\hline All lymphohematopoietic cancers & 190 & 75.3 & 1.1 (0.8-1.5) & \(1.1(0.8-1.6)\) \\
\hline NHL & 92 & 77.2 & \(12(0.7-1.9)\) & 1.1 (0.7-1.9) \\
\hline Leukemia & 57 & 75.4 & 1.1 (0.6-2.0) & \(1.0(0.5-1.9)\) \\
\hline Multiple myeloma & 32 & 75.0 & 1.1 (0.5-2.4) & \(2.6(0.7-9.4)^{\text {f }}\) \\
\hline
\end{tabular}
\({ }^{a}\) Cancers for which at least 30 subjects had sufficient information for inclusion in age-adjusted analyses. \({ }^{6}\) RRs and \(95 \%\) Cls from Poisson regression models. \({ }^{c}\) Frequencies among subjects included in age-adjusted analyses. \({ }^{d}\) Numbers of subjects in these analyses are lower than in age-adjusted analyses because of missing observations for some covariates (models adjusted for demographic and lifestyle factors include 49,211 subjects; models additionally adjusted for other
 cide variables in the model changed the effect estimate for glyphosate by at least \(20 \%\). The estimate for myeloma was not confounded by other pesticides according to our change-in-estimate rule of \(\geq 20 \%\); however, the fully adjusted estimate is shown for the purpose of comparison with state-specific estimates (in the text), which were confounded by other pesticides and required adjustment.
on the exposure-day component; therefore, only results for cumulative exposure days are shown further. When using never exposed as the referent, the association berween glyphosate use and multiple myeloma was more pronounced, with more than 4 -fold increased risk associated with the highest tertile of cumulative exposure days (tertile 1: \(\mathrm{RR}=2.3 ; 95 \% \mathrm{CI}\), \(0.6-8.9\); tertile \(2: \mathrm{RR}=2.6 ; 95 \% \mathrm{CI}, 0.6-11.5\); tertile \(3: \mathrm{RR}=4.4 ; 95 \% \mathrm{CI}, 1.0-20.2 ; p\)-value for trend \(=0.09\)). Although the myeloma cases were sparsely distributed in analyses of quartiles and quintiles, the highest increased risks were observed in the highest exposure categories (full set of results not shown: upper quartile vs. never exposed: \(\mathrm{RR}=6.6 ; 95 \% \mathrm{CI}, 1.4-30.6\); \(p\)-value for trend across quartiles \(=0.01\)).

\section*{Discussion}

There was no association berween glyphosate exposure and all cancer incidence or most of the specific cancer subrypes we evaluated, including NHL, wherher the exposure metric was ever used, cumulative exposure days, or intensity-weighted cumulative exposure days. The most consistent finding in our study was a suggested association between multiple myeloma and glyphosate exposure, based on a small number of cases.

Although our study relied on self-reported exposure information, farmers have been shown to provide reliable information regarding their personal pesticide use (Blair et al. 2002; Blair and Zahm 1993; Duell et al. 2001; Engel et al. 2001; Hoppin et al. 2002).

Investigators have used pesticide supplier reports (Blair and Zahm 1993) and selfreported pesticide use information provided earlier (Engel et al. 2001) to assess the validity of retrospectively reported pesticide use data. Among farmers in the AHS, Blair et al. (2002) reporred high reliability for reports of ever use of a particular pesticide (ranging from 70 to \(>90 \%\)). Agreement for duration and frequency of use was lower but generally \(50-60 \%\) for specific pesticides. Hoppin et al. (2002) have demonstrated that farmers provide plausible dara regarding lifetime duration of use, wirh fewer than \(5 \%\) reporting implausible values for specific chemicals.

There were rather few cases of NHL for inclusion in this analysis (\(n=92\)); nevertheless,

Table 3. Association of glyphosate exposure (cumulative exposure days and intensity-weighted exposure days) with common cancers \({ }^{\text {a }}\) among AHS applicators.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Cancer site} & \multicolumn{4}{|c|}{Cumulative exposure days \({ }^{\text {b }}\)} & \multicolumn{4}{|c|}{Intensity-weighted exposure days \({ }^{\text {c }}\)} \\
\hline & Tertile cut points & No. & RR (\(95 \% \mathrm{Cl})^{\text {d }}\) & \(p\)-Trend & Tertile cut points & No. & RR \((95 \% \mathrm{Cl})^{\text {d }}\) & \(p\)-Trend \\
\hline \multirow[t]{3}{*}{All cancers} & 1-20 & 594 & 10 & & 0.1-79.5 & 435 & 1.0 & \\
\hline & 21-56 & 372 & \(1.0(0.9-1.1)\) & & 79.6-337.1 & 436 & \(0.9(0.8-1.0)\) & \\
\hline & 57-2,678 & 358 & 1.0 (0.9-1.1) & 0.57 & 337.2-18,241 & 438 & \(0.9(0.8-1.1)\) & 0.35 \\
\hline \multirow[t]{3}{*}{Lung} & 1-20 & 40 & 1.0 & & 0.1-79.5 & 27 & 1.0 & \\
\hline & 21-56 & 26 & \(0.9(0.5-1.5)^{e}\) & & 79.6-337.1 & 38 & \(1.1(0.7-1.9)^{e}\) & \\
\hline & 57-2,678 & 26 & \(0.7(0.4-1.2)^{e}\) & 0.21 & 337.2-18,241 & 27 & \(0.6(0.3-1.0)^{e}\) & 0.02 \\
\hline \multirow[t]{3}{*}{Oral cavity} & 1-20 & 18 & 1.0 & & 0.1-79.5 & 11 & 1.0 & \\
\hline & 21-56 & 10 & \(0.8(0.4-1.7)\) & & 79.6-337.1 & 14 & 1.1 (0.5-2.5) & \\
\hline & 57-2,678 & 10 & \(0.8(0.4-1.7)\) & 0.66 & 337.2-18.241 & 13 & \(1.0(0.5-2.3)\) & 0.95 \\
\hline \multirow[t]{3}{*}{Colon} & 1-20 & 32 & 1.0 & & 0.1-79.5 & 25 & 1.0 & \\
\hline & 21-56 & 28 & \(1.4(0.9-2.4)^{e}\) & & 79.6-337.1 & 20 & \(0.8(0.5-1.5)^{6}\) & \\
\hline & 57-2,678 & 15 & \(0.9(0.4-1.7)^{e}\) & 0.54 & 337.2-18,241 & 30 & \(1.4(0.8-2.5)^{C}\) & 0.10 \\
\hline \multirow[t]{3}{*}{Rectum} & 1-20 & 20 & 1.0 & & 0.1-79.5 & 16 & 1.0 & \\
\hline & 21-56 & \(1 /\) & 1.3(0.1-2.5) & & 19.6-331.1 & 18 & 1.010.5-2.0) & \\
\hline & 57-2,678 & 14 & 1.1 (0.6-2.3) & 0.70 & 337.2-18,241 & 16 & \(0.9(0.5-1.9)\) & 0.82 \\
\hline \multirow[t]{3}{*}{Pancreas} & 0-20 & 9 & 1.0 & & 0-79.5 & 6 & 1.0 & \\
\hline & 21-56 & 9 & 1.6 (0.6-4.1) & & 79.6-337.1 & 16 & \(2.5(1.0-6.3)\) & \\
\hline & 57-2,678 & 7 & 1.3 (0.5-3.6) & 0.83 & 337.2-18,241 & 3 & 0.5 (0.1-1.9) & 0.06 \\
\hline \multirow[t]{3}{*}{Kidney} & 1-20 & 20 & 1.0 & & 0.1-79.5 & 20 & 1.0 & \\
\hline & 21-56 & 8 & 0.6 (0.3-1.4) & & 79.6-337. 1 & 7 & \(0.3(0.1-0.7)\) & \\
\hline & 57-2,678 & 9 & \(0.7(0.3-1.6)\) & 0.34 & 337.2-18,241 & 10 & 0.5 (0.2-1.0) & 0.15 \\
\hline \multirow[t]{3}{*}{Bladder} & 1-20 & 23 & 1.0 & & 0.1-79.5 & 14 & 1.0 & \\
\hline & 21-56 & 14 & \(1.0(0.5-1.9)\) & & 79.6-337.1 & 8 & 0.5 (0.2-1.3) & \\
\hline & 57-2,678 & 17 & \(1.2(0.6-2.2)\) & 0.53 & 337.2-18,241 & 13 & 0.8 (0.3-1.8) & 0.88 \\
\hline \multirow[t]{3}{*}{Prostate} & 1-20 & 239 & 1.0 & & 0.1-79.5 & 167 & 1.0 & \\
\hline & 21-56 & 132 & \(0.9(0.7-1.1)\) & & 79.6-337.1 & 169 & \(1.0(0.8-1.2)\) & \\
\hline & 57-2,678 & 145 & 1.1 (0.9-1.3) & 0.69 & 337.2-18.241 & 174 & \(1.1(0.9-1.3)\) & 0.60 \\
\hline \multirow[t]{3}{*}{Melanoma} & 1-20 & 23 & 1.0 & & 0.1-79.5 & 24 & 1.0 & \\
\hline & 21-56 & 20 & \(1.2(0.7-2.3)\) & & 79.6-337.1 & 16 & 0.6 (0.3-1.1) & \\
\hline & 57-2,678 & 14 & \(0.9(0.5-1.8)\) & 0.77 & 337.2-18,241 & 17 & \(0.7(0.3-1.2)\) & 0.44 \\
\hline \multirow[t]{3}{*}{All iymphohematopoietic cancers} & 1-20 & 48 & 1.0 & & 0.1-79.5 & 38 & 1.0 & \\
\hline & 21-56 & 38 & \(1.2(0.8-1.8)\) & & 79.6-337.1 & 40 & \(1.0(0.6-1.5)\) & \\
\hline & 57-2,678 & 36 & \(1.2(0.8-1.8)\) & 0.69 & 337.2-18,241 & 43 & 1.0 (0.7-1.6) & 0.90 \\
\hline \multirow[t]{3}{*}{NHL} & 1-20 & 29 & 1.0 & & 0.1-79.5 & 24 & 1.0 & \\
\hline & 21-56 & 15 & \(0.7(0.4-1.4)\) & & 79.6-337.1 & 15 & 0.6 (0.3-1.1) & \\
\hline & 57-2,678 & 17 & \(0.9(0.5-1.6)\) & 0.73 & 337.2-18,241 & 22 & 0.8 (0.5-1.4) & 0.99 \\
\hline \multirow[t]{3}{*}{Leukemia} & 1-20 & 9 & 1.0 & & 0.1-79.5 & 7 & 1.0 & \\
\hline & 21-56 & 14 & \(1.9(0.8-4.5)^{e}\) & & 79.6-337.1 & 17 & 1.9(0.8-4.7) \({ }^{e}\) & \\
\hline & 57-2,678 & 9 & \(1.0(0.4-2.9)^{e}\) & 0.61 & 337.2-18,241 & 8 & \(0.7(0.2-2.1)^{e}\) & 0.11 \\
\hline \multirow[t]{3}{*}{Multiple myeloma} & 1-20 & 8 & 1.0 & & 0-79.5 & 5 & 1.0 & \\
\hline & 21-56 & 5 & \(1.1(0.4-3.5)^{e}\) & & 79.6-337.1 & 6 & \(1.2(0.4-3.8)^{e}\) & \\
\hline & 57-2,678 & 6 & \(1.9(0.6-6.3)^{e}\) & 0.27 & 337.2-18,241 & 8 & \(2.1(0.6-7.0)^{e}\) & 0.17 \\
\hline
\end{tabular}

\footnotetext{
 cumulative exposure days and some covariates (models adjusted for demographic and lifestyle factors include 36,823 subjects; models additionally adjusted for other pesticides include 30,699 subjects). \({ }^{6}\) Numbers of subjects in analyses vary depending on missing observations for intensity-weighted cumulative exposure days and some covariates (models adjusted for demographic and lifestyle factors include 36,509 subjects; models additionally adjusted for other pesticides include 30,613 subjects). \({ }^{\circ}\) Relative rate ratios and \(95 \%\) CIs from Poisson regression analyses. Estimates adjusted for other pesticides are shown because inclusion of other pesticide variables in the model changed the effect estimate for glyphosate by at least \(20 \%\).
}
the available data provided evidence of no association between glyphosate exposure and NHL incidence. This conclusion was consistent across analyses using the different exposure metrics and in analyses using either never exposed or low exposed as the referent. Furthermore, there was no apparent effect of glyphosate exposure on the risk of NHL in analyses stratified by state of residence or in analyses of highly exposed groups comparing the highest with the lowest quintile of exposure. These findings conflict with recent studies. The first report of an association of glyphosate with NHL was from a case-control srudy, but the estimate was based on only four exposed cases (Hardell and Eriksson 1999). A pooled analysis of this initial study with a study of hairy cell leukemia showed a relationship between glyphosate exposure and an increased risk of disease [unadjusted analysis: odds ratio \((O R)=3.0 ; 95 \% \mathrm{CI}, 1.1-8.5]\) (Hardell et al. 2002). A more extensive study conducted across a large region of Canada found an elevared risk of NHL associated with glyphosate use more frequent than 2 days/year (\(\mathrm{OR}=2.1\); \(95 \% \mathrm{CI}, 1.2-3.7\)) (McDuffie et al. 2001). Similarly, increased NHL risk in men was associated with having ever used glyphosate (\(\mathrm{OR}=2.1 ; 95 \%\) CI, \(1.1-4.0\)) after adjustment for other commonly used pesticides in a pooled analysis of National Cancer Institute-sponsored case-control studies conducted in Nebraska, Kansas, Iowa, and Minnesota (De Roos et al. 2003b). These previous studies were retrospective in design and thereby potentially susceptible to recall bias of exposure reporting. Our analysis of the AHS cohort had a prospective design, which should largely eliminate the possibiliry of recall bias. Differences in recall bias could account for discrepant study results; however, evaluation of the potential for recall bias in case-control studies of pesticides among farmers has not uncovered evidence that it occurred (Blair and Zahm 1993).

Our finding of a suggested association of multiple myeloma incidence with glyphosate exposure has not been previously reported, although numerous studies have observed increased myeloma risk associated with farming occupation (Boffetta et al. 1989; Brownson et al. 1989; Cantor and Blair 1984; Cerhan et al. 1998; Cuzick and De Stavola 1988; Eriksson and Karlsson 1992; Figgs et al. 1994; Gallagher et al. 1983; La Vecchia et al. 1989; Nandakumar et al. 1986, 1988; Pasqualetti et al. 1990; Pearce et al. 1985; Pottern et al. 1992; Reif et al. 1989; Vagero and Persson 1986). A possible biologic mechanism of how glyphosate might act along the causal pathway of this plasma cell cancer has not been hypothesized, but myeloma has been associated with agents that cause either DNA damage or immunosuppression (De Roos et al. 2003a).

The associacion we observed was with ever use of glyphosate and cumulative exposure days of use (a combination of duration and frequency), but not with intensity of exposure. Estimated intensity of glyphosate exposure was based on general work practices that were not glyphosate specific, including the percentage of time spent mixing and applying pesticides, application method, use of personal protective equipment, and repair of pesticide application equipment (Dosemeci et al. 2002). Information on work practices specific to glyphosate use would clarify whether intensity of exposure contributes to myeloma risk.

The number of myeloma cases in our study was small, and ir is plausible that spurious associations arose by chance; however, several aspects of our results argue against a chance association. The findings were internally consistent, with increased risk observed in both states. Adding to the credibility of the association, rhere was some indication of a doseresponse relationship, with risk estimates increasing across categories of increasing exposure and stronger associations observed when using never-exposed subjects as the referent (as opposed to low exposed). Another possible explanation for spurious associations is unadjusted confounding. Our risk estimates were adjusted for some demographic and lifestyle factors and other pesticides. Of the other pesticides included in the fully adjusted model, only diazinon and trifluralin were important confounders of the glyphosate-myeloma association. It is certainly possible that an unknown risk factor for myeloma could have confounded our results; however, any unknown confounder would have to be linked with glyphosate use. Finally, the increased myeloma risk associated with glyphosate use could be due to bias resulting from a selection of subjects in adjusted analyses that differed from subjects included in unadjusted analyses. Table 1 shows that 54,315 subjects were included in age-adjusted models, whereas because of missing data for covariates, only 40,719 subjects were included in fully adjusted analyses. The association of glyphosate with myeloma differed between the two groups, even without adjustment for any covariates, with no association among the full group and a positive association among the more restricted group. Subjects who answered all the questions and were thus included in adjusted analyses differed from those who dropped out of such analyses in that they were more likely to be from Iowa (\(71.8 \%\) in included group vs. \(44.6 \%\) in dropped group), were younger (average age, 51.5 vs. 57.9 years), and were more highly educated (\(46.7 \%\) educated beyond high school graduate vs. \(30.2 \%\); however, the two groups were similar in their use of glyphosate (\(75.9 \%\) vs. \(74.5 \%\)). The increased risk associated with glyphosate in adjusted analyses may
be due to selection bias or could be due to a confounder or effect modifier that is more prevalent among this restricred subgroup and is unaccounted for in our analyses. Further fol-low-up of the cohort and reevaluation of the association between glyphosate exposure and myeloma incidence after a greater number of cases develop will allow more detailed examination of the potential biases underlying the association.

Certain limitations of our data hinder the inferences we can make regarding glyphosate and its association with specific cancer subrypes. Although the AHS cohort is large, and there were many participants reporting glyphosate use, the small numbers of specific cancers occurring during the follow-up period hindered precise effect estimation. In addition, most applicators were male, precluding our abiliry to assess the association between glyphosate exposure and cancer incidence among women, for both non-sex-specific cancers and sex-specific cancers (e.g., of the breast or ovary). Our analysis provides no information on the timing of pesticide use in relation to disease, limiting the abiliry to sufficiently explore latency periods or effects resulting from glyphosate exposure at different ages. Despite limitations of our study, certain inferences are possible. This prospective study of cancer incidence provided evidence of no association between glyphosate exposure and most of the cancers we studied, and a suggested association berween glyphosate and the risk of multiple myeloma. Future analyses within the AHS will follow up on these findings and will examine associations between glyphosate exposure and incidence of less common cancers.

\section*{References}

Alavanja MC, Sander DP, McMaster SB, Zahm SH, McDonnell CJ, Lynch CF, et al. 1996. The Agricultural Health Study Environ Health Perspect 104:362-369.
Blair A, Tarone R, Sandler D, Lynch CF, Rowland A. Wintersteen \(W\), et al. 2002. Reliability of reporting on llfestyle and agricultural factors by a sample of participants in the Agricultural Health Study from Iowa. Epidemiotogy 13:94-99.
Blair A, Zahm SH. 1993. Patterns of pesticide use among farmers: implications for epidemiologic research. Epidemiology 4:55-62.
Boffetta P, Stellman SD, Garfinkel L. 1989. A case-control study of multiple myeloma nested in the American Cancer Society prospective study. Int \(J\) Cancer \(43: 554-559\).
Bolognesi \(C\), Bonatti S, Degan P, Gallerani E, Peluso M, Rabboni R, et al Genotoxic activity of glyphosate and its technical formulation Roundup. J Agric Food Chem 45:1957-1962.
Brownson RC, Reif JS, Chang JC, Davis JR. 1989. Cancer risks among Missouri farmers. Cancer 64:2381-2386.
Cantor KP, Blair A. 1984. Farming and mortality from multiple myeloma: a case-control study with the use of death certificates. J Natl Cancer Inst 72:251-255.
Cerhan JR, Cantor KP, Williamson K, Lynch CF, Torner JC, Burmeister LF. 1998. Cancer mortality among lowa farmers: recent results, time trends, and lifestyle factors (United Statesi. Cancer Causes Control 9:311-319.
Cuzick J, De Stavola B. 1988. Multiple myeloma-a case-controt study. Br J Cancer 57:516-520.
Daruich J, Zirulnik F, Gimenez MS. 2001. Effect of the herbicide
glyphosate on enzymatic activity in pregnant rats and their fetuses. Environ Res 85:226-231.
De Roos AJ, Baris D. Weiss NS, Herrinton LJ. 2003 a Epidemiology of multiple myeloma, In: Myeloma: Biology and Management (Malpas JS, Bergsagel DE, Kyle RA, Anderson KC, eds). 3rd ed Philade!phia:Saunders, 117-158.
De Roos AJ, Zahm SH, Cantor KP, Weisenburger DD, Holmes FF, Burmeister LF, et al. 2003b. Integrative assessment of multiple pesticides as risk factors for non-Hodgkin's lymphoma among men. Occup Environ Med 60:E11. Available: http://oem.bmjjournals.com/cgi/content/fuil/60/g/e11 [accessed 30 November 2004].
Dosemeci M, Alavanja MC, Rowland AS, Mage D, Zahm SH, Rothman N, et al. 2002. A quantitative approach for estimating exposure to pesticides in the Agricultural Health Study. Ann Occup Hyg 46:245-260.
Duell EJ, Millikan RC, Savitz DA, Schell MJ, Newman B, Tse CJ, et al. 2001. Reproducibility of reported farming activities and pesticide use among breast cancer cases and controls. A comparison of two modes of data collection. Ann Epidemiol 11:178-185.
El Demerdash FM, Yousef MI, Elagamy EI. 2001. Influence of paraquat, glyphosate, and cadmium on the activity of some serum enzymes and protein electrophoretic behavior (in vitrol. J Environ Sci Health B 36:29-42.
Engel LS, Seixas NS, Keifer MC, Longstreth WT Jr, Checkoway H. 2001. Validity study of seff-reported pesticide exposure among orchardists. J Expo Anal Environ Epidemiol 11:359-368.
Eriksson M, Karlsson M. 1992. Dccupational and other environmental factors and multiple myeloma: a population based case-control study. Br J Ind Med 49:95-103.
Figgs LW, Dosemeci M, Blair A. 1994. Risk of multiple myeloma by occupation and industry among men and women: a 24-state death certificate study. J Occup Med 36:1210-1221
Folmar LC, Sanders HD, Julin AM. 1979. Toxicity of the herbicide glyphosphate and several of its formulations to fish and aquatic invertebrates. Arch Environ Contam Toxicol 8:269-278.
Gallagher RP, Spinelli JJ, Elwood JM, Skippen DH. 1983 Allergies and agricultural exposure as risk factors for multiple myeloma. Br J Cancer 48:853-857
Garry VF, Burroughs B, Tarone R, Kesner JS. 1999. Herbicides and adjuvents: an ovolving view. Toxicollnd Health 15:150 te?
Grisolia CK. 2002. A comparison between mouse and fish micronucleus test using cyclophosphamide, mitomycin C and various pesticides. Mutat Res 518:145-150.
Hardell L. Eriksson M. 1999. A case-control study of nonHodgkin lymphoma and exposure to pesticides. Cancer 85:1353-1360.
Hardell Li Eriksson M, Nordstrom M. 2002. Exposure to pestcides as risk factor for non-Hodgkin's tymphoma and hairy cell leukemia: pooled analysis of two Swedish case-control studies. Leuk Lymphoma 43:1043-1049.
Hietanen E, Linnainmaa K, Vainio H. 1983. Effects of phenoxyherbicides and glyphosate on the hepatic and intestinal
biotransformation activities in the rat. Acta Pharmacol Toxicol (Copenh) 53:103-112.
Hoppin JA, Yucel F, Dosemeci M, Sandler DP. 2002. Accuracy of self-reported pesticide use duration information from licensed pesticide applicators in the Agricultural Health Study. J Expo Anal Environ Epidemiol 12:313-318.
Kale PG, Petty BT Jr. Walker S, Ford JB, Dehkordi N, Tarasia S, et al. 1995. Mutagenicity testing of nine herbicides and pesticides currently used in agriculture. Environ Mol Mutagen 25:148-153.
La Vecchia C, Negri E, D'Avanzo B, Franceschi S 1989. Occupation and Iymphoid neoplasms. Br J Cancer 60:385-388.
Li AP, Long TJ. 1988. An evaluation of the genotoxic potential of glyphosate. Fundam Appl Toxicol 10:537-546.
Lioi MB, Scarfi MR, Santoro A, Barbierı R, Zeni D, Di Berardino D, et al. 1998a. Genotoxicity and oxidative stress induced by pesticide exposure in bovine lymphocyte cultures in vitro. Mutat Res 403:13-20.
Lioi MB, Scarfi MR, Santoro A, Barbieri R, Zeni O, Salvemini F, et al. 1998b. Cytogenetic damage and induction of prooxidant state in human lymphocytes exposed in vitro to gliphosate, vinclozolin, atrazine, and DPX-E9636. Environ Mol Mutagen 32:39-45.
Martinez TT, Long WC, Hiller R. 1990. Comparison of the toxicology of the herbicide Roundup by oral and pulmonary routes of exposure. Proc West Pharmacol Soc 33:193-197.
McDuffie HH, Pahwa P, Mclaughlin JR, Spinelli JJ, Fincham S, Dosman JA, et a!. 2001. Non-Hodgkin's lymphoma and specific pesticide exposures in men: cross-Canada study of pesticides and health. Cancer Epidemiol Biomarkers Prev 10:1155-1163.
Mitchell DG, Chapman PM, Long TJ. 1987. Acute toxicity of Roundup and Rodeo herbicides to rainbow trout, chinook, and coho salmon. Bull Environ Contam Toxicol 39:1028-1035
Moriya M, Dhta T, Watanabe K, Miyazawa T, Kato K, Shirasu Y. 1983. Further mutagenicity studies on pesticides in bacterial reversion assay systems. Mutat Res 116:185-216.
Nandakumar A, Armstrong BK, de Klerk NH. 1986. Muitiple myeloma in Western Australia: a case-control study in relation to occupation, father's occupation, socioeconomic status and country of birth. Int J Cancer 37:223-226.
Nandakumar A, English DR, Dougan LE, Armstrong BK. 1988. incidence and outcome of multiple myeloma in Western Australia, 1860 to 1094. Aust N2 U Med 18:774. 770.
National Center for Health Statistics. 1999. National Death Index Homepage. Hyattsville, MD:National Center for Health Statistics. Available: http.//www.cdc.gov/nchs/r\&d/ ndi/ndi.htm [accessed 30 November 2004].
National Institutes of Health. 2004. Agricultural Health Study Homepage. Bethesda, MD:National Institutes of Health. Available: http://www.aghealth.org laccessed 25 September 2004].
Olorunsogo 00, Bababunmi EA, Bassir 0.1979. Effect of glyphosate on rat liver mitochondria in vivo. Bull Environ Contam Toxicol 22:357-364.
Pasqualetti P. Casate R, Collacciani A, Colantonio D. 1990.

Work activities and the risk of multiple myeloma. A casecontrol study. Med Lav 81:308-319.
Pearce NE, Smith AH, Fisher DO. 1985. Malignant lymphoma and multiple myeloma linked with agricultural occupations in a New Zealand Cancer Registry-based study. Am J Epidemiol 121:225-237.
Peluso M, Munnia A, Bolognesi C, Parodi S. 1998. 32P-Postlabeling detection of DNA adducts in mice treated with the herbicide Roundup. Environ Mol Mutagen 31:55-59.
Pottern LM, Heineman EF, Olsen JH, Raffn E, Blair A. 1992. Multiple myeloma among Danish women: employment history and workplace exposures. Cancer Causes Control 3:427-432.
Rank J, Jensen AG, Skov B, Pedersen LH, Jensen K. 1993. Genotoxicity testing of the herbicide Roundup and its active ingredient glyphosate isopropylamine using the mouse bone marrow micronucleus test, Salmonelia mutagenicity test, and Altium anaphase-telophase test. Mutat Res 300:29-36.
Reif J, Pearce N, Fraser J. 1989. Cancer risks in New Zealand farmers. Int J Epidemiol 18:768-774.
Steinrucken HC, Amrhein N. 1980. The herbicide glyphosate is a potent inhibitor of 5-enolpyruvyl-shikimic acid-3-phosphate synthase. Biochem Biophys Res Commun 94:1207-1212.
U.S. EPA. 1993. U.S. Environmental Protection Agency Reregistration Eligibility Decision (RED) Glyphosate, EPA-738-R-93-014. Washington, DC:U.S. Environmental Protection Agency.
Vagero D. Persson G. 1986. Occurrence of cancer in socioeconomic groups in Sweden. An analysis based on the Swedish Cancer Environment Registry. Scand J Soc Med 14:151-160
Vigfusson NV, Vyse ER. 1980. The effect of the pesticides, Dexon, Captan and Roundup, on sister-chromatid exchanges in human lymphocytes in vitro. Mutat Res 79:53-57.
Walsh L.P, McCormick C, Martin C. Stocco DM. 2000. Roundup inhibits steroidogenesis by disrupting steroidogenic acute regulatory (StAR) protein expression. Environ Health Perspect 108:769-776.
WHO. 1977. International Classification of Diseases: Manual of the International Statistical Classification of Diseases, Injuries, and Causes of Death, V 01 1, 9 th revision. Geneva:World Health Organization.
WHO. 1994. International Programme on Chemical Safety. Glyphosate. Environmental Health Criteria 159. Geneva:Wofld Heátil Siğañatioñ.
Wildeman AG, Nazar RN. 1982. Significance of plant metabolism in the mutagenicity and toxicity of pesticides. Can \(J\) Genet Cytol 24:437-449.
Williams GM, Kroes R, Munro IC. 2000. Safety evaluation and risk assessment of the herbicide Roundup and its active ingredient, glyphosate, for humans. Regul Toxicol Pharmacol 31:117-165.
Yousef MI, Salem MH, Ibrahim HZ, Helmi S, Seehy MA, Bertheussen K. 1995. Toxic effects of carbofuran and glyphosate on semen characteristics in rabbits. J Environ Sci Health B 30:513-534.

\section*{DRAFT-}

Lymphoma risk and pesticide use in the Agricultural Health Study

\author{
Alavanja MCR DrPH, Hofmann, J PhD, Lynch CF M.D. PhD, Hines C MS, Barry KH PhD, Barker J B.S., Thomas K B.S. , Sandler DP PhD, Hoppin JA ScD, Blair A PhD, Koutros S, PhD, Andreotti G, PhD, Beane Freeman LE, PhD
}

March 15, 2013
Saved as: AlavanjaNHL March(15) 2013

\section*{ABBREVIATIONS}

Agricultural Health Study (AHS)
Rate ratios (RR)
\(95 \%\) confidence intervals (CI)
Organochlorine insecticides (OC)

Organophosphate insecticides (OP)
United States Environmental Protection Agency (U.S. EPA)
International Agency for Research on Cancer (IARC)

\section*{Correspondence}

Michael C.R. Alavanja,
Occupational and Environmental Epidemiology Branch
Division of Cancer Epidemiology and Genetics, National Cancer Institute
6120 Executive Blyd., EPS 8000
Rockville, MD 20852, USA.
Phone: 301-435-4720
Fax: 301-402-1819
Email:
Running Title: Pesticides and Non-Hodgkin Lymphoma
Abstract: 247 words: 250 word limit for EHP.
Manuscript, references and tables 1-5; 8,162 including title page etc.. [narrative (abstract \& main manuscript 3.717, references 1.411, tables 2942] 7000 word limit for EHP.

Comment [a1]; If we have the message and analyses nght we have to cut 1.200 words for EHP We may want to go to another joumal
Comment [AB2]: I suggest go to another jouma

\section*{ABSTRACT}

Background: Faming and exposure to pesticides have been linked to non-Hodgkin lymphoma (NHL) in a number of previous studies. Objective: To evaluate specific pesticides for associations with NHL and NHL subtypes in a prospective cohort of farmers and commercial pesticide applicatorspegtered pestieide applieaters. Methods: We examined NHL incidence in a prospective cohort of 57,310 licensed pesticide applicators in Iowa and North Carolina from 1993-2008. Information on pesticide and other agricultural et xposure,-informatier lifestyle and medical historyhealth-histeries wasere obtained from a self-administered questionnaires administered at enrollment (1993-1997) and in a telephone follow-up questionnaire administered approximately five years later (1998-2004). Poisson regression modeling was used to evaluate the association between use of specific pesticides and the rate ratios of NHL and NHL subtypes while adjusting for age and other potential confounding variables. Results: A statistically significant monotonic increase in the risk of overall NHL with increasing life-time exposuredays for lindane (organochlorine insecticide) was observed and a significant positive nonmonotonic trend was observed for butylate (thiocarbamate herbicide), among 50 pesticides evaluated. Significantly increasing risk of specific NHL subtypes with increasing life-time exposure-days of use were observed for lindane, butylate, dicamba, terbufos, alachlor, EPTC, imazethapyr and trifluralin. The total number of different pesticides used was not associated with NHL risk overall, but the number of different triazine/triazone herbicides was significantly associated NHL. Chlorinated and organophosphate insecticide and triazine/triazone herbicides used, was related to risk in specific NHL subtypes. Conclusions: A wide variety of chemicallydistinct herbicides and insecticides were significantly associated with different NHL subtypes. Most pesticides are associated with only one NHL subtype.

Comment [AB3]: Need to indicate which subtypes were associated with which pesticides.

Comment [AB4]: Mention the chemical class subtype associations before the specific pesticide associations. Go from the general to the specific.
Comment [AB5]: I am not sure we want to deliver this message. As written it says we believe we found a number of meaningful pesticide subtype links and that the links were specefic. This iuplies we believe these findings are probably "real." I think the message should be-this is one \(c\) the few studies (and the only prospective study I think) that has looked at specific pesticide - subtyps associations. Since different subtypes may have different etiologies these findings provide leads for future evaluations.

Keywords: Cohort Study, Farming, Pesticide Exposure, Non-Hodgkin Lymphoma.

\section*{INTRODUCTION}

Non-Hodgkin lymphomas (NHLs) are a heterogeneous group of over 20 -different B and T-cell neoplasms affecting the immune system/ lymphatic system arising primarily in the lymph nodes (Swerlow et al. 2008; Shankland et al., 2012). MNumereus-ta-analyses (Blair et al, 1985: Blair et al., 1993: Beane Freeman. 2009) studies relate lymphohaematopoietic cancers with farming (Blair A et al. 1907: Blair and Beane Freeman, 2009), with exposure to pesticides being a hypothesized etiologic agent. Since the 1980 s a mumber of studies have been conducted to evaluate possible links between specific pesticides and NHL. A meta-analysis of 13 casecontrol studies published between1993-2005 observed an overall significant meta-odds ratio between occupational exposure to pesticides and NHL (OR=1.35; 95\% CI: 1.2-1.5). When observations were limited to those that had more than 10 years of exposure the risk increased (OR=1.65; 95\% CI: 1.08-1.95) (Merhi M, et al., 2007). While the meta-analysis supports the hypothesis that pesticides are associated with NHL, it did nothhey lack-suffieient-detail-about evaluate exposure to specific pesticide exposure and other information on risk factors for hematopoietic cancers to identify specific causes (Merhi M, et al., 2007). In individual studies of NHL have reported links a number of specific pesticides including phenoxy acid herbicides (Dich et al 1997; Hardell L et al., 1981; Hoar SK et al., 1986; Zahm et al, 1990, Miligi et al, 2006, McDuffie et al, 2001Eriksson M et al., 2008; Burns et al., 2011_8) , and chlorinated pesticides (McDuffie et al, 2001, Colt et al., 2006: Spinelli JJ et al 2007, Purdue et al, 2007, Brauner EV, et al., 2012; Ouintana et al., 2004: Coco et al., 2004), organophosphates (Waddell et al., 2001: Hohenadel et al. 201 I) dicamba (McDuffie et al. 2001: nitro-derivaties (Miligi et al. 2003); and triazole fungicides and urea herbicides (Orsi et al.. 2009)have been-suggested as enuses of \(\mathrm{NH}_{2}\) - - but the evidence has been inconsistent. Little evidence of an association between phenoxy acid herbicides and NHL was observed in New Zealand (Pearce NE et al 1987), Washington state (USA) (Woods JS, et al 1987), or Minnesota and Iowa (USA) (Cantor KP et al, 1992) and little evidence for chlorinated pesticides was observed in a European study that measure pesticide metabolites in plasma samples (Cocco P et al, 2008). A variety of other pesticides have also been associated with NHL but the evidence available to date does not conclusively link a specific pesticide to NHL (Alavanja M et al., 2012; Cocco P et al., 2013). In a study from the six Canadian provinces case-control study, the risk of NHL increased with the number of different pesticides used (Hohenadel K et al., 2011). (1 think the flow of this first

Comment [AB6]: References are numbered in ti reference list, but not in the test.

Comment [AB7]: Is the Beane Freeman article cited bere Laura's livestock article? It is the only one in the references.

Comment [a8]: Moved the Merhi study up to mention the general association first and later the pesticide class specific-Done

\section*{Comment [a9]: Added reference}

Comment [a10]: Added reference
Comment [a11]: Added reference
Comment [a12]: Added Purdue
paragraph can be modified to make it clearer. Start with farming, then list pesticides that have been linked to NHL in some studies. This should cover the different pesticides that have been linked to NHL. Then list your review and Cocco (2013) to indicate that the evidence is not conclusive for any pesticide).

In the Agricultural Health Study (AHS) we had the opportunity to evaluate the risk of NHL overall and by cell type by both the association of lifetime use of individual pesticides obtained from enrollment and follow-up questionnaires und the number of different pestieides Hsed and NHL incidence orerall and by-eell type-in a prospective cohort study of licensed pesticide applicators in Iowa and North Carolina.

We evaluated potential confounders including a previous history of malignant disease (Whanget al. 2007). different-immunesuppressive states (Simard IF, et al.. 2012), and body mass index (BMI) (Patel et al, 2013) and other factors obsemed to be assoeiated with NHL in the AHS cehert.

MATERIALS \& METHODS

Study Population

The AHS is a prospective cohort study of 52,394 licensed private pesticide applicators in Iowa and North Carolina and 4,916 licensed commercial applicators from Iowa. The cohort has been described in detail (Alavanja et al., 1996). Briefly, the cohort included individuals seeking licenses for restricted use pesticides from December 1993 through December 1997 (\(82 \%\) of the target population enrolled). The protocol was approved by relevant institutional review boards. We obtained cancer incidence information by regular linkage to cancer registry files in Iowa and and the National Death Index to identify vital status, and to address records of the Internal Revenue Service, motor vehicle registration files, and pesticide license registries of state
agricultural departments to determine residence in Iowa or North Carolina. The current analysis included all incident primary non-Hodgkin lymphomas (\(n=333\)) diagnosed from enrollment (1993-1997) through December 31, 2008. We censored follow-up at diagnosis of NHL or any other cancer, date of death, movement out of state, or December 31, 2008, whichever was earlier. Person-years of follow-up summed to 714,770 .

\section*{Tumor Characteristics}

Information on tumor characteristics was obtained from state cancer registries. Cases were classified into 5 groups of cell types according to the Surveillance Epidemiology and END Result (SEER) coding scheme (hetp://seer.cancer.gov//ymphomarecede) SEER recodes of cell type are listed in appendix 1. The first group (\(\mathrm{n}=117\)) includes chronic B-cell lymphocytic fymphomas (CLL) /small B-cell lympocytic lymphomas (SLL) [\(\mathrm{n}=101\)], and mantle-cell lymphomas (MCL) \((n=16)\). The second group includes 94 diffuse large B -cell lymphomas; the third group includes 53 follicular lymphomas. There were 34 'other B-cell lymphomas' consisting of a diverse set of B -cell lymphomas including precursor acute lymphoblastic leukemia/lymphoma (\(\mathrm{n}=4\)), Waldenstrom macro globulinemia (\(\mathrm{n}=2\)), lymphoplasmacytic lymphoma (\(n=2\)), hairy-cell leukemia (\(n=6\)), B-cell non-Hodgkin lymphoma not otherwise specified \((\mathrm{n}=6\)), Burkitt lymphoma/leukemia (\(\mathrm{n}=1\)), and extra-nodal Marginal Zone Lymphomas (MZL)/ MALT type/ Nodal MZL(\(\mathrm{n}=13\)). The fifth grouping included 35 cases consisting of Tcell lymphomas (\(n=12\)) and non-Hodgkin lymphoma of unknown lineage (\(n=23\)). The fifth grouping was excluded from cell type-specific analyses because of small numbers of cases with identified cell types. Although multiple myeloma (MM) \((\mathrm{n}=77)\) and plasmacytomas \((\mathrm{n}=6\)) are

Comment [Ibf16]: Did you remove prevalent cancers? Does this mean that you also included second cancers if they were NHL? Eg. If someone had an incident prostate cancer and then was diagnosed with an NHL, do you consider them to be an NHL case? Or, did you censor them at their diagnosis of prostate cancer? I would remove all prevalent cancers (\(\mathrm{n}=1,074\)) and only include first primary NHL diagnoses, censoring at diagnosis of ajo

\section*{Comment [a17]: Yes, we removed all prevalent} cancers and included unly primary NHL cases.clarification made in sentence. no other change recessary.
Comment [a18]; Cmdy would like the 5 groups to be named. They do not have rames so it is may b inappropriate to give them nen-standard uames. I gave the SEER recode number in the table as a means of identification.

Comment [1bf19]: Since yot present thera in th appendix, 1 would suggest taking them out of the te: here-it'sland to read with all these numbers. You could also add them to the relevant tables under the specific sub-rypes.

Comment [a20]: SEER recodes deleted as recommended by Laura.
now classified as a type of non-Hodgkin lymphoma (Morton LM et al., 2007), the pesticide literature prior to 2008 (including the AHS) examined multiple myeloma (and plasmacytomas) separately. \((A B-I\) wonder if the decision not to include myeloma might seem inconsistent with our decision to go with the new definition of NHL. We say we are changing the cancers we characterize as NHL to fit the new definition, but then we promptly say we are not going to follow the new definition for all of the new inclusions, i.e., myeloma will not be included. It is inconsistent and seems Lerrvmandered. The reason given also does not seem adequate (myeloma has been analyzed separately for pesticides) because there have also been studies that looked a pesticides and chronic lymphocytic leukemia, yet it is included as NHL here. Not sure what to do but the whole thing iust seems messy. We need to talk about this on an EC call.) We continue to examine MM separately to facilitate comparisons to the previous literature. We provide supplemental table 7 which shows NHL risk (previous definition, ICD-O-3) and lifetime use of individual pesticides \(\triangle \mathrm{AB}-1\) think to make clear the possible the impact, or lack of it, of changing the NHL definition, Table 7 needs to include ORs from both definitions of NHL for the same length of follow up. This would make it clear that any difference regarding specific pesticides would be due to differences in disease classification.: A comparison of cell types in the previous (ICD-O-3) and recent Inter Lymph hierarchical classification of NHL is provided in appendix 2.

\section*{Exposure Assessment}

Comment [a21]: We added the phase 'priot to \(2008^{7}\) to avoid a large melease in citations which would contubute an additional 90 words of more (approximately)
Comment [Ibf22]: You will need to ctte these
papers in the discussion

Information on lifetime use of 50 pesticides was captured in two self-administered questionnaires (http://aghealth.org/questionnaires.html) completed during cohort enrollment (Phase 1). All 57,310 applicators completed the first enrollment questionnaire, which inquired about ever/never use of the 50 pesticides, as well as duration (years) and frequency (average days/year) of use for a subset of 22 pesticides. In addition, 25,291 (44.1\%) of the applicators returned the second (take-home) questionnaire, which inquired about duration and frequency of use for the remaining 28 pesticides.

A follow-up questionnaire, which ascertained pesticide use since enrollment, was administered about fives years after enrollment (1998-2003, Phase 2) and completed by \(36,342(63 \%)\) of the original participants. For participants who did not complete a Phase 2 questionnaire (20,968 applicators. \(37 \%\)), a data-driven multiple imputation procedure based on logistic regression and stratified sampling was employed to impute likely use of specific pesticides in Phase 2 (Heltshe et al.,2012) whieh-used-logistie regression and stratified sumpling to intipute the use pof spenifis pestieides if phase?

\section*{Information on pesticide use obtained from Phase I and Phase 2 interviews was used to construct}
two individual pesticide exposure metrics We used 2 expostre metries to assess etmatative expestre to-each pesticide: (i) lifetime days of pesticide use, i.e. the product of years of use of a specific pesticide and the number of days used per year; and (ii) intensity-weighted lifetime days of use, i.e. the product of lifetime days of use and a measure of exposure intensity. Intensity of exposure was derived from an algorithm using questionnaire data on mixing status, application method, equipment repair and use of personal protective equipment (Coble et al. 2011).

Comment [a23]: Description of imputation procedure shortened considerable per suggestionDone

We analyzed total NHL risk and specific cell type NHL by pesticide classes. individual pesticides- tse , and by the number of different pesticides used within a chemical/functional class and the total number of different pesticides used in a working lifetime.

\section*{Statistical Analyses}

We used Poisson regression to calculate rate ratios (RR) and \(95 \%\) confidence intervals (\(95 \% \mathrm{Cl}\)) for overall NHL and four NHL subtypes in relation to pesticide use. Data were obtained from AHS data release versions PIREL201005.00 (for Phase 1) and P2REL201007.00 (for Phase 2). We evaluated pesticides with 15 or more exposed cases of total NHL, thereby excluding aldicarb, aluminum phosphide, carbon tetrachloride/carbon disulfide, dieldrin,(Might look specifically at dieldrin even though it is below your cutpoin because it has been linked to NHL in the past.) ethylene dibromide, maneb, parathion, \(2,4,5-\mathrm{TP}\), trichlorofon, and ziram (This list is different than that provided in the first ciraft. Why the change\%). For each pesticide analyzed, we categorized exposure into non-exposed and tertiles of exposure based on the distribution of exposed cases. A first set of rate ratios were adjusted for age and a second set of rate ratios were adjusted for age and other statistically significant \((\alpha=0.05)\) predictors of NHL in the AHS. We evaluated several lifestyle and demographic measures and identified the following as potential confounding variables: age at enrollment (\(<40,40-49,50-59,60-70, \geq 70\)), race (White, Black, other, missing), state (Iowa, North Carolina), family history of lymphoma in first-degree relatives (yes, no, missing), body mass index (\(\mathrm{BMI}<25,25 \cdot<30, \geq 30\)), cigarette smoking history (never, former, current, missing), alcohol consumption per week (none, < once per week, \(\geq\) once
per week) and several occupational exposures (i.e., number of livestock, poultry, acres planted, welding, diesel use, number of different pesticides used, and pesticides shown to be associated with NHL in the current analysis)(So all of these factors all significantly associated with risk of NHL here? From Table I it looked like most of the other adjustment factors were not significantly associated with NHL.). Tests for trend used the midpoint value of each exposure category, and the Likelihood Ratio tests were used to assess differences between strata (pinteraction). All tests were two-sided and conducted at the \(\alpha=0.05\) level. (I do not quite understand the rationale for the tables. The above indicates ORs were adjusted for several factors. The first set of tables say they are "age adjusted." The supplemental tables have more extensive adjustment. If it is important to adjust for factors other than age, why are these analyses in supplemental tables. If they are not important, why are they done at all. In any case I am not sure you need two tables. Often you see age adjusted and more extensively adjusted ORs in the same table. That would be better because it allows the reader to see if the additional adiusment made any difference in the ORs.)

We also conducted various sensitivity analyses. We analyzed Phase 1 data alone to assess the impact of the additional information collected or imputed from Phase 2. We also explored the effect of lagging exposure data 5 and 15 years since recent these recent exposures may not have had an impact on the development of cancer. Reported results show un-lagged exposure data from Phase 1 and Phase 2 combined for cumulative intensity-weighted and un-weighted days of use. (AB - I think we should start doing some analyses by type of protective equipment used. I know it is supposedly taken into account in the intensity score, but it would be informative if there were differences in OR by different protective approaches. It could be used with number
of davs of pesticide use where it has nol been laken into account. It provides information that is
useful to farmers and extersion agents.)

\section*{RESULTS}

The risk of NHL increased significantly and in a near monotonic fashion with age in the AHS cohort (Table 1). The age-adjusted risk of NHL is significantly lower in NC compared to IA and among current smokers compared to nonsmokers. Other demographic factors including gender, license type, educational level, alcohol consumption, BMI, and a family history of lymphomas were not significant risk factors of NHL in this cohort. We evaluated whether other occupational factors were associated with NHL. Of those evaluated, the number of livestock on the farm and whether cohort members drove farm equipment with diesel engines significantly increased risk of NHL.

The age-adjusted risk of NHL and NHL sublypes from possible exposure tornssociated with 16 insecticides and herbicides asseciated with NHL OHHL subtypes or previously associated with NHL are listed in Table 2 (age-adjusted risk of NHL for all other evaluated pesticides in the AHS may be found in supplemental table 1 and fully-adjusted risk of NHL in supplemental table 2). Lindane, an organochlorine insecticide, is the only pesticide showing a monotonic rise in overall NHL risk with increasing life-time days of use (p trend \(=0.003\)) and intensity-weighted lifetime days of use (p trend=0.05). Butylate, a thiocarbamate herbicide, showed a significant increasing trend in life-time days of use (\(p\) trend=0.004) and intensity-weighted lifetime days of

Comment [Ibf29]: I think that you can cut down oa reportang the results that are presented in the tables, but I would like to see some more results in the text that auen tin the tables Eg. what happens when you put both lindane and butylate in the model? What is frequency of use of chemeals etc
Comment [a30]: Narrative now mentions that thete is no apparent confounding between lindane and butylate Only pesticides with 15 ot more exposed cases are listed in the tables for analysis Space imats more extensive discussion of frequenc, of pesticide use in the AHS, although thus can be ascertained from ise in controls.

Comment [AB31]: The Methods says they were signuficant nisk factors

Comment [a32]: Previous table 2 deleted and discussion of potential confounding vatiabies shortened as suggested by Laura

Comment [t33]: It's not clear why you are showing these 22 pesticides
Comment [AB34]: I think it would hetp the reader if you presented ever'never reselts for al: pesticides analyzed This would set the stage for th exposure responsc analyses You would largety inciude only those pesticides with some excess in th ever sategory in the trend analyser Now it 15 not ciear why some are listed and others are not As of now the Results just sort of jump into detailed exposute-tesponse analysez
Comment [t35]: If there's not a big difference between age and fulls adjusted models I would delete fully adjusted
use (p trend \(=0.04\)) but the associations were not monotonic. Some other pesticides had individual point estimates that were significant but did not show a significant pattern of increasing risk with increasing exposure. Lindane and butylate did not shat-confoundify will each other when they were put in the same model. The significant increasing trend of NHL risk with exposure to lindane and butylate was also not changed with the adjustment days of all other pesticide use, nor with adjustment for days of use of organophosphate insecticjdes, carbamate insecticides, other insecticides, triazine/triazone herbicides, other herbicides, fungicides, or fumigants. The results from fully adjusted risk of NHL (i.e., Age [\(<45,45-49,50-54,55-59,60-\)

64,65-69, \(\geq 70]\), smoking status(current, former, never), number of livestock (\(0,>100,100\) 999,>999), drove diesel tractor (<weekly, \(\geq\) weekly, state (NC, IA) [data not shown were comparable to the age-adjusted risk]. Also, these unlagged results were comparable (not shown) to 5 year and 15 year lagged exposures, therefore we present RRs for unlagged exposure only.

We also analyzed Phase 1 data only to assess the impact of the additional information collected or imputed from Phase 2, although there was an increase in precession including phase 2 estimates, no meaningful change was observed in the risk estimates. ,

The risk of the four major categories of B cell lymphomas by number of days of use of individual pesticide is shown in Table 3. For the CLL/SLL/MCL group of lymphomas, dicamba, a carbamate herbicide (\(p\) trend \(=0.03\)) and butylate, a thiocarbamate herbicide (\(p\) trend \(=0.04\)), and

Comment [lbf36]: I find these lists of RR and \(95 \%\) Cl throughout to be a bit hard to read, plus the take up it lot of words. Itbink it would be better to provide more infonmation in the text about results that aren't presented in the tablies. E. g, for lindane, how many people reported using it in Phase I vs, Phase 2 日s it was approaching phase out. This will help to set the stage for putting the results in contex later in the discussiom.
Comment [a37]: Point estmates deleted to reduce word count as recommended.

Comment [a38]: Need to define the pesticides included in each group appendix 2 -done

Comment [AB39]: Supplement Table 2 does show the fully adjusted model, right?

\footnotetext{
Comment [Ibf40]: I don't think you mention th in the results.
Comment [lbf41]: How did you choose the 22 pesticides in this iable? Why not 28 as in table 2? Regardless, need to explain rationale/criteria for presenting some and not others
}
lindane, a chlorinated insecticide, (p trend \(=0.005\)) were observed to have a significant increased trend of risk with increasing lifetime-days of use. Metribuzin, a triazone herbicide, (p trend \(=0.06\)) had a near significant relationship with this group of lymphomas, Carbaryl, a carbamate insecticide, was observed to have a significant inverse relationship (p trend=0.007).

A significant increase in the risk of Other B-cell Lymphomas was associated with the number of life-time days of use of six herbicides and one insecticide: alachlor (\(p\) trend \(=0.02\)); butylate, (\(p\) trend \(=0.0499\)); dicamba (\(p\) trend=0.02); EPTC use (\(p\) trend=0.01): imazethapyr (\(p\) trend \(=0.03\)); trifluralin use (p trend \(=0.01\)); and terbufos (p trend \(=0.01\)) (Table 3). Risk of other B-cell lymphomas was also associated with a non-significant elevated risk for the low and medium exposure categories and was significantly associated with the highest category of exposure for atrazine use \((\mathrm{RR}=3.6[95 \% \mathrm{CI}: 1.2-10.8] ; p\) trend \(=0.06)\).

No pesticide had a significant exposure response pattern with either diffuse large B-cell lymphomas or follicular B-cell lymphomas, although significant point estimates of risk were identified for butylate, terbufos, and methyl bromide.

The number of different triazine/triazone herbicides used, adjusted for age and lifetime days of use of triazine/triazone herbicides was associated with a significant increasing trend with total NHL risk (\(p\) trend \(=0.04\)) (Table 4). No other chemical/functional class showed a significant pattern of NHL risk. The association between the age-adjusted risk of the four NHL B-cell subtypes and the total number of different pesticides by chemical class used is presented in Table 5. For the CLL/SLL/MCL group of lymphomas, the number of different chlorinated insecticides (p

Comment [a42]: Mctribuzin is a triazon herbicide not a trazine herbicide-corrected
trend \(=0.02\)) and the number of different organophosphate insecticides (p trend \(=0.03\)) showed a significant trend of increase risk with increasing number of insecticides from these chemical/functional classes. Similar trends were observed for the number of different triazine/triazone herbicides (p trend \(=0.07\)), other herbicides (p trend \(=0.06\)) and fungicides (p trend \(=0.11\)) but the trends were not statistically significant.

For either diffuse large B-cell lymphomas or follicular B-cell lymphomas, no pesticide class had a significant pattern of increasing risk with number of pesticides used, although a significant decreased risk with increasing number of pesticides used was observed for chlorinated pesticides \((\mathrm{p}\) trend \(=0.05\)) and other insecticides \((\mathrm{p}\) trend \(=0.04)\) with the diffuse large B -cell lymphoma group.

For the other B-cell lymphoma group, the number of different triazine/triazone herbicides (p trend \(=0.006\)) and the number of different acetamide herbicides \((p\) trend \(=0.009)\) both were observed to have a significant trend of increasing risk with increasing days of use. Similar trends were observed for the number of different carbamate herbicides (\(p\) trend=0.11) and "other herbicides' (p trend=0.06) but these trends were not statistically significant.

\section*{DISCUSSION}
\(\mathrm{AB}-1\) think we need to start with the big picture comparisons first. I suggest the order for the discussion shrould be: (1) Ever/hever comparisons for NHL overall. (2) Then move to trends for

NHL overall. (3) Then trends for subtypes. (4) Next have a discussion of how the change in

Comment [a47]: These will be adjusted for tota number of exposure days to chemicals in this class. Dane

Comment [Ibf48]: Throughout you need to reference the previous analyses of AHS data and specific chemicals. You reference Mark Purdue's paper in the intro, but no others

Comment [e49]: See changes made throughout to address these points.

Comment [lbf50]: This paper just came ou and used the most recent definitions of NHL. Actually supportive of these AHS findings. Occup Environ Med2013;70:91-98
doi:10.1136/oemed-2012-100845
Lymphoma risk and occupational exposure to pesticides: results of the Epilymph study

NHL definition might affect comparison of our results with those from the literature. (5) Comparison of these results with literature pesticide by pesticide (or pestieide group). (6)

Strengths and limitations. (7) Conclusions.
In this analysis, we observed a significant increase in the risk of overall NHL with two pesticides, lindane an organochlorine insecticide no longer registered for use in the U.S and butylate a thio-carbamate herbicide widely used in the United States and other countries. Our findings for total NHL are inconsistent with a number of other studies which found increased risks with a variety of chlorinated and organophosphate insecticides and triazine and phenoxy acid herbicides (Dich et al 1997; Hardell L et al., 1981; Hoar SK et al., 1986; Zahm et al, 1990). However, we did find significantly increasing risk of specific NHL subtypes with increasing lifetime exposure days of individual pesticides use. Butylate and dicamba, carbamate herbicides, and lindane, a chlorinated insecticide, were observed to have a significant increasing risk of the CLL/SLL/ MCL lymphomas sub-types with increasing lifetime-days of use. (This first paragraph just sort of jumps into the subtype/specific pesticide links. I think a smoother opening paragraph would be to comment on ever/never for specific pesticides, then exposure trends by specific pesticide, and finally exposure trends by NIIL subtypes. This summary of the findings should then be followed by a discussion of the effects, or lack of them, from the change in the definition of NHL. Then the findings from this analysis can be compared to the previous literature.)

Other B-cell lymphomas are a varied group including 8 different cell types of lymphomas. Excess risks of other B-cell lymphomas were observed for several widely-used pesticides including: the organophosphorous insecticide terbufos, for alachlor, an acetanilide-herbicide, imazethapyr, an imidazoline-herbicides, and trifluralin, a dinitroaniline-herbicide, and for

Comment [Ibf51]: What was percentage of use in P1 vs \(\mathrm{P}^{2}\). If people aren't still using, but we stal have excess then we need to explore this further D we see stronger effects in earlier time penods' Do we expect this to not be aproblem since lindane is in longer on the market? Or, is this going to be a persistent problem? We also need to say something about when lindane was taken off the market

Comment [AB52]: There is a bit of an
mivonsistency bere Savs there is an exiess for lindare, bur these findings differ fiom earlier work that saw excesses for a variety of chlounated inseetrides Lindane is a chlormated insectiode
Comment [lbf53]: This sounds like all the othe: studies are postive, which isn't actually true. I thim that you need to have a more in-depth discussion of specific pesticides and findings
Comment [AB54]: I do not think we can make this statement of differenves with past studies without immediately uncluding a discussion of the ditference in disease detintion and whether or not this might account for the differences or sumilarines with past reseatch Probably need to stant the discussion with eompaison of iesults of analyses fic the nvo ditferent definitions to orient the reader regarding what changes oceured sumply because of the zhange in definition Then thes should be followed with a discussion of findings fiom an ever never companson. Then you ge to trends
butylate, dicamba, and, EPTC which all belong to the family of carbamate herbicides. The triazine herbicides atrazine and cyanazine had specific point estimates that were elevated but the

 classes that are associated with an increased risk of Other B-cell lymphomas does not suggest a single known mechanism of action. Multiple pathways seem to be involved.

In a Swedish case-control study a significant excess risk of NHL was associated with the phenoxy herbicide MCPA and glyphosate (Ericksson et al, 2008). 2,4-D and 2,4,5-T (2,4,5trichlorophenoxyacetic acid) have been banned from Sweden and could not be evaluated (Eriksson M et al,2008). In our study we could not evaluate MCPA but found no excess risk of NHL or its subtypes with the use of glyphospate, 2,4-D or 2,4,5-T.

In a population-based case-control study conducted in six Canadian provinces increased risk to NHL was associated with a positive family history of cancer both with and without pesticide exposure [OR \(=1.72(95 \% \mathrm{Cl} 1.21-2.45)\) and \(\mathrm{OR}=1.43\) (\(95 \% \mathrm{CI}: 1.12-1.83\)), respectively] (McDuffie HH, et.al, 2009). In this same case-control study six pesticides/pesticide analytes also showed a significant association with NHL [beta-hexachlorocyclohexane, \(p, p\) - dichloro-diphenyl-dichloroethylene (DDE), hexachlorobenzene, mirex, oxychlordane and transnonachlor] (Spinelli et al, 2007). The strongest association was found for oxychlordane, a metabolite of the pesticide chlordane (highest vs. lowest quartile \(\mathrm{OR}=2.68,95 \% \mathrm{CI} 1.69-4.2\)). These finding were not confirmed in a recent analysis of plasma samples from 174 NHL cases and 203 controls from France, Germany and Spain. The risk of NHL did not increase with
plasma levels of hexachlorobenzene, beta-hexachlorobenzene or DDE (Cocco P et al., 2008). In our study NHL was associated with lindane but no excess risk was observed for chlordane and no excess risk was observed among those with a family history of lymphoma. The ther eheminds exaltated in the Canadian-six provinee straty were not evaluated in ihe AHs cebsert.

New evidence linking NHL with chlorinated pesticide use (Brauner EV, et al., 2012) and a study linking the number of different pesticides used with NHL (Hohenadel K et al., 2011) are somewhat supported by our findings in the AHS cohort. While the number of different pesticides used overall was not associated with NHL risk in the AHS, a significant increase in the CLL/SLL/MCL sub-group of NHL was observed with the number of different chlorinated pesticides used and the number of different organophosphate chemicals used. A similar pattern of increase risk was observed in the other B-cell lymphoma subgroup of NHL with an increasing number of triazine/triazone pesticides used.

A strength of this investigation is that a relatively large population of licensed pesticide applicators provided reliable information regarding their pesticide application history (Blair et al. 2002; Coble et al. 2011, should cite Jane's paper on reliability also). In the AHS, a priori derived algorithm scores that incorporated several exposure determinants were found to be able toused te predict urinary pesticide levels (Thomas et al., Coble 2011). Few? studies of pesticide use with a prospective design have been large enough or had sufficiently detailed exposure information, to evaluate the potential link between NHL, NHL subtypes and specific pesticide exposures (Are there any other prospective studies that could look at specific pesticides?). Also, because occupational pesticide users are seldom exposed to a single agent, we controlled for the total pesticide exposure days and total pesticide exposure days by chemical/functional class and found

Comment [Ihf58]: Expand to discuss what thes: actually show-monlar to ours" Not simalar lo ours
Comment [a59]: Modified sentence in response to comment

\footnotetext{
Comment [AB60]: I have a hard ane followng the disiussion I winder if it might not be cleanng the link to prewous literatura is done pesticide by pestoide Ther you could indieate what is found here and follow that with finaings for that pestacade in the iiterature This means previous studies could be cated numerous mines bus it would be easier to see the relatoonship between our findmgs aad those from erher sudies for mainodual pesticides
}
no meaningful change in the associations. Additionally, potential confounding of pesticides by other occupational exposures was reported to be minimal in the AHS (Coble et al., 2002) and adjustment for various agricultural exposures did not findamentally change calculated RR for

NHL Irom various pesticide exposures.- - Mention ability to control of possible non-
occupational confounders, use of incidence rather than mortality)

Although this is a large prospective study, there are limitationstimitations sheuld be aeknewledged. Cell-type information in the AHS was obtained from the cancer registry database and did not involve pathologic re-review of diagnostic slides. Other limitations including a small number of exposed cases for certain chemical of interest.

Need to add a paragraph of exposure assessment. Discuss the information on our exposure scale
in relation to the monitoring work. Discuss the likely magnitude of misclassification and its
likely impact on the estimates of RR. Might also want to say something about multiple
exposures. Cannot look only at a single exposure. This is an issue raised by critics. Just as well
address it here.
\(A B\) - This next paragraph seems part of the conclusions. I would try to merge it with the
conclusions paragraph.
In our study no pesticide had a significant exposure response pattern with either diffuse large \(B\) cell lymphoma or follicular B-cell lymphoma, although significant relativepoint estimates of risks were identified for butylate (a carbamate herbicide), terbufos (an organophosphate insecticide), and methyl bromide (an organic halide)(Not clear what you are trying to say here No exposure-response pattern, bul significant RRs.). Previously, NHL subtypes with \(\mathrm{t}(14 ; 18)\) translocations were associated with the chlorinated insecticides dieldrin, lindane, and toxaphene
and the triazine herbicide atrazine (chiu BCH et al., 2006 and Chiu BCH and Blair A 2009). We were unable to evaluate translocations in this analysis. Although it is possible that \(t(14 ; 18)\) translocations are an initiating event of a causative cascade leading to an NHL subtype, follicular lymphoma (FL), much more work needs to be done to establish this etiologic pathway. (Not sure mentioning \(t(14 ; 18)\) is worthwhile here. This study sheds no light on this issue. This point might be combined in a paragraph that discusses future research, but it does not fit by itself)-

\section*{Conclusion:}

\section*{(1 do not think you should start the conclusion with comments about subtypes. Start with}

NHL overall. In summary, our results suggest that there is subtype specificity in associations between NHL and pesticides exposures. The varying etiology of NHL sub-types may have masked real associations between pesticides and NHL in previous studies where NHL sub-type information was not available (Not sure how varying etiology by subtype would mask associations with NHL overall. If each study had all the subtypes then either the subtype links power through to overall NHL or they do not. The reverse is true. Looking only at NHL overall would hide associations with specific subtypes.). Although the epidemiological evidence for associations between specific pesticides and specific cell types is growing (probably should cite the other papers that have information on specific pesticides and subtypes), the observation that pesticides of different chemical and functional classes and different known toxicological properties are associated with the same cell type (ls it know that different pesticides are associated with the same cell type?) indicates that relatively little is known about the biological/toxicological mechanisms by which these compounds may be contributing to this disease. Cautious interpretation of these results is advised since the number of exposed-cases for
each subgroup of NHL in the AHS is still relatively small. (Overall I think the conclusion is too
strong. It seems to say that the links between specific pesticides and certain NHL subtypes
observed in this study are real and this is why we do not understand the mechanisms for
pesticides causing cancer. The findings here are interesting, but they are leads to be confirmed.
I do not think they are strong enough to be making statements about what this says about
mechanisms. I think the tone should be - few studies have been able to look at specific
pesticides and NHL sublypes. What we found is interesting. Need to see if other studies will
have similar findings. I may be in a minority about this, but I would like to have a discussion
about this on an EC call.)

Acknowledgements
Author Affiliations: Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland

This work was supported by the Intramural Research Program of the National Institutes of Health, NCI, Division of Cancer Epidemiology and Genetics (Z01CPxxxxxx) and the National Institutes of Environmental Health Science (Z01 xxxxxxx). Collection of cancer incidence data was supported in Iowa by contract numbers HHSN261201000032C, N)1-PC-35143 and N01-PC-67008 and in North Carolina by agreement (XXXX).

Comment [AB64]: This affiliation does not
cover ally coauthors. Don't we usually put some comment of appreciation to the participants in the AHS in the acknowledgements?

Comment [a65]: Get correct contract numbers here.

The authors have no conflicts of interest in connection with this manuscript.

\section*{References:}
1. Agopian J, Navarro JM, Gac AC, Lecluse Y, Briand M, Grenot P, Gauduchon P, Ruminy P, Lebally P, Nadel B, and Roulland S. Agricultural pesticide exposure and the molecular connection to lymphomagenesis. J Exp Med. 2009; 206 (7):1473-1483
2. Alavanja MCR, Sandler DP, McMaster SB, Zahm SH, McDonnell CJ, Lynch CF, Pennybacker M, Rothman N, Dosemeci M, Bond AE, Blair A. The Agricultural Health Study. Environ Health Perspect 1996; 104:362-369.
3. Alavanja MCR, Sandler DP, McMaster SB, Zahm SH, McDonnell CJ, Lynch CF, Pennybacker M, Rothman N, Dosemeci M, Bond AE, Blair A. The Agricultural Health Study. Environ Health Perspect 1996; 104:362-369.
4. Alavanja M, Bonner M. Occupational pesticide exposure and cancer risk. A review. J. Toxicol Environ Health B Critic Review. 2012; 1594):238-263.
5. Beane Freeman L E, DeRoos AJ, Koutros S, Blair A, Ward MH, Alavanja MCR, Hoppin JA. Poultry and livestock exposure and cancer risk among farmers in the agricultural health study.
Cancer Causes Control 2012; 23:663-670.
Blair A. Malker H, Cantor KP, Burmeister L, Wikland K. Cancer among farmers: a review. Scand Work Environ Health 1985;11:397-407.

Blair A, Zahm SH, Pearce NE, Heineman EF, Fraumeni JF Jr. Clues to cancer etiology from studies of farmers. Scand J Work Environ Health 1992;7:532-540.
6. Blair A, Dosemeci M, Heineman EF. Cancer and other causes of death among male and female farmers from twenty-three states. Am J Ind Med. 1993; 23:729-742.
7. Blair A. Tarone R, Sandler D, Lynch CF, Rowland A, Winterstein W, et al., 2002.-Reliability of reporting on life-style and agricultural factors by a sample of participants in the Agricultural Health Study from Iowa. Epidemiology 2002;13(1):94-99.
8. Boers D, Portengen L, Turner WE, Bas Bueno-de-Mesquita H, Heedrick D, Vermeulen R. Plasma dioxin levels and cause-specific mortality in an occupational cohort of workers exposed to chlorphenoxy herbicides, chlorphenols, and contaminants. Occup Environ Med. 2012;69;113118.
9. Brauner EV, Sorensen MA, Gaudreau E, LeBlanc A, Erikson KT, Tjonneland A, Overvard K, Raaschou-Nielsen O. A prospective study of organochlorines in adipose tissue and risk of nonHodgkin lymphoma. Environ Health Perspect. 2012; 120(1): 105-111.
10. Cattillo JJ, Dalia S. Cigarette smoking is associated with a small increase in the incidence of non Hodhkin lymphoma: a meta analysis of 24 observation studies. Leukemia \& Lymphoma 2012(10), 1911-1919.
11. Cantor KP, Blair A, Everett G, Gibson R, Burmeister LF, Brown LM. Pesticides and other agricultural risk factors for non-Hodgkin's lymphoma among men in Iowa and Minnesota. Can Re. 1992;52:2447-2452.
12. Chiu BCH, Dave BJ, Blair A, Gapstur SM, Zahm SH, and Weisenberger DD. Agricultural pesticide use and risk of \(\mathrm{t}(14 ; 18)\)-defined subtypes of non-Hodgkin lymphoma. Blood . 2006; 108 (4):1363-1369.
13. Chiu BCH, Blair A. Pesticides, chromosomal aberrations, and non-Hodgkin's lymphoma. \(J\) Agromedicine. 2009; 14 (2):250-255.
14. Coble J, Hoppin JA, Engel L, Elci OC, Dosemeci M, Lynch CF, et al. 2002. Prevalence of exposure to solvents, metals, grain dust, and other hazards among farmers in the Agricultural Health Study. J Exp Anal Environ Epidemiol 12(6):418-426.
15. Coble J, Thomas KW, Hines CJ, Hoppin JA, Dosemeci M, Curwin B, Lubin JH, Beane Freeman L, Blair A, Sandler DP, Alavanja MCR. An updated algorithm for estimation of pesticide exposure intensity in the Agricultural Health Study. Int J Environ Res Public Health. 2011;8(12):4608-4622.
16. Cocco P, Brennan P, Ibba A, de Sanjose Llongueras S, Maynadie M, Nieters A, Becker N, Ennas MG, Tocco MG, Boffetta P. Plasma polychlorobiphenyl and organochlorine pesticide level and risk of major lymphoma subtypes. Occup Environ Med 2008;65:132-140.
17. Cocco P, Satta G, Dubois S, Pilli C, Pillieri M, Zucca M, Mannetje AM, becker N, Benavente Y, de Sanjose' S, Foretova L, Staines A, Maynadie M, Nieters A, brennan P, Milligi L, Ennas MG, Boffetta P. Occupational Envir Med 2013; 70(2):91-98.

Colt JS, Davis S, Severson RK, Lynch CF, Cozen W, Camann D, Engels EA, Blair A, Hartge P. Resideential insecticide use and risk of non-Hodgkin's lymphoma. Cancer Epidemiol Biomarkers Prevent 2006;1 5:251-257.
18. Dich J, Zahm SH, Hanberg A, Adami HO. Pesticides and cancer etiology from studies of farmers [review]. Cancer Causes Control 1997;8:420-443.
19. Eriksson M, Hardell L, Carlberg M, and Akerman M. Pesticide exposure as risk factors for non-Hodkin lymphoma including histopathological subgroup analysis. Int J Cancer. 2008;123 (7):1657-1663.
20. Fuscoe J C. Simultaneous quantification of \(t(14 ; 18)\) and HPRT exon \(2 / 3\) deletions in human lymphocytes. Methods Mol Biol. 2005; 291: 171-178.
21. Hardell L, Eriksson M, Lenner P, Lundgren E. Malignant lymphoma and exposure to chemicals, especially. Organic solvents, chlorophenols and phenoxy acids: a case-control study. Br J Cancer 1981;43:169-176.
22. Helthshe SL, Lubin JH, Koutros S, Coble JB, Ji B-T, Alavanja MCR, Blair A, Sandler DP, Hines CJ, Thomas KW, barker J, Andreotti G, Hoppin JA, Bean Freeman LE. Using multiple imputation to assign pesticide use for non-respondents in the follow-up questionnaire in the Agricultural Health Study. J. Exp Sci Environ Epidemiol 2012:22(4):409-416.

\section*{23. http://seer.cancer.gov/lymphomarecode}
24. Hoar SK, Blair A, Holme FF, Boysean CD, Robel RJ, Hoover R, Fraumeni JF Jr. Agricultural herbicide use and risk of lymphoma and soft-tissue sarcoma. JAMA. 1986;256(9): 1141-1147.
25. Hohenadel K, Harris SA, McLaughlin JR, Spinelli JJ, Pahwa P, Dosman JA, Demers PA, Blair A. Exposure to multiple pesticides and risk of non-Hodgkin Lymphoma in men from six Canadian provinces. Int J Environ Res Public Health. 2011, 8, 2320-2330.
26. McDuffie HH, Pahwa P, Karunanayake CP, Spinelli JJ, Dosman JA. Clustering of cancer among families of cases with Hodgkin Lymphoma (HL), multiple myeloma (MM), soft tissue sarcoma (STS) and control subjects. BMC Cancer. 2009; 9: 1-9.
27. Merhi M, Raynal H, Cahuzac E, Vinson F, Cravedi JP, and Gamet-Payrastre L. Occupational exposure to pesticides and risk of hematopoietic cancers: meta-analysis of casecontrol studies. Cancer Causes Control. 2007; 18:1209-1226.

Add Miligi et al. 2003. Cited but not listed.
28. Morton LM, Turner JJ, Cerhan JR, Linet MS, Treseler PA, Clarke CA, Jack A, Cozen W, Maynadie' M, Spinelli JJ, Constantini AS, Scarpa A, Zheng T, Weisenburger DD. Blood 20007;110(2):695-708.

Orsi L, Delabre L, Monnereau A, Delval P, Berthou C, Frnaux P, Marit G, Soubeyran P, Huguet F, Milpied N, Leporrier M, Hernon D, Troussard X, Clavel J. Occupational exposure to pesticides and lymphoid neoplasms among men: results of a French case-control study. Occup Environ Med 2009;66:291-298.
29. Pahwa M, Harris SA, Hohenadel K, McLaughlin JR, Spinelli JJ, Pahwa P, Dosman JA and Blair. Pesticides use, immunologic conditions, and risk of non-Hodgkin Lymphoma in Canadian men in six provinces. Int J Cancer. 2012; doi: 10.1002/ijc.27522. [Epub ahead of print].
30. Patel AV, Diver WR, Teras LR, Birmann BM, Gapstur SM. Body mass index height and risk of lymphoid neoplams in a large United States cohort. Leukemia \& Lymphoma, 2013; DOI:10.3109/10428194.2012.742523.
31. Pearce NE, Sheppard RA, Smith AH, Teague CA. Non-Hodgkin's lymphoma and farming: an expanded case-control study. Int J Cancer 1987;39:155-161.
32. Percy C, Fritz A, Ries L. Conversion of neoplasms by topography and morphology from the International Classification of Disease for Oncology, second edition, to International Classification of Diseases for Oncology, \(3^{\text {rd }}\) ed. Cancer Statistics branch, DCCPS, SEER Program, National Cancer Institute; 2001.
33. Purdue MP, Hoppin JA, Blair A, Dosemeci M, Alavanja MCR. Occupational exposure to organochlorine insecticides and cancer incidence in the Agricultural Health Study. Int J Cancer. 2007;120(3):642-649.
34. SAS Institute, Cary, North Carolina \{complete reference\}
35. Schroeder JC, Olshan AF, Baric A, Dent GA, Weinberg CR, Yount B, Cerhan JR, Lynch CF, Schuman LM, Tolbert PE, Rothman N, Cantor KP, and Blair A. Agricultural risk factors for \(\mathrm{t}(14 ; 18)\) subtypes of non-Hodgkin's lymphoma. Epidemiology. 2001;12:701-709.
36. Shankland KR, Armitage JO, Hancock BW. Non-Hodgkin Lymphoma. Lancet. 2012; 380 (9844),848-857.
37. Simard JF, Baecklund F, Chang ET, Baecklund E, Hjalgrim H, Adami OH, Smedby KE. Lifestyle factors, autoimmunne disease and family history in prognosis of non-hodgkin lymphoma overall and subtypes. Int J Cancer. 2012 Nov 12 DOI: 10.1002/ijc.27944. \{Epub ahead of print\}
38. Spinelli JJ, Ng CH, Weber JP, Connors JM, Gascoyne RD, Lai AS, Brooks-Wilson AR, Le ND, Berry BR, Gallagher RP. Organochlorines and risk of non-Hodgkin lymphoma. Int \(J\) Cancer. 2007; 121(12): 2767-2775.
39. Svec MA, Ward MH, Dosemeci M, Checkoway H, DeRoos AJ. Risk of lymphatic or haematopoietic cancer mortality with occupational exposure to animals or the public. Occup Environ Med 2005;62:726-735.
40. Swerdlow SH, Campo E, Harris N, et al (2008) WHO Classification of Tumours of haematopoietic and Lymphoid Tissue. Oxford Uni Pr. ISBN 978-92-832-2431-0.
41. Thomas KW, Dosemeci M, Coble JB, Hoppin JA, Sheldon LS, Chapa G, et al. 2010. Assessment of a pesticide exposure intensity algorithm in the Agricultural Health Study. J Expo Sci Environ Epidemiol 20(6):559-569.

Waddell BL, Zahm SH, Baris D. Weisenburger DD, Holmes F. Burmeister LF, Cantor KP. Blair A. Agricultural use of organophosphate pesticides and the risk of non-Hodgkin's lymphoma among male farmers (United States). Cancer Causes Control 2001:12:509-517.
42. Woods JS, Polissar L, Severson RK, Heuser LS, Kulander BG. Soft tissue sarcoma and nonHodgkin's lymphoma in relation to phenoxyherbicide and chlorinated phenol exposure in western Washington. J Natl Cancer Institute 1987;78:899-910.
43. Zahm SH, Weisenburger DD, Babbitt PA, Saal RC, Vaught JB, Cantor KP, Blair A. A casecontrol study of non-Hodgkin's lymphoma and the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) in eastern Nebraska. Epidemiol. 1990;1(5):349-356.

Table 1. Baseline characteristics of AHS study participants in the NHL incidence analysis from 1993 through 2008
\begin{tabular}{|c|c|c|c|c|}
\hline & All NHL cases & Cohort Personyears. & RR \({ }^{1}\) & 95\% CI \\
\hline Age at Enrollment & & & & \\
\hline <45 & 51 & 368,766.80 & 1.0 (ref) & \\
\hline 45-49 & 34 & 88,648.48 & 2.8 & 1.8-4.3 \\
\hline 50-54 & 51 & 75,781.37 & 4.9 & 3.3-7.2 \\
\hline 55-59 & 59 & 67,981.37 & 6.3 & 4.3-9.1 \\
\hline 60-64 & 46 & 53,346.73 & 6.2 & 4.2-9.3 \\
\hline 65-69 & 46 & 34,532.71 & 9.6 & 6.5-14.4 \\
\hline \(\geq 70\) & 46 & 25,713.12 & 12.9 & 8.7-19.3 \\
\hline Gender & & & & \\
\hline Male & 328 (ref) & 695,190.90 & 1.0 (ref) & \\
\hline Female & 5 & 19,579.34 & 0.5 & 0.2-1.3 \\
\hline State & & & & \\
\hline IA & 213 (ref) & 461,697.24 & 1.0 (ref) & \\
\hline NC & 120 & 253,072.27 & 0.8 & 0.6-0.97 \\
\hline License type & & & & \\
\hline Private & 318 & 652,562.25 & 1.0 (ref) & \\
\hline Commercial & 15 & 62,207.89 & 0.9 & 0.5-1.5 \\
\hline Education & & & & \\
\hline \(<12\) yrs. & 57 & 61,656.39 & 1.0 (ref) & \\
\hline HS/GED & 143 & 326,344.92 & 0.8 & 0.6-1.1 \\
\hline \(>12 \mathrm{yrs}\). & 121 & 297,437.85 & 1.0 & 0.7-1.4 \\
\hline Smoking Status & & & & \\
\hline & \multicolumn{2}{|r|}{29} & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline Never & 165 & \(371,929.66\) & \(1.0(\mathrm{ref})\) & \\
\hline Former & 127 & \(203,445.28\) & 0.93 & \(0.7-1.2\) \\
\hline Current & 29 & \(116,254.87\) & 0.6 & \(0.4-0.9\) \\
\hline Body Mass Index (BMI) & 58 & & & \\
\hline\(<25\) & 138 & & 1.0 (ref) & \\
\hline \(25 \times 30\) & 61 & & 0.94 & \(0.7-1.4\) \\
\hline\(\geq 30\) & 128 & \(212,928.70\) & 1.0 (ref) & \\
\hline Alcohol consumption per week & 89 & \(217,015.35\) & 1.0 & \(0.8-1.4\) \\
\hline None & 89 & \(240,745.51\) & 1.0 & \(0.8-1.4\) \\
\hline <once a week & & & & \\
\hline\(\geq\) once a week & 291 & \(639,748.82\) & 1 (ref) & \\
\hline First degree relative with lymphoma & & \(12,606.85\) & 1.1 & \(0.5-2.4\) \\
\hline No & 7 & & \\
\hline Yes & & & \\
\hline
\end{tabular}
\({ }^{1}\) All variables except age are age adjusted \((\langle 45,45-49,50-54,55-59,60-64,65-69, \geq 70)\)
\({ }^{z}\) Numbers do not sum to totals (333 cases, 714,770 person-years) due to missing data.

Table 2. Pesticide exposure (Lifetime Days [LD] \& intensity weighted Lifetime Days [IWLD]) and the ageadjusted risk of NHL incidence (1993 through 2008)
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Insecticides} \\
\hline \begin{tabular}{l}
Pesticide (chemical-functional class) \\
[median days of lifetime exposure for each category]
\end{tabular} & NHL Cases & \(\mathrm{RR}^{1}\) (\(95 \%\)) by Total Days of Exposure & \begin{tabular}{l}
NHL \\
Cases
\end{tabular} & \begin{tabular}{l}
\(R^{1}{ }^{1}(95 \% \mathrm{Cl})\) \\
Intensity-weighted days of exposure
\end{tabular} \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
Carbaryl \\
(carbamate-insecticide)
\end{tabular}} \\
\hline None & 81 & 1.0 (ref) & 81 & 1.0 (ref) \\
\hline Low [8.75] & 31 & 0.9 (0.5-1.5) & 27 & 0.9 (0.5-1.5) \\
\hline Medium [56] & 23 & 0.7 (0.4-1.1) & 26 & 0.8 (0.5-1.4) \\
\hline \multirow[t]{2}{*}{High [124.5]} & 25 & 0.9 (0.6-1.5) & 26 & 0.8 (0.5-1.3) \\
\hline & & P trend=0.86 & & P trend \(=0.47\) \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
Malathion \\
(organophosphorous-insecticide)
\end{tabular}} \\
\hline None & 55 & 1.0 (ref) & 55 & 1.0 (ref) \\
\hline Low [8.75] & 46 & 1.0 (0.7-1.5) & 37 & 1.0 (0.7-1.6) \\
\hline Medium [42.75] & 28 & 0.7 (0.4-1.2) & 38 & 0.8 (0.5-1.3) \\
\hline \multirow[t]{2}{*}{High [103.75]} & 36 & 1.0 (0.7-1.6) & 35 & 0.91 (0.6-1.4) \\
\hline & & P trend \(=0.74\) & & P trend \(=0.71\) \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
Terbufos \\
(organophosphorous-insecticide)
\end{tabular}} \\
\hline None & 157 & 1.0 (ref) & 157 & 1.0 (ref) \\
\hline Low [24.5] & 58 & 1.4 (1.1-1.9) & 43 & 1.3 (0.92-1.8) \\
\hline Medium [56] & 38 & 2.0 (1.4-2.8) & 43 & 2.0 (1.4-2.8) \\
\hline High [116] & 34 & 1.2 (0.8-1.7) & 42 & 1.2 (0.9-1.8) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline & & P trend \(=0.23\) & & P trend=0.19 \\
\hline \multicolumn{5}{|c|}{Chlorinated Insecticide} \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
Chlordane \\
(Chlorinated Insecticide)
\end{tabular}} \\
\hline None & 223 & 1.0 (ref) & 223 & 10 (ref) \\
\hline Low [8.75] & 23 & 0.9 (0.6-1.4) & 13 & 1.1(0.7-2.0) \\
\hline Medium [20] & 6 & 1.7 (0.8-3.8) & 13 & \(0.9(0.5-1.6)\) \\
\hline \multirow[t]{2}{*}{High [38.75]} & 9 & 0.8 (0.4-1.6) & 12 & \(0.9(0.5-1.6)\) \\
\hline & & \(P\) trend \(=0,89\) & & \(P\) trend \(=0.77\) \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
DDT \\
(Chlorinated Insecticide)
\end{tabular}} \\
\hline None & 194 & 1.0 (ref) & 194 & 1.0 (ref) \\
\hline Low [8.75] & 20 & \(0.8(0.5-1.3)\) & 19 & \(0.9(0.6-1.5)\) \\
\hline Medium [56] & 18 & \(0.9(0.6-1.6)\) & 18 & \(0.8(0.5-1.4)\) \\
\hline \multirow[t]{2}{*}{High [116]} & 17 & 15(0.9-2.5) & 18 & 1.4(0.8-2.2) \\
\hline & & P trend=0,14 & & P trend \(=0.28\) \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
Lindane \\
(Chlorinated Insecticide)
\end{tabular}} \\
\hline None & 209 & 1.0 (ref) & 209 & 1.0 (ref) \\
\hline Low [17.75] & 11 & 1.0(0.5-2.0) & 10 & 1.1(0.6-2 0) \\
\hline Medium [56] & 10 & 1.2(0.6-23) & 11 & 1.4(0.7-2.6) \\
\hline \multirow[t]{2}{*}{High [116]} & 10 & 2.7(1.4-5.1) & 9 & 1.9(095-3.7) \\
\hline & & P trend \(=0.003\) & & P trend \(=0.04\) \\
\hline \multicolumn{5}{|c|}{Herbicides} \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
Alachlar \\
(acetamide-herbicide)
\end{tabular}} \\
\hline None & 138 & 1.0 (ref) & 138 & 1.0 (ref) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Low [24.5] & 65 & 1.0 (0.7-1.3) & 53 & 1.0 (0.7-1.3) \\
\hline Medium [116] & 49 & 0.9(0.6-1.2) & 50 & 0.9 (0.6-1.2) \\
\hline High [224.75] & 43 & 1.3(0.9-1.9) & 51 & 1.2 (0.9-1.7) \\
\hline & & P trend \(=0.12\) & & P trend \(=0.19\) \\
\hline \begin{tabular}{l}
Atrazine \\
(triazine-herbicide)
\end{tabular} & & & & \\
\hline None & 85 & 1.0 (ref) & 85 & 1.0 (ref) \\
\hline Low [38.75] & 88 & 1.2(0.8-1.7) & 79 & 1.1(0.8-1.6) \\
\hline Medium [114.5] & 72 & 1.3(0.96-1.9) & 78 & 1.4(1.0-2.0) \\
\hline High [224.75] & 77 & 1.2(0.9-1.6) & 78 & 1.2(0.8-1.6) \\
\hline & & P trend \(=0.56\) & & P trend= 0.68 \\
\hline \begin{tabular}{l}
Butylate \\
(thiocarbamate-herbicide)
\end{tabular} & & & & \\
\hline None & 107 & 1.0 (ref) & 107 & 1.0 (ref) \\
\hline Low [24.5] & 22 & 1.0(0.6-1.5) & 16 & \(0.9(0.5-1.5)\) \\
\hline Medium [56] & 18 & 2.8(1.7-4.7) & 16 & 2.1(1.2-3.5) \\
\hline High [56] & 7 & 1.1(0.5-2.4) & 15 & 1.5(0.9-2.6) \\
\hline & & P trend \(=0.004\) & & P trend \(=0.04\) \\
\hline \begin{tabular}{l}
Dicamba \\
(benzoic-herbicide)
\end{tabular} & & & & \\
\hline None & 121 & 1.0 (ref) & 121 & 1.0 (ref) \\
\hline Low [20] & 66 & 1.3(0.94-1.8) & 56 & 1.2(0.9-1.8) \\
\hline Medium [56] & 52 & 1.5(1.1-2.1) & 54 & 1.5(1.1-2.1) \\
\hline High [128.5] & 47 & 1.2(0.9-1.7) & 55 & 1.3(0.9-1.8) \\
\hline & & P trend \(=0.38\) & \multicolumn{2}{|l|}{P trend \(=0.23\)} \\
\hline \[
\begin{aligned}
& \text { 2,4-D } \\
& \text { (phenoxy-herbicide) }
\end{aligned}
\] & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline None & 71 & 1.0 (ref) & 71 & 1.0 (ref) \\
\hline Low [46.75] & 83 & 1.0(0.7-1.4) & 82 & \(1.0(0.7-1.4)\) \\
\hline Medium [133,35] & 83 & 1.2(0.8-1.6) & 83 & 1.1(0.8-1.6) \\
\hline High [371.75] & 82 & 1.0(0.7-1.4) & 81 & 1.0(0.7-1.4) \\
\hline & & \(P\) trend \(=0.96\) & & P trend \(=0.94\) \\
\hline \begin{tabular}{l}
EPTC \\
(thiocarbamate-herbicide)
\end{tabular} & & & & \\
\hline None & 229 & 1.0 (ref) & 229 & 1.0 (ref) \\
\hline Low [8.75] & 28 & 1.3(0.9-2.0) & 20 & \(13(0.8-2.1)\) \\
\hline Medium [50.75] & 14 & 1.0(0.6-1.7) & 20 & 12(0)7-1.8) \\
\hline High [108.5] & 18 & 1.3(0.8-2.0) & 19 & 1.1(0.7-1.8) \\
\hline & & P trend \(=0.35\) & & \(P\) trend \(=0.54\) \\
\hline \begin{tabular}{l}
Glyphosate \\
(phosphinic acid-herbicide)
\end{tabular} & & & & \\
\hline None & 70 & 1.0 (ref) & 70 & 1.0 (ref) \\
\hline Low [20] & 89 & 0.8(0.6-12) & 83 & \(09(06 \cdot 1.3)\) \\
\hline Medium [65.75] & 78 & 0.8(0.6-1.2) & 84 & 0.8(0.5-1.1) \\
\hline High [173.25] & 83 & 1.0(0.7-1.4) & 82 & 1.0(0.7-1.3) \\
\hline & & P trend \(=0.58\) & & P trend \(=0.81\) \\
\hline \begin{tabular}{l}
Imazethapyr \\
(imidazolinone-herbicide)
\end{tabular} & & & & \\
\hline None & 181 & 1.0 (ref) & 181 & 1.0 (ref) \\
\hline Low [8.75] & 39 & \(0.9(0.6-1.3)\) & 36 & 1.0(0.7-1.4) \\
\hline Medium [28.75] & 34 & 0.9(06-1.4) & 37 & 0.9(0.6-1.3) \\
\hline \multirow[t]{2}{*}{High [56]} & 35 & \(1.2(0.8-1.7)\) & 35 & 1.2(0.8-1.7) \\
\hline & & P trend= \(=0.54\) & & P trend \(=0.55\) \\
\hline Metribuzin & & & & \\
\hline
\end{tabular}
\begin{tabular}{l|l|l|l|l|}
\hline (triazine-herbicide) & & & & \\
\hline None & 94 & \(1.0(\mathrm{ref})\) & 94 & \(1.0(\mathrm{ref})\) \\
\hline Low [8.75] & 28 & \(1.0(0.7-1.7)\) & 21 & \(1.2(0.7-2.0)\) \\
\hline Medium [50.75] & 15 & \(0.9(0.5-1.6)\) & 23 & \(1.1(0.7-1.7)\) \\
\hline High [56] & 20 & \(1.7(1.0-2.7)\) & 19 & \(1.3(0.8-2.2)\) \\
\hline Trifluralin & & & P trend=0.06 & \\
\hline (dinitroaniline-herbicide) & 140 & \(1.0(\mathrm{rcf})\) & 140 & \(1.0(\mathrm{ref})\) \\
\hline None & 51 & 58 & \(1.0(0.7-1.4)\) & 50 \\
\hline Low [25] & 43 & \(1.0(0.7-1.3)\) & \(1.0(0.7-1.4)\) \\
\hline Medium [108.5] & & P trend=0.81 & \(1.1(0.8-1.5)\) \\
\hline High [224.75] & & & & \\
\hline
\end{tabular}
\({ }^{\text {T }}\) Age adjusted (\(<45,45-49,50-54,55-59,60-64,65-69, \geq 70\))
\({ }^{2}\) Numbers do not sum to total number of NHL cases (\(\mathrm{n}=333\)) due to missing data.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{Insecticides, fungieide and fumigant} \\
\hline & \multicolumn{2}{|l|}{CLL, SLL, MCL} & \multicolumn{2}{|l|}{Diffuse Large B-cell} & \multicolumn{2}{|l|}{Follicular B-cell} & \multicolumn{2}{|l|}{Other B-cell types} \\
\hline & RR \({ }^{1}(95 \%\) CI) & n & \(\mathrm{RR}^{1}(95 \% \mathrm{CI})\) & 0 & \(\mathrm{RR}^{1}(95 \% \mathrm{CI})\) & n & \(\mathbf{R R}{ }^{1}(95 \% \mathrm{Cl})\) & N \\
\hline Carbaryl & 1 & & & & & & & \\
\hline None & 1.0 (ref) & 32 & 1.0 (ref) & 23 & 1.0 (ref) & 9 & 1.0 (ref) & 9 \\
\hline Low & \(1.1(0.5-2.2)\) & 15 & 0.7(0.3-1.5) & 10 & 1.1(0.3-4.0) & 5 & Xxx & 6 \\
\hline Medium & 1.0(0.2-4.2) & 2 & 1.3(0.6-3.0) & 8 & 1.8(0.6-5.9) & 4 & Xxx & 0 \\
\hline High & 0.4(0.2-0.8) & 8 & 1.5(0.7-3.5) & 8 & 1.3(0.4-4.1) & 4 & xXX- & 1 \\
\hline & \multicolumn{2}{|l|}{P trend \(=0.007\)} & \multicolumn{2}{|l|}{\(P\) trend \(=0.19\)} & \multicolumn{2}{|l|}{\(P\) trend \(=0.66\)} & \multicolumn{2}{|l|}{\(P\) trend \(=x x x\)} \\
\hline \multicolumn{9}{|l|}{Malathion} \\
\hline None. & 1.0 (ref) & 21 & 1.0 (ref) & 16 & 1.0 (ref) & 5 & 1.0 (ref) & 6 \\
\hline Low & 0.94(0.5-1.8) & 17 & 0.8(0,4-1.7) & 16 & 1.0(0.3-3.6) & 6 & xxx- & 8 \\
\hline Medium & 0.8(0.4-1.7) & 11 & 0.9(0.4-2.1) & 8 & 1.20.3-4.3) & 5 & -xxx & 0 \\
\hline \multirow[t]{2}{*}{High} & 0.8(0.4-1.7) & 11 & 1.7(0.8-3.8) & 11 & 1.5(0.4-4.9) & 5 & \(-\mathrm{xxx}\) & 3 \\
\hline & \multicolumn{2}{|l|}{P trend \(=0.52\)} & \multicolumn{2}{|l|}{9 trend \(=0.07\)} & \multicolumn{2}{|l|}{\(P\) trend \(=0.48\)} & \multicolumn{2}{|l|}{\(P\) trend \(=x x x\)} \\
\hline \multicolumn{9}{|l|}{Terbufos} \\
\hline None & 1.0 (ref) & 53 & 1.0 (ref) & 47 & 1.0 (ref) & 26 & 1.0 (ref) & 10 \\
\hline Low & 1.8(1.0-3.1) & 17 & \(0.9(0.4-1.7)\) & 12 & 2.5(1.1-5.4) & 8 & 2.3 (0.8-6.6) & 6 \\
\hline Medium & 2.2(1.3-3.6) & 21 & 22(1.2-4.2) & 12 & 1.8(0.7-4.3) & 7 & 3,1(1,1-9.2) & 5 \\
\hline \multirow[t]{2}{*}{High} & 1.4(0.8-2.6) & 13 & 1.1(0.5-2.3) & 10 & \(0.7(0.3-1.8)\) & 6 & 4.1(1.4-11.9) & 5 \\
\hline & \multicolumn{2}{|l|}{P trend \(=016\)} & \multicolumn{2}{|l|}{\(P\) trend \(=0.34\)} & \multicolumn{2}{|l|}{\(P\) trend \(=0.54\)} & \multicolumn{2}{|l|}{\(P\) trend \(=0.01\)} \\
\hline \multicolumn{9}{|c|}{Chlurinated pesticides} \\
\hline \multicolumn{9}{|l|}{Chlordane} \\
\hline None & 1.0 (ref) & 74 & 10 (ref) & 68 & 1.0 (ref) & 35 & 17.0 (ref) & 21 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Low & 1.4 (0.7-2.7) & 10 & 0.8 (0.4-2.0) & 6 & 1.6 (0.4-6.9) & 2 & Xxx & 1 \\
\hline Medium & 2.8 (0.9-9.0) & 3 & 1.8 (0.6-5.1) & 4 & 0.8 (0.2-3.4) & 2 & Xxx & 2 \\
\hline High & 0.8 (0.3-2.7) & 3 & 1.0 (0.2-4.1) & 2 & 0.7 (0.1-5.1) & 1 & Xxx & 0 \\
\hline & \multicolumn{2}{|l|}{P trend \(=0.56\)} & \multicolumn{2}{|l|}{\(P\) trend \(=0.09\)} & \multicolumn{2}{|l|}{P trend= \(=0.92\)} & \multicolumn{2}{|l|}{\(P\) trend \(x^{x} x\) x} \\
\hline \multicolumn{9}{|l|}{DDT} \\
\hline None & 1.0 (ref) & 62 & 1.0 (ref) & 53 & 1.0 (ref) & 36 & 1.0 (ref) & 22 \\
\hline Low & 0.91 (0.4-2.0) & 8 & 1.1 (0.5-2.6) & 7 & 1.1 (0.4-3.4) & 4 & 0.4 (0.1-1.9) & 2 \\
\hline Medium & 1.1 (0.5-2.4) & 8 & 2.3 (1.0-5.4) & 7 & 0.3 (0.1-2.6) & 1 & 1.4 (0.3-6.2) & 2 \\
\hline High & 2.3 (1.0-5.3) & 7 & 1.2 (0.5-2.9) & 6 & 0.7 (0.1-5.0) & 1 & 0.9 (0.1-6.7) & 1 \\
\hline & \multicolumn{2}{|l|}{P trend \(=0.45\)} & \multicolumn{2}{|l|}{P trend \(=0.31\)} & \multicolumn{2}{|l|}{\(P\) trend \(=0.72\)} & \multicolumn{2}{|l|}{\(P\) trend \(=0.77\)} \\
\hline \multicolumn{9}{|l|}{Lindane} \\
\hline None & 1.0 (ref) & 41 & 1.0 (ref) & 39 & 1.0 (ref) & 14 & 1.0 (ref) & 14 \\
\hline Low & 1.6(0.7-3.6) & 8 & 0.7(0.2-3.0) & 9 & 2.7(0.8-9.4) & 3 & Xxx & 1 \\
\hline Medium & 1.1(0.3-4.8) & 3 & 1.1(0.3-3.7) & 6 & 3.6(0.8-15.9) & 2 & Xxx & 0 \\
\hline High & 3.8(1.5-9.6) & 5 & 1.3(0.2-9.7) & 5 & 2.4(0.5-10.4) & 2 & Xxx & 0 \\
\hline & \multicolumn{2}{|l|}{P trend \(=0.005\)} & \multicolumn{2}{|l|}{P trend \(=0.25\)} & \multicolumn{2}{|l|}{P trend \(=0.25\)} & \multicolumn{2}{|l|}{P trend= \(\mathrm{x} x \mathrm{x}\)} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline \multicolumn{2}{|c|}{ Herbicides } \\
\hline \begin{tabular}{l}
Alachlor \\
(acetanilide)
\end{tabular} & & & & & & & & \\
\hline None & 1.0 (ref) & 53 & 1.0 (ref) & 42 & 1.0 (ref) & 22 & 1.0 (ref) & 9 \\
\hline Low & \(0.9(0.6-1.5)\) & 23 & \(0.9(0.5-1.6)\) & 13 & \(1.3(0.6-2.6)\) & 10 & \(1.6(0.6-4.4)\) & 7 \\
\hline Medium & \(0.8(0.5-1.4)\) & 18 & \(0.7(0.4-1.3)\) & 14 & \(0.8(0.3-1.6)\) & 9 & \(2.1(0.8-5.3)\) & 10 \\
\hline High & \(1.1(0.6-2.1)\) & 14 & \(0.8(0.4-1.6)\) & 10 & \(1.1(0.4-2.7)\) & 6 & \(4.0(1.2-13.0)\) & 4 \\
\hline & \(\mathrm{P}=0.67\) & & \(P\) trend=0.52 & P trend=0.99 & & P trend=0.02 \\
\hline Atrazine & & & & & & & & \\
(triazine) & & & & & & & \\
\hline None & 1.0 (ref) & 34 & 1.0 (ref) & 26 & 1.0 (ref) & 12 & 1.0 (ref) & 5 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Low & \(1.0(0,6-1,7)\) & 29 & 1.1(0.6-2.0) & 21 & \(1.7(0.7-3.9)\) & 17 & \(2.4(0.9-6.8)\) & 13 \\
\hline Medium & \(1.2(0.7-2.0)\) & 25 & 1.1(0.6-2.2) & 23 & 1.3(0.5-3.4) & 10 & 1.7(0.5-5.9) & 6 \\
\hline \multirow[t]{2}{*}{High} & \(1.0(0,6-17)\) & 26 & \(0.9(0.5-17)\) & 19 & 1.4(0.6-3.4) & 13 & 3.6 (1.2-10.8) & 9 \\
\hline & \multicolumn{2}{|l|}{P trend \(=0.90\)} & \multicolumn{2}{|l|}{\(P\) trend \(=0.62\)} & \multicolumn{2}{|l|}{P trend \(=0.83\)} & \multicolumn{2}{|l|}{\(P\) trend \(=0.06\)} \\
\hline \multicolumn{9}{|l|}{\begin{tabular}{l}
Butylate \\
(thio- \\
carbamate-)
\end{tabular}} \\
\hline None & 1.0 (ref) & 40 & 1.0 (ref) & 33 & 1.0 (ref) & 14 & 1.0 (ref) & 8 \\
\hline Low & 0.8(0.4-19) & 7 & 1.1(0.4-3.0) & 4 & 0.8(0.2-2.9) & 3 & 3.0 (0.8-11.3) & 3 \\
\hline Medium & 3,5(1.6-7.6) & 8 & 1.2(0.4-3.5) & 4 & \(6.3(2.1-19.3)\) & 4 & 4.0(1.2-13.7) & 4 \\
\hline \multirow[t]{2}{*}{High} & 13(0.4-4.3) & 3 & 0.8(0.2-2.5) & 3 & 1.0(0.1-79) & 1 & 2.4 (0.3-19.7) & 1 \\
\hline & \multicolumn{2}{|l|}{\(P\) trend \(=0.04\)} & \multicolumn{2}{|l|}{Ptrend=0,69} & \multicolumn{2}{|l|}{\(P\) trend \(=0,07\)} & \multicolumn{2}{|l|}{P trend-0.0499} \\
\hline \multicolumn{9}{|l|}{\begin{tabular}{l}
\[
2,4-\mathrm{D}
\] \\
(Chlorinated Phenoxy)
\end{tabular}} \\
\hline None & 1.0 (ref) & 25 & 1.0 (ref) & 23 & 1.0 (ref) & 9 & 1.0 (ref) & 5 \\
\hline Low & \(0.90(0.5-1.5)\) & 31 & \(0.9(0.5-1.7)\) & 23 & 1.8(0.8-4.4) & 14 & \(1.9(0.6-6.2)\) & 10 \\
\hline Medium & 1.2(0.7-2.0) & 29 & 1.0(0.6-1.9) & 21 & 1.0(0.4-2,4) & 14 & \(1.7(0.5-5.6)\) & 9 \\
\hline High & 1.3(0.7-2.2) & 29 & \(0.7(0.4-1.3)\) & 21 & 1.4(0.6-3.4) & 12 & \(2.2(0.7-7.2)\) & 9 \\
\hline & \multicolumn{2}{|l|}{P irend \(=0,20\)} & \multicolumn{2}{|l|}{P trend \(=0.23\)} & \multicolumn{2}{|l|}{\(P\) trend \(=0.84\)} & \multicolumn{2}{|l|}{P trend \(=0.35\)} \\
\hline \multicolumn{9}{|l|}{\begin{tabular}{l}
Dicamba \\
(benzoic \\
acid)
\end{tabular}} \\
\hline None & 1.0 (ref) & 39 & 1.0 (ref) & 40 & 1.0 (ref) & 22 & 1.0 (ref) & 6 \\
\hline Low & \(1.5(0.9-2.6)\) & 23 & 1.1 (0.6-2.1) & 12 & 1.5(0.7-3.4) & 9 & \(3.2(1.0-9.9)\) & 8 \\
\hline Medium & \(1.5(0.9-3.4)\) & 20 & \(1.1(0.6-2.1)\) & 13 & \(1.8(0.90-4.0)\) & 10 & \(5.2(1.6-16.6)\) & 7 \\
\hline High & \(2.0(1,1-3.4)\) & 20 & \(0.7(0.4-1.4)\) & 11 & 0.7(0,3-1.5) & 8 & \(5.1(1.6-16.1)\) & 7 \\
\hline & \multicolumn{2}{|l|}{\(P\) trend \(=0.03\)} & \multicolumn{2}{|l|}{\(P\) trend \(=0.26\)} & \multicolumn{2}{|l|}{\(P\) trend \(=0.32\)} & \multicolumn{2}{|l|}{P trend \(=0.02\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
EPTC \\
(thiocarbamate)
\end{tabular} & & & & & & & & \\
\hline None & 1.0 (ref) & 86 & 1.0 (ref) & 62 & 1.0 (ref) & 40 & 1.0 (ref) & 19 \\
\hline Low & 1,2(0.6-2.3) & 9 & 1.2(0.6-2.7) & 7 & xxx & 3 & 2.1 (0.7-6.0) & 4 \\
\hline Medium & 1.2(0.6-2.5) & 8 & 1.7(0.7-4.2) & 5 & xxx & 0 & 2.1 (0.6-7.1) & 3 \\
\hline \multirow[t]{2}{*}{High} & 1.4(0.6-3.4) & 5 & 0.8(0.3-2.3) & 4 & xxx & 1 & 4.9 (1.4-16.7) & 3 \\
\hline & \multicolumn{2}{|l|}{P trend \(=0.41\)} & \multicolumn{2}{|l|}{P trend \(=0.98\)} & \multicolumn{2}{|l|}{P trend \(=0.10\)} & \multicolumn{2}{|l|}{P trend \(=0.01\)} \\
\hline \begin{tabular}{l}
Glyphosate \\
(isopropylamine)
\end{tabular} & & & & & & & & \\
\hline None & 1.0 (ref) & 25 & 1.0 (ref) & 19 & 1.0 (ref) & 13 & 1.0 (ref) & 10 \\
\hline Low & 0.6(0.4-1.1) & 32 & 1.3(0.7-2.6) & 23 & 0.7(0.3-1.7) & 15 & 0.4 (0.1-1.2) & 9 \\
\hline Medium & 1.1(0.6-1.9) & 29 & 1.1(0.5-2.1) & 23 & 0.6(0.2-1.4) & 11 & 0.6 (0.2-1.6) & 7 \\
\hline \multirow[t]{2}{*}{High} & 1.1(0.6-1.8) & 29 & 0.7(0.4-1.3) & 22 & 0.7(0.3-1.8) & 12 & 0.6 (0.2-1.8) & 7 \\
\hline & \multicolumn{2}{|l|}{P trend= 0.21} & \multicolumn{2}{|l|}{P trend \(=0.05\)} & \multicolumn{2}{|l|}{P trend=0.66} & \multicolumn{2}{|l|}{P trend \(=0.98\)} \\
\hline \begin{tabular}{l}
Imazethapyr \\
(imid- \\
azolinone)
\end{tabular} & & & & & & & & \\
\hline None & 1.0 (ref) & 68 & 1.0 (ref) & 57 & 1.0 (ref) & 29 & 1.0 (ref) & 12 \\
\hline Low & 1.0(0.6-1.8) & 16 & 0.7(0.3-1.4) & 10 & 0.7(0.3-1.7) & 6 & 1.6 (0.6-3.8) & 8 \\
\hline Medium & 0.8(0.4-1.6) & 11 & 0.6(0.3-1.4) & 6 & 1.1(0.3-3.5) & 6 & 5.2 (1.6-16.6) & 4 \\
\hline High & 1.2(0.6-2.2) & 12 & 0.5(0.2-1.2) & 5 & 1.0(0.4-2.8) & 5 & 3.2 (1.0-10.0) & 4 \\
\hline & \multicolumn{2}{|l|}{P trend=0.71} & \multicolumn{2}{|l|}{P trend=0.16} & \multicolumn{2}{|l|}{P trend \(=0.90\)} & \multicolumn{2}{|l|}{P trend \(=0.03\)} \\
\hline \begin{tabular}{l}
Metribuzin \\
(Triazone)
\end{tabular} & & & & & & & & \\
\hline None & 1.0 (ref) & 30 & 1.0 (ref) & 35 & 1.0 (ref) & 13 & 1.0 (ref) & 9 \\
\hline Low & 1.5(0.7-2.9) & 11 & 0.5(0.2-1.4) & 5 & 1.4(0.5-3.9) & 5 & 1.0 (0.2-4.9) & 3 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Medium & \(2.1(1.14 .0)\) & 13 & 0.5(0.1-2.0) & 3 & 0.8(0.2-2.9) & 3 & 2.8 (0.9-8.9) & 5 \\
\hline High & 1.8(0.6-5.2) & 4 & 0.4(0.1-1.6) & 2 & 1.3(0.2-9.8) & 1 & - & 0 \\
\hline & \multicolumn{2}{|l|}{P trend \(=0.06\)} & \multicolumn{2}{|l|}{\(P\) trend \(=0.13\)} & \multicolumn{2}{|l|}{P trend \(=0,88\)} & \multicolumn{2}{|l|}{9 trend \(=0.60\)} \\
\hline \multicolumn{9}{|l|}{\begin{tabular}{l}
Trifluralin \\
(dinitro- \\
aniline)
\end{tabular}} \\
\hline None & 10 (ref) & 45 & 1.0 (ref) & 43 & 1.0 (ref) & 25 & 1.0 (ref) & 10 \\
\hline Low & 1.1(0.7-1.9) & 23 & \(0.9(0.5-1.7)\) & 14 & 0.9(0.4-1.9) & 8 & 1.2 (0.4-3.2) & 7 \\
\hline Medium & 1.6i0.9-2.6) & 21 & 08(0.4-1.7) & 11 & \(0.8(0.4-1.8)\) & 8 & 2.7 (1.0-7.0) & 7 \\
\hline High & 1.1 (06-1.9) & 15 & \(0.6(0.3-1.2)\) & 11 & 0.8(0.3-1.9) & 7 & 3.3 (12-9.1) & 6 \\
\hline & \multicolumn{2}{|l|}{\(P\) trend \(=0.81\)} & \multicolumn{2}{|l|}{P trend=0 13} & \multicolumn{2}{|l|}{Pisend \(=0.62\)} & \multicolumn{2}{|l|}{P trend= 0.01} \\
\hline
\end{tabular}

IAge adjusted (\(<45,45-49,50-54,55-59,60-64,65-69, \geq 70\))
\({ }^{7}\) Numbers do not sum to NHL subtype totals due to missing data.

Table 4: The number of different pesticides in a pesticide class used and the risk of NHL (\(95 \% \mathrm{CI}\))
\begin{tabular}{|c|c|c|c|c|}
\hline Number pesticides in a pesticide class & All NHL Cases \({ }^{1}\) & Cohort PersonYears & \(\mathrm{RR}^{2}\) & 95\% CI \\
\hline \multicolumn{5}{|l|}{All pesticide} \\
\hline 0-4 & 36 & 46,624 & 1.0 (ref) & \\
\hline 5-8 & 58 & 62,304 & 1.2 & (0.8-1.9) \\
\hline 9-11 & 50 & 56,373 & 1.2 & (0.8-2.0) \\
\hline 12-16 & 65 & 93,714 & 0.9 & (0.5-1.4) \\
\hline 17-20 & 48 & 57,874 & 1.1 & (0.7-1.8) \\
\hline \multirow[t]{2}{*}{\(>20\)} & 75 & 71,281 & 1.1 & (0.7-1.8) \\
\hline & & & P trend \(=0.53\) & \\
\hline \multicolumn{5}{|l|}{Chlorinated Insecticides} \\
\hline 0 & 111 & 344,026 & 1.0 (ref) & \\
\hline 1 & 63 & 131,439 & 1.1 & (0.6-1.9) \\
\hline 2 & 42 & 77,989 & 1.1 & (0.6-2.0) \\
\hline \multirow[t]{2}{*}{\(\geq 3\)} & 89 & 122,276 & 0.9 & (0.5-1.7) \\
\hline & & & P trend \(=0.45\) & \\
\hline \multicolumn{5}{|l|}{Organophosphate insecticides} \\
\hline 0 & 38 & 90,621 & 1.0 (ref) & \\
\hline 1 & 59 & 128,694 & 1.2 & (0.7-1.8) \\
\hline 2 & 69 & 146,183 & 1.3 & (0.8-2.0) \\
\hline 3 & 56 & 133,273 & 1.1 & (0.6-1.8) \\
\hline \multirow[t]{2}{*}{\(\geq 4\)} & 107 & 208,634 & 1.2 & (0.7-2.1) \\
\hline & & & P trend \(=0.59\) & \\
\hline \multicolumn{5}{|l|}{Carbamate insecticide} \\
\hline 0 & 104 & 231,849 & 1 (ref) & \\
\hline 1 & 126 & 294,727 & 0.7 & (0.5-1.0) \\
\hline \multirow[t]{2}{*}{\(\geq 2\)} & 89 & 163,706 & 0.9 & (0.6-1.4) \\
\hline & & & P trend \(=0.64\) & \\
\hline \multicolumn{5}{|l|}{Other insecticides} \\
\hline 0 & 251 & 532,835 & 1.0 (ref) & \\
\hline \multirow[t]{2}{*}{>1} & 43 & 112,489 & 1.1 & (0.6-1.8) \\
\hline & & & P trend \(=0.36\) & \\
\hline \multicolumn{5}{|l|}{Triazine herbicides} \\
\hline 0 & 67 & 161,040 & 1.0 & \\
\hline 1 & 92 & 187,057 & 1.2 & (0.6-2.4) \\
\hline 2 & 78 & 185,777 & 1.0 & (0.5-2.1) \\
\hline \multirow[t]{2}{*}{3} & 92 & 173,920 & 1.4 & (0.7-3.0) \\
\hline & & & P trend \(=0.04\) & \\
\hline \multicolumn{5}{|l|}{Acetamide herbicides} \\
\hline 0 & 90 & 206,537 & 1.0 & \\
\hline 1 & 115 & 236,407 & 1.6 & (0.8-3.4) \\
\hline 2 & 102 & 219,200 & 1.7 & (0.7-3.7) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline & & & Ptrend \(=0.10\) & \\
\hline Carbamate herbicides & & & & \\
\hline 0 & 193 & 414,729 & 1.0 (ref) & \\
\hline 1 & 79 & 179,871 & 0.8 & (0.5-1.2) \\
\hline 2 & 40 & 84,589 & 0.8 & 0.8(0.4-1.4) \\
\hline & & & P trend \(=0.80\) & \\
\hline Other herbicides & & & & \\
\hline 0 & 13 & 25,880 & 1.0 (ref) & \\
\hline 1-2 & 67 & 131,595 & 1.1 & (0.5-2.7) \\
\hline 3-4 & 76 & 162,359 & 1.0 & (0.4-2.4) \\
\hline 5-6 & 78 & 185,337 & 1.0 & (0.4-2.5) \\
\hline \(\geq 7\) & 97 & 205,915 & 1.1 & (0.4-2.6) \\
\hline & & & P trend \(=0.19\) & \\
\hline Fungicides & & & & \\
\hline 0 & 203 & 442,307 & 1.0 (ref) & \\
\hline 1 & 73 & 152,882 & 1.1 & (0,8-1.5) \\
\hline \(\geq 2\) & 52 & 110,590 & 1.5 & (0.99-2.3) \\
\hline & & & P trend \(=0.31\) & \\
\hline Fumigants & & & & \\
\hline 0 & 240 & 538,867 & 1.0 (ref) & \\
\hline 1 & 73 & 123,473 & 1.4 & (0.9-2.1) \\
\hline \(\geq 2\) & 15 & 42,165 & 0.9 & (0.4-1.9) \\
\hline & & & P trend= \(=0.24\) & \\
\hline
\end{tabular}

\footnotetext{
Numbers do not sum to totals (333 cases, 714,770 person-years) due to missing data
\({ }^{2}\) NHL risks are age adjusted (\(<45,45-49,50-54,55-59,60-64,65-69 \geq 70\)) and adjusted for lifetme days of use of pesticides in the specifie pesticide class
}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{CLL, SLL, PLL, MCL} & \multicolumn{2}{|l|}{Diffuse Large Bcell} & \multicolumn{2}{|l|}{Follicular B-cell} & \multicolumn{2}{|l|}{Other B-cell types} \\
\hline & \(\mathrm{RR}^{1}(95 \% \mathrm{CI})\) & n & \(\mathrm{RR}^{1}\) (95\% CI) & n & \(\mathrm{RR}^{1}\) (95\% CI) & n & \(\mathrm{RR}^{1}(95 \% \mathrm{CI})\) & n \\
\hline \multicolumn{9}{|c|}{Insecticides} \\
\hline \multicolumn{9}{|l|}{Carbamate insecticides \({ }^{3}\)} \\
\hline 0 & 1.0 (ref) & 34 & 1.0(ref) & 33 & 1.0(ref) & 12 & 1.0 (ref) & 13 \\
\hline 1 & 0.8 (0.5-1.3) & 45 & 0.7(0.4-1.2) & 36 & 1.5(0.8-3.0) & 26 & 0.3 (0.1-0.8) & 7 \\
\hline \multirow[t]{2}{*}{2-3} & 1.1 (0.7-1.7) & 32 & 0.7(0.4-1.2) & 20 & 1.2(0.5-2.7) & 12 & 1.2 (0.5-2.5) & 13 \\
\hline & P trend \(=0.82\) & & P trend \(=0.21\) & & P trend \(=0.63\) & & P trend= 0.75 & \\
\hline \multicolumn{9}{|l|}{Chlorinated insecticides \({ }^{4}\)} \\
\hline None & 1.0 (ref) & 8 & 1.0(ref) & 16 & 1.0(ref) & 3 & 1.0 (ref0 & 6 \\
\hline 1 & 1.6 (0.7-3.8) & 17 & 0.9 (04-1.7) & 18 & 4.1(1.2-14.1) & 15 & 0.9 (0.3-2.7) & 7 \\
\hline 2 & 2.2 (0.95-5.0) & 19 & 0.6(0.3-1.3) & 10 & 2.5(0.6-9.6) & 7 & 0.5 (0.1-1.9) & 3 \\
\hline 3 & 2.4 (1.2-5.2) & 41 & 0.5(0.3-1.0) & 17 & 1.7(0.5-6.5) & 9 & 0.8 (0.3-2.3) & 10 \\
\hline & P trend \(=0.02\) & & P trend \(=0.05\) & & P trend \(=0.73\) & & P trend \(=0.48\) & \\
\hline \multicolumn{9}{|l|}{Organophosphate Insecticides \({ }^{5}\)} \\
\hline 0 & 1.0 (ref) & 13 & 1.0 (ref) & 14 & 1.0(ref) & 5 & 1.0 & 5 \\
\hline 1 & 0.93(0.4-2.0) & 15 & 1.2(0.6-2.4) & 21 & 1.3(0.4-3.9) & 8 & 0.8 (0.2-2.8) & 5 \\
\hline 2 & 1.4 (0.7-2.7) & 25 & 1.0(0.5-2.0) & 20 & 1.7(0.6-4.7) & 12 & 1.3 (0.4-4.0) & 9 \\
\hline \(\underline{3}\) & 1.3 (0.6-2.5) & 20 & 0.8(0.4-1.7) & 14 & 1.4(0.5-4.1) & 9 & 0.5 (0.1-2.1) & 3 \\
\hline \(\geq 4\) & 1.7 (0.92-3.2) & 42 & 0.8(0.4-1.6) & 23 & 1.6(0.6-4.4) & 17 & 1.3 (0.5-3.7) & 12 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 2 & 1.0(0.6-1.7) & 27 & 0.8(0.4-1.5) & 17 & 2.1(0.8-6.7) & 13 & 2.5 (0.8-8.3) & 9 \\
\hline 3 & 1.5 (0.91-2.5) & 35 & 1.1(0.6-2.0) & 20 & 2.3(0.9-6.1) & 13 & 4.2 (1.4-13.1) & 13 \\
\hline & P trend \(=0.07\) & & \(P\) trend \(=0.64\) & & P trend \(=0.30\) & & P trend= \(=006\) & \\
\hline \multicolumn{9}{|c|}{Fungicides and Fumigants} \\
\hline \multicolumn{9}{|l|}{Fungicides \({ }^{\text {II }}\)} \\
\hline 0 & 1.0 (ref) & 4 & 1.0 (ref) & 6 & 1.0(ref) & 3 & 1.0 & 2 \\
\hline 1 & 1.3 (0.4-3.6) & 29 & 0.7(0.3-1.8) & 28 & 1.1(0.3-3.6) & 23 & 1.2 (0.3-5.6) & 14 \\
\hline 2 & 1.7 (0.6-4.6) & 81 & 0.8(0.3-1.8) & 58 & 0.6(0.2-2.1) & 26 & 0.8 (0.2-3.4) & 18 \\
\hline & P trend \(=0.11\) & & P trend=0.75 & & P trend \(=0.10\) & & P trend \(=0.29\) & \\
\hline \multicolumn{9}{|l|}{Fumigants \({ }^{12}\)} \\
\hline 0 & 1.0 (ref) & 43 & 1.0 (ref) & 30 & 1.0(ref) & 25 & 1.0 & 9 \\
\hline 1 & 1.0 (0.6-1.9) & 13 & 2.0(1.1-3.7) & 17 & 0.6(0.2-1.7) & 4 & 2.8 (1.0-7.4) & 7 \\
\hline \(\geq 2\) & 0.95(0.6-1.4) & 58 & 1.1(0.7-1.8) & 45 & 0.7(0.4-1.2) & 22 & 1.5(0.7-3.3) & 18 \\
\hline & P trend \(=0.81\) & & P trend \(=0.75\) & & Ptrend \(=0.20\) & & P trend \(=0.43\) & \\
\hline
\end{tabular}
\({ }^{1}\) Age adjusted (\(<45,45-49,50-54,55-59,60-64,65-69, \geq 70^{2}\) Numbers do not sum to NHL subtype totals due to missing data \({ }^{3}\) Carbamate insecticides: carbofuran, aldicarb, carbaryl \({ }^{4}\) Chlorinated insecticides: aldrin, chlordane, dieldrin, DDT, heptachlor, lindane, toxaphene \({ }^{5}\) Organophosphate insecticides: Chlorpyrifos, coumaphos, diazinon, dichlorvos, fonofos, malathion, parathion, phorate, terbufos, \({ }^{6}\) Other insecticides: permethrin \({ }^{7}\) Acetamide: metolachlor, alachlor \({ }^{8}\) Carbamate herbicide: Butylate: EPTC \({ }^{9}\) Other herbicides: Glyphosate, imazethapyr, herbicide oil, paraquat, chlorimuron ethyl, dicamba, pendimethalin, trifluralin, 2,4-D, 2,4,5-T, 2,4-TP \({ }^{10}\) Triazine herbicides: Atrazine, cyanazine, metribuzin \({ }^{11}\) Fungicides: Benomyl, chlorthalonil, captan, maneb/macozeb, metalaxyl, ziram \({ }^{12}\) Fumigants: methyl bromide, aluminum phosphate, ethylene dibromide, carbon tetra chloride/carbon disulfide
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Supplemental Table 1 Other pesticide exposures (lifetime days [LD] and intensity weighted total days) and ageadjusted risk of NHL incidence (1993 through 2008).} \\
\hline \begin{tabular}{l}
Pesticide (chemicalfunctional class) \\
[median days of lifetime exposure for each category]
\end{tabular} & NHL Cases & \begin{tabular}{l}
RR (95\%) by \\
Lifetime- Days of \\
Exposure
\end{tabular} & \[
\begin{aligned}
& \mathrm{NHL} \\
& \text { Cases }
\end{aligned}
\] & \begin{tabular}{l}
RR (\(95 \% \mathrm{CD}\)) \\
Intensity weighted Lifetime-Days of exposure
\end{tabular} \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
Benomyl \\
(carbamate-fungicide)
\end{tabular}} \\
\hline None & 134 & 10 (ref) & 134 & 10 (ref) \\
\hline Low [0.5] & 6 & 5.6 (2.4-12.fi) & 6 & 4.1(1.8-93) \\
\hline Medium [12.25] & 5 & 1.0 (0.4-2,6) & 5 & 1.0 (0.4-2,6) \\
\hline \multirow[t]{2}{*}{High [108.5]} & 5 & 0.8 (0.3-1.9) & 5 & 0.8 (0.3-1.9) \\
\hline & & \(P\) for lrend= 0,50 & & P for trend= 0.57 \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
Captan \\
(dicarboximide-fungicide)
\end{tabular}} \\
\hline None & 258 & 1.0 (ref) & 258 & 1.0 (ref) \\
\hline Low [4] & 8 & 0.6 (0.3-1.3) & 8 & \(0.7(0.4-1.5)\) \\
\hline Medium [12.25] & 8 & 1.6 (0.6-4.1) & 7 & 1.2 (0.5-2.9) \\
\hline \multirow[t]{2}{*}{High [124]} & 7 & 0.6 (0.3-1.5) & 7 & \(0 \leq(0.2-1.3)\) \\
\hline & & P for trend \(=0.33\) & & P for trend \(=020\) \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
Carbofuran \\
(carbamate-insecticide)
\end{tabular}} \\
\hline None & 199 & 1.0 (ref) & 199 & 1.0 (ref) \\
\hline Low [8.75] & 35 & 1.1 (0.8-1.6) & 29 & 1.2(0.8-1.8) \\
\hline Medium [38.75] & 25 & 1.0 (0.7-1.6) & 29 & \(0.9(0,6-1.3)\) \\
\hline High [56] & 28 & 1.0 (0.7-1.5) & 28 & 1.1 (0.8-1.7) \\
\hline
\end{tabular}

Comment [Ibf71]: I think that you need to put number of days for each pesticide Low/Med/High is not the same for each pesticide under shudy and thus leaves the mpression that they ate
Comment [a72]: Lifetime days added as suggested
\begin{tabular}{|c|c|c|c|c|}
\hline & & P trend \(=0.81\) & & P trend=0.74 \\
\hline \begin{tabular}{l}
Chlorpyrifos \\
(organophosphateinsecticide)
\end{tabular} & & & & \\
\hline None & 189 & 1.0 (ref) & 189 & 1.0 (ref) \\
\hline Low [14.75] & 44 & 1.1 (0.7-1.5) & 40 & 1.1 (0.8-1.5) \\
\hline Medium [38.75] & 45 & 1.3(0.9-1.8) & 41 & 1.0 (0.7-1.5) \\
\hline High [116] & 43 & 0.9 (0.7-1.3) & 39 & 1.1 (0.8-1.5) \\
\hline & & P trend=0.57 & & \(P\) trend \(=0.67\) \\
\hline \begin{tabular}{l}
Chlorthalonil \\
(thalonitrile-fungicide)
\end{tabular} & & & & \\
\hline None & 301 & 1.0 (ref) & 301 & 1.0 (ref) \\
\hline Low [8] & 7 & 1.3 (0.6-2.7) & 7 & 1.1 (0.5-2.4) \\
\hline Medium [54.25] & 6 & 0.6 (0.2-1.6) & 6 & 0.6 (0.2-1.5) \\
\hline High [79] & 6 & 0.6 (0.2-1.2) & 6 & 0.7 (0.3-1.5) \\
\hline & & P for trend \(=0.12\) & & P for trend \(=0.23\) \\
\hline \begin{tabular}{l}
Coumaphos \\
(0rganophosphateinsecticide)
\end{tabular} & & & & \\
\hline None & 258 & 1.0(ref) & 258 & 1.0 (ref) \\
\hline Low [8.75] & 12 & 1.2 (0.7-2.2) & 10 & 1.6 (0.8-2.9) \\
\hline Medium [38.75] & 10 & 1.4 (0.8-2.7) & 11 & 1.2 (0.6-2.1) \\
\hline High [63.75] & 8 & 1.2 (0.6-2.4) & 9 & 1.2 (0.6-2.3) \\
\hline & & \(P\) for trend \(=0.41\) & & P for trend \(=0.55\) \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
DDVP \\
(dimethyl phosphateinsecticide)
\end{tabular}} \\
\hline None & 261 & 1.0 (ref) & 261 & 1.0 (ref) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Low [8.75] & 10 & 1.2(0,6-2,2) & 10 & 1.2 (0.7-2.3) \\
\hline Medium [108.5] & 11 & 1.1 (0.6-2.0) & 9 & 0.8 (0.4-1.6) \\
\hline \multirow[t]{2}{*}{High [457.25]} & 7 & 0.7 (03-1.5) & 9 & \(1.0(0.5-1.9)\) \\
\hline & & P for trend \(=0.42\) & & Pfor trend \(=0.95\) \\
\hline \begin{tabular}{l}
Diazinon \\
(organophosphosphuruusinsecticide)
\end{tabular} & & & & \\
\hline None & 113 & 1.0 (ref) & 113 & 1.0 (ref) \\
\hline Low [8.75] & 19 & 1.2 (0.7-2.0) & 14 & 1.3 (0.7-2.2) \\
\hline Medium [30] & 10 & \(0.7(0.3-1.7)\) & 15 & \(0.9(0.5-1.7)\) \\
\hline \multirow[t]{2}{*}{High [56]} & 13 & 1.1 (0.6-2.1) & 13 & 1.1 (0.6-1.9) \\
\hline & & P trend \(=0.73\) & & P trend \(=0.92\) \\
\hline \begin{tabular}{l}
Fonufos \\
(phosphonothioateinsecticide)
\end{tabular} & & & & \\
\hline None & 220 & 1.0 (ref) & 220 & 1.0 (ref) \\
\hline Low [20] & 28 & 1.3 (0.9-1.9) & 23 & 1.2(0.8-1.9) \\
\hline Medium [50.75] & 19 & 1.2 (0 8-20) & 23 & 14 (0.93-2,2) \\
\hline \multirow[t]{2}{*}{High [108.5]} & 22 & 11 (0.7-1.7) & 22 & 1.0 (0.6-1.5) \\
\hline & & P for trend \(=0.67\) & & P for trend \(=0.98\) \\
\hline \begin{tabular}{l}
Matalaxyl \\
(a naline methyl ester- \\
fungicide)
\end{tabular} & & & & \\
\hline None & 126 & 1.0 (ref) & 126 & 1.0 (ref) \\
\hline Low [3,5] & 10 & 1.2 (0.6-2.2) & 10 & 1.8 (0.95-3.4) \\
\hline Medium [24.5] & 11 & 0.9 (0.5-1.7) & 11 & 0.7 (0.4-1.4) \\
\hline High [50] & 9 & 0.8 (0.4-1.5) & 9 & 0.8 (0.4-1.5) \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline High [173.25] & 10 & 1.0(0.5-2.0) & 12 & 1.3(0.7-2.4) \\
\hline & & P for trend \(=0.84\) & & P for trend \(=0.36\) \\
\hline \multicolumn{5}{|l|}{Metolachlor (acetamide-herbicide)} \\
\hline None & 145 & 1.0 (ref) & 145 & 1.0 (ref) \\
\hline Low [20] & 50 & 1.2(0.9-1.7) & 49 & 1.2(0.8-1.6) \\
\hline Medium [56] & 54 & 1.3(0.94-1.5) & 49 & 1.4(1.0-2.0) \\
\hline \multirow[t]{2}{*}{High [116]} & 44 & 1.1(0.8-1.5) & 48 & 1.1(0.8-1.5) \\
\hline & & P for trend \(=0.67\) & & P for trend \(=0.28\) \\
\hline \multicolumn{5}{|l|}{Paraquat} \\
\hline None & 127 & 1.0 (ref) & 127 & 1.0 (ref) \\
\hline Low [7] & 10 & 1.5(0.8-2.8) & 10 & 1.9(1.0-3.7) \\
\hline Medium [24.5] & 10 & 0.8(0.4-1.5) & 9 & 0.5(0.3-1.1) \\
\hline High [116] & 8 & 1.0(0.5-2.0) & 9 & 1.5(0.8-3.0) \\
\hline & & P for trend \(=0.88\) & & P for trend \(=0.26\) \\
\hline \multicolumn{5}{|l|}{Pendimethalin} \\
\hline None & 96 & 1.0 (ref) & 96 & 1.0 (ref) \\
\hline Low [8.75] & 32 & 1.1(0.7-1.6) & 25 & 1.1(0.6-1.8) \\
\hline Medium [24.5] & 23 & 1.2(0.7-2.0) & 26 & 1.0(0.7-1.6) \\
\hline High [56] & 20 & 1.0(0.6-1.6) & 24 & 1.2(0.7-1.8) \\
\hline & & P for trend \(=0.87\) & & \(P\) for trend \(=0.52\) \\
\hline \multicolumn{5}{|l|}{\[
\begin{aligned}
& \hline 2,4,5 \mathrm{~T} \\
& \text { (phenoxyacetic acid) }
\end{aligned}
\]} \\
\hline None & 71 & 1.0 (ref) & 71 & 1.0 (ref) \\
\hline Low [8.75] & 30 & 1.7(1.1-2.5) & 17 & 1.6(0.9-2.8) \\
\hline Medium [8.75] & 4 & 1.2(0.4-3.3) & 16 & 1.9(1.1-3.2) \\
\hline High [20] & 15 & 1.2(0.7-2.2) & 16 & 1.0(0.6-1.7) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline & & P for trend \(=0.52\) & P for trend \(=0.51\) \\
\hline
\end{tabular}

\section*{Supplemental Table 2. Pesticide exposures (total days and intensity weight total days) fully adjusted risks of NHL incidence (1993 through 2008).}
\begin{tabular}{|c|c|c|c|c|}
\hline & \begin{tabular}{l}
NHL \\
Cases
\end{tabular} & RR (95\%) by Total Days of Exposure & \begin{tabular}{l}
NHL \\
Cases
\end{tabular} & \begin{tabular}{l}
RR (95\% CI) \\
Intensity weighted days of exposure
\end{tabular} \\
\hline \multicolumn{5}{|l|}{Benomyl} \\
\hline none & 134 & 1.0 (ref) & 134 & 1.0 (ref) \\
\hline Low & 6 & 6.1(2.7-13.8) & 6 & 4.6 (2.0-10.6) \\
\hline medium & 5 & 1.0(0.4-2.6) & 5 & 1.4 (0.6-3.5) \\
\hline \multirow[t]{2}{*}{High} & 5 & 1.0(0.4-2.6) & 5 & 1.1 (0.4-2.8) \\
\hline & & P trend (full) \(=0.98\) & & P trend (full) \(=0.94\) \\
\hline \multicolumn{5}{|l|}{Captan} \\
\hline none & 258 & 1.0 (ref) & 258 & 1.0 (ref) \\
\hline Low & 8 & 0.6(0.3-1.2) & 8 & 0.7 (0.3-1.4) \\
\hline medium & 8 & 1.7(0.7-4.3) & 7 & 1.2 (0.5-2.0) \\
\hline \multirow[t]{2}{*}{High} & 7 & 0.7(0.3-1.6) & 7 & 0.6 (0.2-1.4) \\
\hline & & \(P\) trend (full) \(=0.45\) & & P trend (full) \(=0.28\) \\
\hline \multicolumn{5}{|l|}{Carbaryl} \\
\hline none & 81 & 1.0(ref) & 81 & 1.0 (ref) \\
\hline Low & 31 & 0.96(0.6-1.6) & 27 & 0.91 (0.6-1.5) \\
\hline medium & 23 & 0.8(0.5-1.4) & 26 & 0.99 (0.6-1.6) \\
\hline \multirow[t]{2}{*}{High} & 25 & 1.3(0.8-2.2) & 26 & 1.1 (0.7-1.9) \\
\hline & & \(P\) trend (full) \(=0.26\) & & P trend (full) \(=0.54\) \\
\hline \multicolumn{5}{|l|}{Carbofuran} \\
\hline none & 199 & 1.0 (ref) & 199 & 1.0 (ref) \\
\hline Low & 35 & 1.0(0.7-1.5) & 29 & 1.1(0.8-1.6) \\
\hline medium & 25 & 0.97(0.6-1.5) & 29 & 0.8(0.5-1.2) \\
\hline High & 28 & 0.96(0.6-1.4) & 28 & \(1.1(0.7-1.6)\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline & & P (rend (full) \(=0.83\) & & P (rend (full) \(=0.95\) \\
\hline \multicolumn{5}{|l|}{ChlorthaIonil} \\
\hline none & 301 & 1.0 (ref) & 301 & 1.0 (ref) \\
\hline Low & 7 & 1.4(0.7-3.0) & 7 & \(1.2(0.6-2.6)\) \\
\hline Medium & 6 & 0.7(0.3-1.8) & 6 & \(0.6(0.2-1.9)\) \\
\hline \multirow[t]{2}{*}{High} & 6 & \(0.6(0.3-1.4)\) & 6 & 0.7 (03-1.6) \\
\hline & & Prend (full \(=0.21\) & & Prend (full) \(=0,37\) \\
\hline \multicolumn{5}{|l|}{Chlorpyrifos} \\
\hline None & 189 & 1.0 (ref) & 189 & 1.0 (ret) \\
\hline Low & 44 & \(1.0(0.7-1.5)\) & 40 & \(1.9(0.7-1.5)\) \\
\hline Medium & 45 & 1.2(0.9-1.7) & 41 & 0.94 (0.7-1.3) \\
\hline \multirow[t]{2}{*}{High} & 43 & \(0.8(0.6-1.2)\) & 39 & \(1.0(0.7-1.4)\) \\
\hline & & P trend (full \()=0.31\) & & P (rend (full) \(=0.99\) \\
\hline \multicolumn{5}{|l|}{Coumaphos} \\
\hline none & 258 & 1.0 (rcf) & 258 & 1.6 (ref) \\
\hline Low & 12 & 1.1(0.6-2.0) & 10 & 1.4 (0.8-2.7) \\
\hline medium & 10 & 1.3 (0.7-2.5) & 11 & 1.I (\(0.6-2.0)\) \\
\hline \multirow[t]{2}{*}{High} & 8 & \(1.1(0.5-2.2)\) & 9 & \(1.1(0.6-2.1)\) \\
\hline & & P trend (full) \(=0.62\) & & P trend (full) \(=0.75\) \\
\hline \multicolumn{5}{|l|}{Diazinon} \\
\hline None & 113 & 1.0 (ref) & 113 & 1.0 (ref) \\
\hline Low & 19 & 1.3(0.8-2.1) & 14 & \(1.3(0.7-2.2)\) \\
\hline medium & 10 & 0.8(0.3-1.8) & 15 & \(0.9(0.5-1.7)\) \\
\hline \multirow[t]{2}{*}{High} & 13 & 1.3(0.7-2.5) & 13 & \(1.3(0.7-2.3)\) \\
\hline & & P P trend (full \()=0.41\) & & \(P\) trend (full) \(=0.50\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{DDVP} \\
\hline none & 261 & 1.0 (ref) & 261 & 1.0 (ref) \\
\hline Low & 10 & 1.0 (0.5-1.9) & 10 & 1.1 (0.6-2.1) \\
\hline medium & 11 & 0.92 (0.5-1.7) & 9 & 0.7 (0.4-1.4) \\
\hline \multirow[t]{2}{*}{High} & 7 & 0.6 (0.3-1.3) & 9 & 0.9 (0.4-1.7) \\
\hline & & P trend (full) \(=0.22\) & & Ptrend (full) \(=0.61\) \\
\hline \multicolumn{5}{|l|}{Fonofos} \\
\hline None & 220 & 1.0 (ref) & 220 & 1.0 (ref) \\
\hline Low & 28 & 1.2(0.8-1.7) & 23 & 1.1(0.7-1.7) \\
\hline medium & 19 & 1.1(0.7-1.7) & 23 & 1.2(0.8-1.9) \\
\hline \multirow[t]{2}{*}{High} & 22 & 0.9 (0.6-1.5) & 22 & 0.9(0.5-1.3) \\
\hline & & P trend (full) \(=0.76\) & & P trend (full) \(=0.51\) \\
\hline \multicolumn{5}{|l|}{Lindane} \\
\hline None & 122 & 1.0 (ref) & 122 & 1.0 (ref) \\
\hline Low & 11 & 0.9(0.5-1.8) & 10 & 1.0(0.5-1.8) \\
\hline medium & 10 & 1.0(0.5-2.0) & 11 & 1.2(0.6-2.3) \\
\hline \multirow[t]{2}{*}{High} & 10 & 2.3(1.2-4.5) & 9 & 1.7(0.9-3.3) \\
\hline & & P trend (full) \(=0.01\) & & Ptrend (full) \(=0.12\) \\
\hline \multicolumn{5}{|l|}{Malathion} \\
\hline none & 55 & 1.0 (ref) & 55 & 1.0 (ref) \\
\hline Low & 46 & \(0.9(0.6-1.3)\) & 37 & 0.9 (0.6-1.4) \\
\hline medium & 28 & 0.7(0.4-1.1) & 38 & 0.8 (0.5-1.1) \\
\hline \multirow[t]{2}{*}{High} & 36 & 1.0(0.7-1.5) & 35 & 0.9 (0.6-1.4) \\
\hline & & \(P\) trend (full) \(=0.68\) & & \(P\) trend (full) \(=0.91\) \\
\hline \multicolumn{5}{|l|}{Metalaxyl} \\
\hline none & 126 & 1.0 (ref) & 126 & 1.0 (ref) \\
\hline Low & 10 & 1.2(0.6-2.4) & 10 & 1.7 (0.9-3.4) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline medium & 11 & \(1.1(0.6-2.2)\) & 11 & \(0.9(0.4-1.7)\) \\
\hline \multirow[t]{2}{*}{High} & 9 & 1.1(0.5-2.3) & 9 & \(1.0(0.5-2.2)\) \\
\hline & & P Irend (full \()=0.89\) & & \(P\) trend (full) \(=0.93\) \\
\hline \multicolumn{5}{|l|}{Methyl bromide} \\
\hline none & 268 & 1.0 (ref) & 268 & 1.0 (ref) \\
\hline Low & 25 & 2.2(1.4-3.4) & 17 & \(2.3(1.4-3.8)\) \\
\hline medium & 9 & 1.1(0.5-2.1) & 16 & 1.5(0.9-2.6) \\
\hline \multirow[t]{2}{*}{High} & 16 & 0.2(0.4-1.2) & 16 & \(0.7(0.4-1.1)\) \\
\hline & & P trend (fill \()=0.13\) & & \(P\) trend (full \()=0.07\) \\
\hline \multicolumn{5}{|l|}{Permethrin Animals} \\
\hline None & 263 & 1.0 (ref) & 263 & 1.0 (ref) \\
\hline Low & 15 & 1.1(0.7-1.9) & 10 & 1.1(9.6-2.1) \\
\hline medium & 5 & 0.7(0.2-2.1) & 10 & 0,7(0,3-1.4) \\
\hline \multirow[t]{2}{*}{High} & 9 & \(05(0.3-1.0)\) & 9 & \(0.6(0.3-12)\) \\
\hline & & \(P\) trend (full) \(=0.055\) & & P trend (full) \(=0.15\) \\
\hline \multicolumn{5}{|l|}{Permethrin Crops} \\
\hline None & 249 & 1.0 (ref) & 249 & 1.0 (ref) \\
\hline Low & 17 & \(0.9(0.5-1.6)\) & 12 & 1.0(0.5-2.0) \\
\hline medium & 9 & 1.1(0.5-2.2) & 12 & \(12(07-22)\) \\
\hline \multirow[t]{2}{*}{High} & 10 & 0.8(0.4-1.5) & 11 & 0.6(0,3-1.2) \\
\hline & & Ptrend (full)=0.44 & & \(P\) (rend (full) \(=0.18\) \\
\hline \multicolumn{5}{|l|}{Phorate} \\
\hline none & 102 & 1.0 (ref) & 102 & 1.0 (ref) \\
\hline Low & 20 & 0) \(8(0.5-13)\) & 17 & \(0.7(0.4-1.2)\) \\
\hline medium & 20 & 1,7(1.0-2.8) & 17 & \(1.5(0,9-2.5)\) \\
\hline \multirow[t]{2}{*}{IIigh} & 10 & \(0.6(0.3-1.0)\) & 16 & \(0.8(0.5-1.4)\) \\
\hline & & \(P\) trend (full) \(=0.26\) & & P trend (fuil) \(=0.70\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Terbufos & & & & \\
\hline None & 157 & 1.0 (ref) & 157 & 1.0 (ref) \\
\hline Low & 58 & 1.3(0.9-1.8) & 43 & 1.2(0.8-1.7) \\
\hline medium & 38 & 1.7(1.2-2.5) & 43 & 1.7(1.2-2.4) \\
\hline High & 34 & 1.0(0.7-1.5) & 42 & 1.1(0.8-1.6) \\
\hline & & P trend (full) \(=0.78\) & & P trend (full) \(=0.65\) \\
\hline \multicolumn{5}{|c|}{Herbicide exposures} \\
\hline & \multicolumn{2}{|l|}{Life-time days of Exposure} & \multicolumn{2}{|l|}{Intensity weighted days of exposure*} \\
\hline & \[
\begin{array}{|l|}
\hline \text { NHL } \\
\text { Cases }
\end{array}
\] & RR (95\%) & NHL Cases & RR (95\% CI) \\
\hline \multicolumn{5}{|l|}{Alachlor} \\
\hline None & 138 & 1.0 (ref) & 138 & 1.0 (ref) \\
\hline Low & 65 & 0.9 (0.7-1.2) & 53 & 0.9(0.7-1.2) \\
\hline medium & 49 & 0.8((0.6-1.1) & 50 & 0.8 (0.6-1.1) \\
\hline \multirow[t]{2}{*}{High} & 43 & 1.2(\((0.9-1.8)\) & 51 & 1.2 (0.8-1.6) \\
\hline & \multicolumn{2}{|r|}{\[
\mathrm{P} \text { trend (full) }=0.20
\]} & & P trend (full) \(=0.27\) \\
\hline \multicolumn{5}{|l|}{Atrazine} \\
\hline None & 85 & 1.0 (ref) & 85 & 1.0 (ref) \\
\hline Low & 88 & 1.1(0.8-1.5) & 79 & 1.0(0.7-1.4) \\
\hline medium & 72 & 1.2 (0.8-1.6) & 78 & 1.2(0.9-1.7) \\
\hline \multirow[t]{2}{*}{High} & \multirow[t]{2}{*}{77} & 1.0 (0.7-1.4) & 78 & 0.98(0.7-1.4) \\
\hline & & P trend (full) \(=0.72\) & & P trend (fuill) \(=0.73\) \\
\hline \multicolumn{5}{|l|}{Butylate} \\
\hline None & 107 & 1.0 (ref) & 107 & 1.0 (ref) \\
\hline Low & 22 & 0.9(0.5-1.4) & 16 & 0.8 (0.5-1.3) \\
\hline medium & 18 & 2.4(1.4-4.0) & 16 & 1.8 (1.0-3.0) \\
\hline High & 7 & 1.0(0.4-2.1) & 15 & 1.3 (0.8-2.3) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline & & P trend (full) \(=0.03\) & & Ptrend (full) \(=0.14\) \\
\hline \multicolumn{5}{|l|}{Chlorimuron-ethyl} \\
\hline None & 105 & 1.0 (ref) & 105 & 1.0 (ref) \\
\hline Low & 28 & 1.1 (0.7-1.7) & 18 & 1.0 (0.6-1.7) \\
\hline medium & 18 & 1.7(1.0-2.9) & 18 & 1.3(0.8-2.2) \\
\hline \multirow[t]{2}{*}{High} & 7 & \(0.7(0.3-1.5)\) & 17 & 1.1(0.6-1.8) \\
\hline & & P trend (full) \(=0.69\) & & \(P\) trend (full) \(=0.68\) \\
\hline \multicolumn{5}{|l|}{Cyanazine} \\
\hline None & 162 & 1.0 (ref) & 162 & 1.0 (ref) \\
\hline Low & 58 & 13(0,94-18) & 45 & 1.2(0.8-1.7) \\
\hline medium & 43 & 1.1(0.8-1.6) & 45 & 1.3(0.9-1.8) \\
\hline \multirow[t]{2}{*}{High} & 35 & 1.0(0.7-1.4) & 44 & 1.0(0.7-1.4) \\
\hline & & Ptrend (full) \(=0.65\) & & P trend (full \(=0.76\) \\
\hline \multicolumn{5}{|l|}{Dicamba} \\
\hline None & 121 & 1.0 (ref) & 121 & 1.0 (ref) \\
\hline Low & 66 & \(1.2(0.8-1.7)\) & 24 & 11(0.7-1.6) \\
\hline meduum & 52 & 1.3 (0.9-19) & 54 & 13(0.9-1.9) \\
\hline \multirow[t]{2}{*}{High} & 47 & 1.1 (0.7-1.6) & 55 & 1.1(0.8-1.6) \\
\hline & & \(P\) trend (full) \(=0.99\) & & P (rend (fill) \(=0.76\) \\
\hline \multicolumn{5}{|l|}{2,4-D} \\
\hline None & 71 & 1.0 (ref) & 71 & 1.0 (rel) \\
\hline Low & 83 & 0.9(0.6-1.3) & 82 & 0.9 (0.6-1.2) \\
\hline medium & 83 & 1,0(0.7-1.4) & 83 & 0.97 (0,7-1.4) \\
\hline \multirow[t]{2}{*}{High} & 82 & 0.8(0.6-1.2) & 81 & 0.9 (0.6-12) \\
\hline & & P trend (full) \(=0.35\) & & Ptrend (full) \(=0.46\) \\
\hline \multicolumn{5}{|l|}{EPTC} \\
\hline None & 229 & 1.0 (ref) & 229 & 1.0 (ref) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Low & 28 & 1.2(0.8-1.8) & 20 & 1.2 (0.8-2.0) \\
\hline medium & 14 & 0.9(0.7-1.9) & 20 & 1.1 (0.7-1.7) \\
\hline \multirow[t]{2}{*}{High} & 18 & 1.2(0.7-1.9) & 19 & 1.0 (0.6-1.7) \\
\hline & & Ptrend (full) \(=0.56\) & & P trend (full) \(=0.85\) \\
\hline \multicolumn{5}{|l|}{Glyphosate} \\
\hline None & 70 & 1.0 (ref) & 70 & 1.0 (ref) \\
\hline Low & 89 & 0.8(0.6-1.2) & 83 & 0.91 (0.6-1.3) \\
\hline medium & 78 & 0.8(0.6-1.2) & 84 & 0.8 (0.5-1.1) \\
\hline \multirow[t]{2}{*}{High} & 83 & 1.0(0.7-1.4) & 82 & 0.97 (0.7-1.4) \\
\hline & & P trend (full) \(=0.63\) & & P trend (full) \(=0.69\) \\
\hline \multicolumn{5}{|l|}{Herbicide Oil} \\
\hline None & 120 & 1.0 (ref) & 120 & 1.0 (ref) \\
\hline Low & 14 & 1.0(0.6-1.7) & 13 & 1.2 (0.6-2.1) \\
\hline medium & 13 & 1.7(0.93-2.9) & 12 & 1.0 (0.5-1.8) \\
\hline \multirow[t]{2}{*}{High} & 10 & 0.9((0.5-1.8) & 12 & 1.2 (0.7-2.2) \\
\hline & & P for trend (full) \(=0.88\) & & P for trend (full) \(=0.56\) \\
\hline \multicolumn{5}{|l|}{Imazethapyr} \\
\hline None & 181 & 1.0 (ref) & 181 & 1.0 (ref) \\
\hline Low & 39 & 0.8(0.5-1.2) & 36 & 0.8 (0.6-1.2) \\
\hline medium & 34 & 0.8(0.5-1.2) & 37 & 0.7 (0.5-1.1) \\
\hline \multirow[t]{2}{*}{High} & 35 & 1.0(0.7-1.5) & 35 & 0.99 (0.7-1.5) \\
\hline & & P trend (full) \(=0.90\) & & P trend (full) \(=0.92\) \\
\hline \multicolumn{5}{|l|}{Metolachlor} \\
\hline None & 145 & 1.0 (ref) & 145 & 1.0 (ref) \\
\hline Low & 50 & 1.2 (0.8-1.6) & 49 & 1.1(0.8-1.5) \\
\hline medium & 54 & 1.2 (0.8-1.7) & 49 & 1.3(0.9-1.9) \\
\hline High & 44 & 1.0 (0.7-1.4) & 48 & 0.98(0.7-1.4) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline & & P trend (full) \(=0.90\) & & P trend (full \()=0.81\) \\
\hline \multicolumn{5}{|l|}{Metribuzin} \\
\hline None & 94 & 1.0 (ret) & 94 & 1.0 (ref) \\
\hline Low & 28 & 1.0(0.6-1.5) & 21 & 1.0(0.6-1.7) \\
\hline medium & 15 & 0.8(0.4-1.3) & 23 & 0.91 (0.6-1.5) \\
\hline \multirow[t]{2}{*}{High} & 20 & 1.4(0.8-2.3) & 19 & 1.1 (0.7-1.9) \\
\hline & & P trend (full) \(=0.29\) & & Ptrend (full) \(=0.66\) \\
\hline \multicolumn{5}{|l|}{Paraquat} \\
\hline None & 127 & 1,0 (ref) & 127 & 1.0 (ref) \\
\hline Low & 10 & 1.600.8-3.0) & 10 & \(2.0(1.0-3.7)\) \\
\hline medium & 10 & \(0.9(0.5-1.7)\) & 9 & 0.6(0.3-1.3) \\
\hline \multirow[t]{2}{*}{High} & 8 & 1.2(0,6-2.5) & 9 & \(1.9(0.9-3.9)\) \\
\hline & & Ptrend (full)=0.72 & & Ptrend (fuil) \(=0.08\) \\
\hline \multicolumn{5}{|l|}{Pendimethalin} \\
\hline None & 96 & 1.0 (ref) & 96 & 1.0 (ref) \\
\hline Low & 32 & 1,0(0,6-1.5) & 25 & \(0.9(0.5-1.6)\) \\
\hline medrum & 23 & 1.0(0,6-1.8) & 26 & 0.9 (0.6-1.4) \\
\hline \multirow[t]{2}{*}{High} & 20 & 1.0(0.6-1.5) & 24 & \(1.1(0.7-1.8)\) \\
\hline & & Prend (full \(=0.72\) & & Ptrend (full) \(=0.60\) \\
\hline \multicolumn{5}{|l|}{Trilluralio} \\
\hline None & 140 & 1.0 (ref) & 140 & 1.0 (ref) \\
\hline Low & 51 & 0.9(0.7-1.3) & 50 & \(0.9(0.6-1.2)\) \\
\hline medium & 58 & 10(0.7-13) & 52 & \(10(0.7-1.4)\) \\
\hline \multirow[t]{2}{*}{High} & 43 & \(0.8(0.6-1.2)\) & 48 & \(0.8(0.6-1.1)\) \\
\hline & & P trend (full \()=0.41\) & & P trend (full) \(=0.30\) \\
\hline \multicolumn{5}{|l|}{2,4,5 T} \\
\hline None & 71 & 1.0 (ref) & 71 & 1.0 (ref) \\
\hline
\end{tabular}
\begin{tabular}{l|l|l|l|l|}
\hline Low & 30 & \(1.6(1.0-2.4)\) & 17 & \(1.6(0.9-2.6)\) \\
\hline medium & 4 & \(1.1(0.4-3.0)\) & 16 & \(1.7(1.0-2.9)\) \\
\hline High & 15 & \(1.1(0.7-2.0)\) & 16 & \(1.0(0.6-1.7)\) \\
\hline
\end{tabular}
\({ }^{\text {I }}\) Age adjusted (\(<45,45-49,50-54,55-59,60-64,65-69, \geq 70\)), smoking status(current, former, never), number of livestock (\(0,<100,100-999,>999\)), drove diesel tractor(<weekly, \(\geq\) weekly), state (NC, IA)
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Supplemental Table 1A. Chlorinated Insecticide exposure (in total days and intensity weighted days) and NHL age-adjusted relative risk(1993 through 2008).} \\
\hline & \multicolumn{2}{|l|}{Total exposure days} & \multicolumn{2}{|l|}{Intensity weight exposure days} \\
\hline & NHL cases & \(\mathrm{RR}(95 \% \mathrm{CD})^{1}\) & NHL cases & RR (\(95 \% \mathrm{CD}\)) \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Aldrin \\
(Chlorinated Insecticide)
\end{tabular}}} \\
\hline & & & & \\
\hline None & 232 & 1.0 (ref) & 232 & 1.0 (ref) \\
\hline Low 18.751 & 14 & \(0.8(0.5-1.6)\) & 12 & 0.9(0,5-1.6) \\
\hline Medium [56] & 14 & 0.8(0.5-1 4) & 12 & 0.8i0.4-1.4) \\
\hline \multirow[t]{2}{*}{High [116]} & 7 & 1.6(0.7-3.4) & 11 & \(1.0(0.6-1.9)\) \\
\hline & & P trend \(=0.70\) & & P trend \(=0.86\) \\
\hline \multicolumn{5}{|l|}{Aldrin} \\
\hline None & 232 & 1.0 (ref) & 232 & 1.0 (ref) \\
\hline Low & 14 & \(0.8(0.5-1.4)\) & 12 & \(0.9(0.5-1.6)\) \\
\hline medium & 14 & \(1.6(0,8-3,4)\) & 12 & \(1.0(0,6-1.9)\) \\
\hline \multirow[t]{3}{*}{high} & 7 & 0.9(0.7-1.2) & 11 & 0.9 (0.7-1.2) \\
\hline & & P for trend \(=0.42\) & & P for trend \(=0.95\) \\
\hline & & P for trend (full) \(=0.34\) & & \(P\) for trend (full) \(=0.60\) \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
Heptachlor \\
(Chlorinated Insecticide)
\end{tabular}} \\
\hline None & 240 & 1.0 (ref) & 240 & 10 (ref) \\
\hline Low [8.75] & 11 & 2.1 (1.3-3.6) & 10 & 2.8(1,5-5.3) \\
\hline Medium [24.5] & 15 & 0.9 (0.3-2.1) & 10 & 1.0(0.5-1.9) \\
\hline High [24.5] & 5 & 1.0)(0.7-1.3) & 10 & \(10(0.7-1.30\) \\
\hline & & \(P\) trend \(=0.26\) & & P trend \(=0.42\) \\
\hline
\end{tabular}

\begin{tabular}{|l|l|l|l|}
\hline & P for trend \(=0.33\) & & \(\underline{P \text { for trend }=0.31}\) \\
\hline & \(\underline{P \text { for trend (full) }=0.12}\) & & \(P\) for trend (full) \(=0.69\) \\
\hline
\end{tabular}
'Age adjusted \((<45,45-49,50-54,55-59,60-64,65-69, \geq 70)\)

Supplemental Table 2A. Chlorinated Insecticide exposure (in total days and intensity weighted days) and NHL fully adjusted relative risk (1993 through 2008).
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{Life-time exposure days} & \multicolumn{2}{|l|}{Intensity weight exposure days} \\
\hline & \[
\begin{array}{|l|}
\hline \text { NHL } \\
\text { cases }
\end{array}
\] & RR (95\% Cl) \({ }^{1}\) & NHL cases & RR (95\% CI) \\
\hline \multicolumn{5}{|l|}{Aldrin} \\
\hline None & 232 & 1.0 (re) & 232 & 1.0 (ref) \\
\hline Low & 14 & \(0.7(0.4-13)\) & 12 & 0.8 (0.5-15) \\
\hline medium & 14 & 0.7 (0.4-1 2) & 12 & 0.7 (0.4-1.3) \\
\hline \multirow[t]{2}{*}{high} & 7 & 1,4 (0,7) & 11 & \(0.9(0.5-1.7)\) \\
\hline & & P for trend (full) \(=0.34\) & & \(P\) for trend (fuil) \(=0.60\) \\
\hline \multicolumn{5}{|l|}{Chlordane} \\
\hline None & 223 & 1.0 (ref) & 223 & 1.0 (ref) \\
\hline Low & 23 & 1.0(0,6-1.6) & 13 & 1.2 (0.7-2.2) \\
\hline medium & 6 & \(1.8(0.8-4.2)\) & 13 & 0.9 (0.5-1.7) \\
\hline \multirow[t]{2}{*}{high} & 9 & 0.4 (0.4-1.7) & 12 & \(1.0(0.6-1.8)\) \\
\hline & & P for trend (full) \(=0.63\) & & P for (rend (full) \(=0.90\) \\
\hline \multicolumn{5}{|l|}{DDT} \\
\hline None & 194 & 1.0 (ref) & 194 & 1.0 (ref) \\
\hline Low & 20 & 0.8 (0.5-1.3) & 19 & 09 (0.6-1.5) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline medium & 18 & 1.0 (0.6-1.6) & 18 & 0.9 (0.5-1.4) \\
\hline \multirow[t]{2}{*}{high} & 17 & 1.5 (0.9-2.5) & 18 & 1.4 (0.9-2.4) \\
\hline & & P for trend (full) \(=0.48\) & & P for trend (full) \(=0.61\) \\
\hline \multicolumn{5}{|l|}{Heptachlor} \\
\hline None & 240 & 1.0 (ref) & 240 & 1.0 (ref) \\
\hline Low & 11 & 0.8 (0.4-1.5) & 11 & 0.8 (0.5-1.6) \\
\hline medium & 15 & 1.9 (1.1-3.3) & 10 & 2.4 (1.3-4.7) \\
\hline \multirow[t]{2}{*}{high} & 5 & 0.8 (0.3-1.9) & 10 & 0.9 (0.5-1.8) \\
\hline & & P for trend (full) \(=0.19\) & & P for trend (full) \(=0.16\) \\
\hline \multicolumn{5}{|l|}{Lindane} \\
\hline None & 122 & 1.0 (ref) & 122 & 1.0 (ref) \\
\hline Low & 11 & 0.9 (0.5-1.8) & 10 & 1.0(0.5-1.8) \\
\hline medium & 10 & 1.0 (0.5-2.0) & 11 & 1.2(0.6-2.3) \\
\hline \multirow[t]{2}{*}{high} & 10 & 2.4 (1.2-4.5) & 9 & 1.7(0.9-3.3) \\
\hline & & P for trend (full) \(=0.01\) & & P for trend (full) \(=0.12\) \\
\hline \multicolumn{5}{|l|}{Toxaphene} \\
\hline None & 250 & 1.0 (ref) & 250 & 1.0 (ref) \\
\hline Low & 10 & 0.91 (0.5-1.7) & 7 & 1.6 (0.7-3.3) \\
\hline medium & 5 & 3.4 (1.4-8.3) & 8 & 0.8 (0.4-1.6) \\
\hline \multirow[t]{2}{*}{high} & 6 & 0.6 (0.3-1.3) & 6 & 0.7 (0.3-1.7) \\
\hline & & P for trend (full) \(=0.12\) & & P for trend (full) \(=0.69\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline \begin{tabular}{l}
Supplemental Table 3. Herbicide exposures (Life-time days) and age-adjusted NHLL risk by cell type \\
(1993 through 2008).
\end{tabular} \\
\hline \begin{tabular}{l}
Pesticide \\
(chemical \\
class)
\end{tabular} & \begin{tabular}{l}
MCL
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{IWLD P trend \(=0.35\)} & \multicolumn{2}{|l|}{IWLD P trend \(=0.47\)} & \multicolumn{2}{|l|}{IWLD P trend \(=0.68\)} & \multicolumn{2}{|l|}{IWLD P trend \(=0.15\)} \\
\hline \begin{tabular}{l}
\[
2,4-\mathrm{D}
\] \\
(Chlorinated Phenoxy)
\end{tabular} & & & & & & & & \\
\hline None & 1.0 (ref) & 25 & 1.0 (ref) & 23 & 1.0 (ref) & 9 & 1.0 (ref) & 5 \\
\hline low & 0.90(0.5-1.5) & 31 & \(0.9(0.5-1.7)\) & 23 & 1.8(0.8-4.4) & 14 & \(19(0.6-6.2)\) & 10 \\
\hline medium & \(1.2(0.7-2.0)\) & 29 & 1.0(0,6-1.9) & 21 & 1.0(0.4-2.4) & 14 & \(1.7(0.5-5.6)\) & 9 \\
\hline \multirow[t]{3}{*}{high} & 1.3(0.7-2.2) & 29 & 0.7(0.4-1.3) & 21 & 1:4(0.6-3.4) & 12 & 2.2 (0.7-7.2) & 9 \\
\hline & \multicolumn{2}{|l|}{LD P trend \(=0.20\)} & \multicolumn{2}{|l|}{LD P trend \(=0.23\)} & \multicolumn{2}{|l|}{LD P trend \(=0.84\)} & \multicolumn{2}{|l|}{LD P trend \(=0.35\)} \\
\hline & \multicolumn{2}{|l|}{IWLD P irend \(=0.83\)} & \multicolumn{2}{|l|}{IWLD P trend \(=0.41\)} & \multicolumn{2}{|l|}{IWLD P trend \(=0.22\)} & \multicolumn{2}{|l|}{TWLD P trend \(=0.75\)} \\
\hline \multicolumn{9}{|l|}{\begin{tabular}{l}
Dicamba \\
(benzoic acid)
\end{tabular}} \\
\hline None & 1.0 (ref) & 39 & 1.0 (ref) & 40 & 1.0 (ref) & 22 & 1.0 (ref) & 6 \\
\hline Iow & \(1.5(0.9-2.6)\) & 23 & \(1.1(0.6-2.1)\) & 12 & \(1.5(0.7-3.4)\) & 9 & 3.2 (1.0-9.9) & 8 \\
\hline medium & 1.5 (0.9-3.4) & 20 & 1.1 (0.6-2.1) & 13 & \(1.8(0.90-4.0)\) & 10 & \(5.2(1.6-16.6)\) & 7 \\
\hline \multirow[t]{3}{*}{high} & \(2.0(1.1-3.4)\) & 20 & \(0.7(0.4-1.4)\) & 11 & \(0.7(0.3-1.5)\) & 8 & \(5.1(1.6-16.1)\) & 7 \\
\hline & \multicolumn{2}{|l|}{LD P trend \(=0.03\)} & \multicolumn{2}{|l|}{LD P trend \(=0.26\)} & \multicolumn{2}{|l|}{LD P trend \(=0.32\)} & \multicolumn{2}{|l|}{LD P trend \(=0.02\)} \\
\hline & \multicolumn{2}{|l|}{IWLD P trend \(=0.04\)} & \multicolumn{2}{|l|}{IWLD P trend \(=0.35\)} & \multicolumn{2}{|l|}{IWLD P trend=0.22} & \multicolumn{2}{|l|}{IWLD P trend \(=0.02\)} \\
\hline \multicolumn{9}{|l|}{\begin{tabular}{l}
EPTC \\
(thio- \\
carbamate)
\end{tabular}} \\
\hline None & 1.0 (ref) & 86 & 1.0 (ref) & 62 & 1.0 (ref) & 40 & 1.0 (ref) & 19 \\
\hline 10w & 1,2(0.6-2.3) & 9 & 1.2(0.6-2.7) & 7 & - & 3 & \(2.1(0.7-6.0)\) & 4 \\
\hline medium & \(1.2(0.6-2.5)\) & 8 & 1.7(0.7-4.2) & 5 & - & 0 & \(2.1(0.6-7.1)\) & 3 \\
\hline high & \(1.4(0.6-3.4)\) & 5 & 0.8(0.3-2.3) & 4 & - & 1 & \(4.9(1.4-16.7)\) & 3 \\
\hline & \multicolumn{2}{|l|}{LD P trend \(=0.41\)} & \multicolumn{2}{|l|}{LD P trend \(=0.98\)} & \multicolumn{2}{|l|}{LD P trend \(=0.10\)} & \multicolumn{2}{|l|}{LD P trend=0,01} \\
\hline & \multicolumn{2}{|l|}{IWLD P trend \(=0.43\)} & \multicolumn{2}{|l|}{IWLD P trend \(=0.59\)} & \multicolumn{2}{|l|}{IWLD P trend=0.14} & \multicolumn{2}{|l|}{IHLD P trend \(=0.15\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Glyphosate \\
(isopropylamine)
\end{tabular} & & & & & & & & \\
\hline None & 1.0 (ref) & 25 & 1.0 (ref) & 19 & 1.0 (ref) & 13 & 1.0 (ref) & 10 \\
\hline low & 0.6(0.4-1.1) & 32 & 1.3(0.7-2.6) & 23 & 0.7(0.3-1.7) & 15 & 0.4 (0.1-1.2) & 9 \\
\hline medium & 1.1(0.6-1.9) & 29 & 1.1(0.5-2.1) & 23 & 0.6(0.2-1.4) & 11 & 0.6 (0.2-1.6) & 7 \\
\hline high & 1.1(0.6-1.8) & 29 & 0.7(0.4-1.3) & 22 & 0.7(0.3-1.8) & 12 & 0.6 (0.2-1.8) & 7 \\
\hline & LD P trend= & & LD P trend \(=0.05\) & & LD P trend= & & LD P trend= & \\
\hline & IWLD P tren & & IWLD P trend \(=0.19\) & & IWLD P tren & & IWLD P tren & \\
\hline \begin{tabular}{l}
Herbicide Oil \\
(petroleum oil)
\end{tabular} & & & & & & & & \\
\hline None & 1.0 (ref) & 42 & 1.0 (ref) & 35 & 1.0 (ref) & 17 & 1.0 (ref) & 14 \\
\hline low & 1.8(0.8-4.3) & 7 & 1.0(0.4-2.5) & 6 & 1.4(0.3-5.9) & 2 & - & 1 \\
\hline medium & 2.6(1.0-6.7) & 5 & 2.8(0.7-11.9) & 2 & 1.1(0.1-8.4) & 1 & - & 1 \\
\hline high & 1.0(0.4-2.6) & 5 & 1.4(0.4-4.5) & 3 & 0.5(0.1-3.6) & 1 & 0 & 0 \\
\hline & LD P trend= & & LD P trend \(=0.55\) & & LD P trend & & LD P trend \(=x\) & \\
\hline & IWLD P tre & & IWLD P trend \(=0.16\) & & IWLD P tre & & IWLD P tren & \\
\hline \begin{tabular}{l}
Imazethapyr \\
(imidazolinone)
\end{tabular} & & & & & & & & \\
\hline None & 1.0 (ref) & 68 & 1.0 (ref) & 57 & 1.0 (ref) & 29 & 1.0 (ref) & 12 \\
\hline low & 1.0(0.6-1.8) & 16 & 0.7(0.3-1.4) & 10 & \(0.7(0.3-1.7)\) & 6 & 1.6 (0.6-3.8) & 8 \\
\hline medium & 0.8(0.4-1.6) & 11 & 0.6(0.3-1.4) & 6 & 1.1(0.3-3.5) & 6 & 5.2 (1.6-16.6) & 4 \\
\hline high & 1.2(0.6-2.2) & 12 & 0.5(0.2-1.2) & 3 & 1.0(0.4-2.8) & 5 & \(3.2(1.0-10.0)\) & 4 \\
\hline & \multicolumn{2}{|l|}{LD P trend \(=0.71\)} & \multicolumn{2}{|l|}{Ld P trend= 0.16} & \multicolumn{2}{|l|}{LD P trend \(=0.90\)} & \multicolumn{2}{|l|}{LD P trend \(=0.03\)} \\
\hline & \multicolumn{2}{|l|}{IWLD P trend \(=0.95\)} & \multicolumn{2}{|l|}{IWLD P trend \(=0.34\)} & \multicolumn{2}{|l|}{IWLD P trend \(=0.83\)} & \multicolumn{2}{|l|}{IWLD P trend \(=0.03\)} \\
\hline & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Metolachlor \\
(chloracetanilide)
\end{tabular} & & & & & & & & \\
\hline None & 1.0 (ref) & 52 & 1.0 (ref) & 48 & 1.0 (ref) & 20 & 1.0 (ref) & 10 \\
\hline 10w & 1,2(0.7-2.0) & 23 & 0.9(0.4-2.1) & 11 & 1.4(0.6-3.2) & 9 & \(2.7(1.0-7.0)\) & 9 \\
\hline medium & \(1.7(0.95-3.2)\) & 17 & \(1.3(0.7-2.4)\) & 12 & 1.4(0.6-3.7) & 9 & \(2.1(0.6-7.7)\) & 4 \\
\hline high & 1.3(0.8-2.3) & 18 & \(0.4(0.2-0.9)\) & 9 & \(15(0.7+3.6)\) & 8 & 2.6 (0.9-7.2) & 6 \\
\hline & \multicolumn{2}{|l|}{LD P trend \(=0.19\)} & \multicolumn{2}{|l|}{LD P trend \(=0.07\)} & \multicolumn{2}{|l|}{LD P trend \(=0.43\)} & \multicolumn{2}{|l|}{LD P trend \(=0,19\)} \\
\hline & \multicolumn{2}{|l|}{IWL, P trend \(=0,20\)} & \multicolumn{2}{|l|}{TWLD P trend \(=0.23\)} & \multicolumn{2}{|l|}{IWLD P trend \(=0.33\)} & \multicolumn{2}{|l|}{1WLD P trend \(=0.64\)} \\
\hline \multicolumn{9}{|l|}{\begin{tabular}{l}
Metribuzin \\
(Triazinone)
\end{tabular}} \\
\hline None & 1.0 (ref) & 30 & 1.0 (ref) & 35 & 1.0 (ref) & 13 & 1.0 (ref) & 9 \\
\hline low & 1.5(0.7-2.9) & 11 & 0.5(0.2-1.4) & 5 & 1.4(0.5-3.9) & 5 & \(1.0(0.2-4.9)\) & 3 \\
\hline medium & 2.1(1.1-4.0) & 13 & \(0.5(0.1-2.0)\) & 3 & 0.8(0.2-2.9) & 3 & \(2.8(0.9-8.9)\) & 5 \\
\hline high & 1.8(0.6-5.2) & 4 & \(0.4(0.1-1.6)\) & 2 & 1.3(0.2-9.8) & 1 & - & 0 \\
\hline & \multicolumn{2}{|l|}{LD P trend \(=0.06\)} & \multicolumn{2}{|l|}{LD P trend \(=0.13\)} & \multicolumn{2}{|l|}{LD P trend \(=0,88\)} & \multicolumn{2}{|l|}{LD P trend \(=0.60\)} \\
\hline & \multicolumn{2}{|l|}{IWLD P trend \(=0.03\)} & \multicolumn{2}{|l|}{IWLD P trend \(=0.21\)} & \multicolumn{2}{|l|}{TWLD P trend \(=0.10\)} & \multicolumn{2}{|l|}{IWLD P trend=0.43} \\
\hline \multicolumn{9}{|l|}{\begin{tabular}{l}
Paraquat \\
(bipyridylium)
\end{tabular}} \\
\hline None & 1.0 (ref) & 48 & 1.0 (ref) & 37 & 1.0 (ref) & 15 & 1.0 (ref) & 14 \\
\hline 10w & 1.0(0.4-2.4) & 5 & \(2.4(0.9-6.7)\) & 4 & 2.9(0.7-12.7) & 2 & - & 1 \\
\hline medium & 1.0(0.2-4.0) & 2 & 0.7-0.2-2.3) & 3 & 1.2(0.3-5.3) & 2 & - & 1 \\
\hline high & 1.0(0.3-32) & 3 & 0.8(0.2-3.4) & 2 & 1.0(0.1-7.6) & I & - & 0 \\
\hline & \multicolumn{2}{|l|}{Ld P Lrend=0.99} & \multicolumn{2}{|l|}{LD P trend \(=0.23\)} & \multicolumn{2}{|l|}{LD P trend \(=0.94\)} & \multicolumn{2}{|l|}{LD P trend \(=\mathrm{xxx}\)} \\
\hline & \multicolumn{2}{|l|}{IWLD P trend \(=0.44\)} & \multicolumn{2}{|l|}{IWLD P trend=0.78} & \multicolumn{2}{|l|}{IWLD P trend \(=0.75\)} & \multicolumn{2}{|l|}{IWLD P trend= \(\mathrm{x} \times \mathrm{x}\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Pendimethalin (dinitroaniline) & & & & & & & & \\
\hline None & 1.0 (ref) & 38 & 1.0 (ref) & 28 & 1.0 (ref) & 11 & 1.0 (ref) & 8 \\
\hline low & 1.2(0.6-2.2) & 12 & 1.0(0.4-2.2) & 9 & 1.4(0.5-4.2) & 6 & 1.8 (0.5-6.2) & 5 \\
\hline medium & 1.2(0.6-2.7) & 8 & 0.92(0.3-2.6) & 6 & 1.5(0.4-5.4) & 4 & 2.3 (0.6-8.9) & 4 \\
\hline high & 0.8(0.3-1.9) & 6 & 0.8(0.3-2.1) & 5 & 1.4(0.5-4.5) & 4 & 1.8 (0.5-6.9) & 3 \\
\hline & \multicolumn{2}{|l|}{LD P trend \(=0.66\)} & \multicolumn{2}{|l|}{LD P trend \(=0.66\)} & \multicolumn{2}{|l|}{LD P trend=0.57} & \multicolumn{2}{|l|}{LD P trend \(=0.42\)} \\
\hline & \multicolumn{2}{|l|}{IWLD P trend=0.44} & \multicolumn{2}{|l|}{IWLD P trend= 0.88} & \multicolumn{2}{|l|}{IWLD P trend=0.49} & \multicolumn{2}{|l|}{IWLD P trend \(=0.70\)} \\
\hline \multicolumn{9}{|l|}{\begin{tabular}{l}
Trifluralin \\
(dinitroaniline)
\end{tabular}} \\
\hline None & 1.0 (ref) & 45 & 1.0 (ref) & 43 & 1.0 (ref) & 25 & 1.0 (ref) & 10 \\
\hline low & 1.1(0.7-1.9) & 23 & 0.9(0.5-1.7) & 14 & 0.9(0.4-1.9) & 8 & 1.2 (0.4-3.2) & 7 \\
\hline medium & 1.6(0.9-2.6) & 21 & 0.8(0.4-1.7) & 11 & 0.8(0.4-1.8) & 8 & 2.7 (1.0-7.0) & 7 \\
\hline high & \(1.1(0.6-1.9)\) & 15 & 0.6(0.3-1.2) & 11 & 0.8(0.3-1.9) & 7 & 3.3 (1.2-9.1) & 6 \\
\hline & \multicolumn{2}{|l|}{LD P trend \(=0.08\)} & \multicolumn{2}{|l|}{LD P trend=0.13} & \multicolumn{2}{|l|}{LD P trend=0.62} & \multicolumn{2}{|l|}{LD P trend \(=0.01\)} \\
\hline & \multicolumn{2}{|l|}{IWLD P trend=0.80} & \multicolumn{2}{|l|}{IWLD P trend \(=0.11\)} & \multicolumn{2}{|l|}{IWLD P trend=0.65} & \multicolumn{2}{|l|}{IWLD P trend \(=0.08\)} \\
\hline \multicolumn{9}{|l|}{2,4,5 T} \\
\hline None & 1.0 (ref) & 37 & 1.0 (ref) & 33 & 1.0 (ref) & 14 & 1.0 (ref) & 12 \\
\hline low & 2.1(1.1-3.9) & 14 & 1.3(0.6-3.0) & 7 & 4.6(1.3-16.1) & 3 & - & 3 \\
\hline medium & 2.4(0.7-7.00 & 3 & 0.9(0.2-3.7) & 2 & 2.1(0.6-7.2) & 3 & - & 0 \\
\hline high & 1.1(0.4-2.8) & 5 & 1.3(0.4-4.3) & 3 & 1.1(0.2-4.8) & 2 & - & 1 \\
\hline & \multicolumn{2}{|l|}{LD P trend= 0.33} & \multicolumn{2}{|l|}{LD P trend=0.71} & \multicolumn{2}{|l|}{LD P trend \(=0.73\)} & \multicolumn{2}{|l|}{LD P trend \(=\mathrm{xxx}\)} \\
\hline & \multicolumn{2}{|l|}{IWLD P trend \(=0.83\)} & \multicolumn{2}{|l|}{IWLD P trend \(=0.90\)} & \multicolumn{2}{|l|}{IWLD P trend \(=0.80\)} & \multicolumn{2}{|l|}{IWLD P trend=0.97} \\
\hline
\end{tabular}
\({ }^{\text {' }}\) Age adjusted \((<45,45-49,50-54,55-59,60-64,65-69 \geq 70)\)
\({ }^{2}\) Numbers do not sum to NHL subtype totals due to missing data

Supplemental Table 4. Insecticides, fungicide and fumigant exposure (life-time days) and ageadjusted risk of NHL by cell type (1993 through 2008).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{\begin{tabular}{l}
CLL, SLL, PLL, \\
HCL
\end{tabular}} & \multicolumn{3}{|l|}{Diffuse Large B-cell} & \multicolumn{3}{|l|}{Follicular B-cell} & \multicolumn{2}{|l|}{Other B-cell types} \\
\hline & \[
\begin{aligned}
& \text { RR }(95 \% \\
& \text { CD }
\end{aligned}
\] & n & RR (95\% CI) & & n & RR (95\% C & & II & \begin{tabular}{l}
RR (95\% \\
CI)
\end{tabular} & H \\
\hline \multicolumn{11}{|l|}{Aldicarb} \\
\hline None & 1.0 [ref] & 51 & 1.0 (ref) & & 40 & 1.0 (ref) & & 19 & 1.0 (ref) & 15 \\
\hline Low & 1.9(0.3-13.4) & 1 & 1.7(0.4-7.2) & & 2 & \(6.1(0.8-45.7\) & & 1 & - & 1 \\
\hline mediam & \(095(01-6.9)\)) & 1 & 4.8(1 2-19.8) & & 2 & 1.2(0.2-9.4) & & 2 & - & 1 \\
\hline high & - & 0 & 0.5(0.1-4.1) & & I & - & & 0 & - & 0 \\
\hline & \multicolumn{2}{|l|}{LD P trend=6 15} & \multicolumn{3}{|l|}{LD P trend=0.72} & \multicolumn{3}{|l|}{LDP trend \(=0.63\)} & \multicolumn{2}{|l|}{LD P trend=xxx} \\
\hline & \multicolumn{2}{|l|}{IWTD \(P\) trendi \(=014\)} & \multicolumn{3}{|l|}{IWLD P trend \(=0.89\)} & \multicolumn{3}{|l|}{IWLD P trend=0,64} & \multicolumn{2}{|l|}{IWLD P trend - \(\mathrm{x} \times \mathrm{x}\)} \\
\hline \multicolumn{11}{|l|}{Carbaryl} \\
\hline None & 1.0 (ref) & 32 & 10 (ref) & 23 & & 1.0 (ref) & 9 & & 10 (ref) & 9 \\
\hline low & 11(0.5-2.2) & 15 & \(0.7(0.3-1.5)\) & 10 & & \[
\begin{aligned}
& 1.1(03- \\
& 4.01
\end{aligned}
\] & 5 & & xxx- & 5 \\
\hline mediunt & \(1.0(0.2-4.2)\) & 2 & \(1.3(0.6-3.0)\) & 8 & & \[
\begin{array}{|l|}
\hline 1.8(0.6- \\
59)
\end{array}
\] & 4 & & xxx- & 0 \\
\hline high & 0.4(02-0.8) & 8 & \(1.5(0.7-3.5)\) & 8 & & \[
\begin{aligned}
& 13(0.4- \\
& 4.1)
\end{aligned}
\] & 4 & & xxx- & 1 \\
\hline & \multicolumn{2}{|l|}{LD P trend=0.06?} & \multicolumn{3}{|l|}{LD P trend \(=0.19\)} & \multicolumn{3}{|l|}{LD P trend \(=0.66\)} & \multicolumn{2}{|l|}{LD P trend=xxx} \\
\hline & \multicolumn{2}{|l|}{IWLD P trend \(=0.02\)} & \multicolumn{3}{|l|}{IWLD P trend \(=0.27\)} & \multicolumn{3}{|l|}{IWLD P trenj \(=0.81\)} & \multicolumn{2}{|l|}{IWLD P trend=xxx} \\
\hline \multicolumn{11}{|l|}{Carbofuran} \\
\hline None & 1.0 (ref) & 67 & 1.0 (ref) & 58 & & 1.0 (ref) & 33 & & 1.0 (ref) & 19 \\
\hline low & 14(0.8-2.5) & 15 & 0.9(0.4-19) & 8 & & \[
\begin{aligned}
& 0.96(0.4 \\
& 25)
\end{aligned}
\] & 5 & & \(1.0(0.4-2.7)\) & 5 \\
\hline
\end{tabular}

Comment [ibF74]: It looks like in the main
tables you have restnctef presenting results when there arta't 5 cases in a cell You should use the same ruies in the supplemtnal tables.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline medium & 1.2(0.6-2.4) & 10 & 0.9(0.4-1.8) & 9 & \[
\begin{aligned}
& 1.6(0.7- \\
& 3.9)
\end{aligned}
\] & 6 & 1.4(0.2-10.7) & 1 \\
\hline high & 1.3(0.7-2.4) & 12 & 1.I(0.5-2.9) & 5 & \[
\begin{aligned}
& 0.6(0.2- \\
& 2.0)
\end{aligned}
\] & 3 & \(0.94(0.2-4.1)\) & 2 \\
\hline & \multicolumn{2}{|l|}{LD P trend \(=0.36\)} & \multicolumn{2}{|l|}{LD P trend \(=0.81\)} & \multicolumn{2}{|l|}{LD P trend \(=0.79\)} & \multicolumn{2}{|l|}{LD P trend \(=0.99\)} \\
\hline & \multicolumn{2}{|l|}{IWLD P trend \(=0.79\)} & \multicolumn{2}{|l|}{IWLD P trend= 0.71} & \multicolumn{2}{|l|}{IWLD P trend \(=0.72\)} & \multicolumn{2}{|l|}{IWLD P trend \(=x \times x\)} \\
\hline \multicolumn{9}{|l|}{Chlorpyrifos} \\
\hline None & 1.0 (ref) & 69 & 1.0 (ref) & 55 & 1.0 (ref) & 26 & 1.0 (ref) & 18 \\
\hline low & 0.9(0.5-1.7) & 15 & 1.2(0.6-2.1) & 13 & \[
\begin{aligned}
& 1.4(0.7- \\
& 3.1)
\end{aligned}
\] & 10 & 0.9(0.3-2.6) & 5 \\
\hline medium & 1.1(0.7-2.0) & 16 & 1.0(0.5-1.7) & 15 & \[
\begin{aligned}
& 1.2(0.5- \\
& 2.9)
\end{aligned}
\] & 7 & 4.2(1.7-10.6) & 6 \\
\hline high & 1.0(0.5-1.7) & 14 & 0.9(0.6-4.0) & 7 & \[
\begin{aligned}
& 1.4(0.6- \\
& 3.4)
\end{aligned}
\] & 6 & 0.8(0.3-2.3) & 4 \\
\hline & \multicolumn{2}{|l|}{LD P trend \(=0.99\)} & \multicolumn{2}{|l|}{LD P trend \(=0.66\)} & \multicolumn{2}{|l|}{LD P trend \(=0.56\)} & \multicolumn{2}{|l|}{LD P trend \(=0.97\)} \\
\hline & \multicolumn{2}{|l|}{IWLD P trend \(=0.88\)} & \multicolumn{2}{|l|}{IWLD P trend \(=0.67\)} & \multicolumn{2}{|l|}{IWLD P trend \(=0.22\)} & \multicolumn{2}{|l|}{IWLD P trend=} \\
\hline \multicolumn{9}{|l|}{Chlorthalonil} \\
\hline None & 1.0 (ref) & 107 & 1.0 (ref) & 84 & 1.0 (ref) & 45 & 1.0 (ref) & 32 \\
\hline low & 0.9(0.3-2.9) & 3 & 1.6(0.4-6.6) & 2 & \[
\begin{aligned}
& \hline 3.1(0.7- \\
& 12.6)
\end{aligned}
\] & 2 & - & 1 \\
\hline medium & 0.7(0.2-2.7) & 2 & 1.4(0.3-5.6) & 2 & \[
\begin{aligned}
& 1.2(0.3- \\
& 4.8)
\end{aligned}
\] & 2 & - & 0 \\
\hline high & 0.7(0.2-2.7) & 2 & 0.2(0.1-1.4) & 1 & \[
\begin{aligned}
& 0.6(0.1- \\
& 4.4)
\end{aligned}
\] & 1 & - & 0 \\
\hline & \multicolumn{2}{|l|}{LD P trend \(=0.46\)} & \multicolumn{2}{|l|}{LD P trend \(=0.11\)} & \multicolumn{2}{|l|}{LD P trend \(=0.61\)} & \multicolumn{2}{|l|}{LD P trend=xxx} \\
\hline & \multicolumn{2}{|l|}{IWLD P trend \(=0.96\)} & \multicolumn{2}{|l|}{IWLD P trend \(=0.17\)} & \multicolumn{2}{|l|}{IWLD P trend=0.41} & \multicolumn{2}{|l|}{IWLD P trend \(=\mathrm{xxx}\)} \\
\hline \multicolumn{9}{|l|}{Coumaphos} \\
\hline None & 1.0 (ref) & 92 & 1.0 (ref) & 72 & 1.0 (ref) & 42 & 1.0 (ref) & 22 \\
\hline low & 1.1(0.4-3.1) & 4 & 0.7(0.2-2.3) & 3 & \[
\begin{aligned}
& 1.9(0.6- \\
& 6.0)
\end{aligned}
\] & 3 & xxx- & 4 \\
\hline medium & 2.0(0.8-4.9) & 5 & 2.1(0.5-8.5) & 2 & \[
\begin{aligned}
& 0.5(0.1- \\
& 4.0)
\end{aligned}
\] & 1 & XXX- & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline high & 13(0.4-40) & 3 & 15(0) 4-5.9) & 2 & \[
\begin{aligned}
& 2.2(0.3- \\
& 16.3)
\end{aligned}
\] & I & - & 1 \\
\hline & \multicolumn{2}{|l|}{LD P trend \(=0.36\)} & \multicolumn{2}{|l|}{LD P trend= 0.47} & \multicolumn{2}{|l|}{LD P trend \(=0.43\)} & \multicolumn{2}{|l|}{LD P trend \(=x \times x\)} \\
\hline & \multicolumn{2}{|l|}{IWLD P trend \(=0.53\)} & \multicolumn{2}{|l|}{TWLD P trend \(=0.74\)} & \multicolumn{2}{|l|}{IWLD P Yrend \(=0.82\)} & \multicolumn{2}{|l|}{IWLD P trend \(=x x x\)} \\
\hline \multicolumn{9}{|l|}{Diazinon} \\
\hline None & 1.0 (ref) & 40 & 10 (ref) & 33 & 1.0 (ref) & 13 & 1.0 (ref) & 12 \\
\hline low & 1.5(0.7-3.1) & 9 & 1.2(0.4-3.1) & 5 & \[
\begin{aligned}
& 1.6(0.4- \\
& 5.5)
\end{aligned}
\] & 3 & xxx- & 2 \\
\hline medium & 1.2(0.4-3.6) & 5 & 6.9(0.3-2.8) & 4 & \[
\begin{aligned}
& 16(0.4- \\
& 7.4)
\end{aligned}
\] & 3 & xxx- & 1 \\
\hline higit & \(12(0.5-30)\) & 5 & 12(0) 4-3.8) & 3 & \[
\begin{aligned}
& 2.0(0.4 \\
& 10,0)
\end{aligned}
\] & 2 & xxx- & 0 \\
\hline & \multicolumn{2}{|l|}{LD P trend \(=0.72\)} & \multicolumn{2}{|l|}{LD P trend \(=0.84\)} & \multicolumn{2}{|l|}{LD P trend=0 35} & \multicolumn{2}{|l|}{LD P trend \(=x \mathrm{xx}\)} \\
\hline & \multicolumn{2}{|l|}{IWLD P trend \(=0.60\)} & \multicolumn{2}{|l|}{IWLD P trend \(=0.84\)} & \multicolumn{2}{|l|}{IWLD P trend \(=0.53\)} & \multicolumn{2}{|l|}{IWLD \(P\) trend \(=x \times x\)} \\
\hline \multicolumn{9}{|l|}{DDVP} \\
\hline None & 1.0 (ref) & 95 & 10 (ref) & 74 & 1.9 (ref) & 43 & 1.0 (rat) & 24 \\
\hline low & 1.3(0.5-3.5) & 4 & 4.1(1.0-16.9) & 2 & \[
\begin{aligned}
& 0.7(0,2- \\
& 3,1)
\end{aligned}
\] & 2 & xxx- & 1 \\
\hline medium & 1.4(0.6-3.4) & 5 & \(0.5(0.1-1.9)\) & 2 & \[
\begin{aligned}
& 2.2(0.3- \\
& 16 . i)
\end{aligned}
\] & 1 & xxx- & 2 \\
\hline high & 0) \(3(0.1-2.1)\) & 3 & \(0.3(0.1-2.2)\) & 1 & \[
\begin{aligned}
& 0.5(0.1- \\
& 3.9)
\end{aligned}
\] & 1 & -xxx & 0 \\
\hline & \multicolumn{2}{|l|}{LD P trend \(=0.46\)} & \multicolumn{2}{|l|}{LDP trend \(=0.25\)} & \multicolumn{2}{|l|}{I.D P trend \(=0.54\)} & \multicolumn{2}{|l|}{LD P trend=xxx} \\
\hline & \multicolumn{2}{|l|}{IW/LD P trend \(=0.85\)} & \multicolumn{2}{|l|}{IWLD P trend \(=0.54\)} & \multicolumn{2}{|l|}{IWLD P trend \(=0.53\)} & \multicolumn{2}{|l|}{IWLD P trend=xxx} \\
\hline \multicolumn{9}{|l|}{Fonofos} \\
\hline None & 1.0 (ref) & 79 & 1.0 (ref) & 61 & 1.0 (ref) & 40 & 10 (ref) & 17 \\
\hline low & 1.6(8-29) & 12 & \(1.5(0.8-31)\) & 9 & - & 5 & 22(0.8-59) & 5 \\
\hline medium & 1.2(0-5-2.9) & 5 & \(1.0(0.4-2.3)\) & 6 & - & 0 & 20006-6.7) & 3 \\
\hline high & \(0.9(0.5-2.0)\) & 8 & 1.3(0.5-3,2) & 5 & - & 2 & \(2.3(03-17.0)\) & 1 \\
\hline & \multicolumn{2}{|l|}{LD P trend \(=0.88\)} & \multicolumn{2}{|l|}{LDP trend \(=0,62\)} & \multicolumn{2}{|l|}{LD P trend \(=0.20\)} & \multicolumn{2}{|l|}{LD P trend \(=0,19\)} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Mefalaxy & & & & & & & & \\
\hline None & 10 (ref) & 46 & 10 (ret) & 34 & 1.0 (ref) & 18 & 1.0 (ref) & \\
\hline Low & 3.9(1.7-93) & 6 & 1.1(0.3-3.6) & 4 & \[
\begin{aligned}
& 0.8(0.2- \\
& 3.4)
\end{aligned}
\] & 2 & \(-\mathrm{xxx}\) & \\
\hline medium & 1.3(0.3-5.4) & 2 & 14(0.5-3.9) & 5 & \[
\begin{aligned}
& 2.100 .5- \\
& 92)
\end{aligned}
\] & 2 & -xxx & \\
\hline high & 0.4(0.1-1.2) & 3 & 0.9(0.2-4.0) & 2 & \[
\begin{aligned}
& 0.9(0.1= \\
& 6.4)
\end{aligned}
\] & 1 & -xxx & \\
\hline & \multicolumn{2}{|l|}{LD P trend \(=0.08\)} & \multicolumn{2}{|l|}{LD P trend \(=0.92\)} & \multicolumn{2}{|l|}{LD P trend \(=0.81\)} & \multicolumn{2}{|l|}{LD P trend \(=x \times x\)} \\
\hline & \multicolumn{2}{|l|}{IWLD P trend \(=0.04\)} & \multicolumn{2}{|l|}{IWLD P trend \(=0.85\)} & \multicolumn{2}{|l|}{FWLD P trend \(=0.83\)} & \multicolumn{2}{|l|}{IWLD \(P\) trend= xxx} \\
\hline \multicolumn{9}{|l|}{Methylbromide} \\
\hline None & 1.0 (ref) & 101 & 1.0 (ref) & 65 & 10 (rex) & 45 & 1.0 (ref) & 14 \\
\hline low & 0.8(0.3-2,1) & 4 & \(48(2.5-9.3)\) & 10 & \[
\begin{aligned}
& 1 \dot{4}(03- \\
& 58)
\end{aligned}
\] & 2 & \(-x \mathrm{xx}\) & 1 \\
\hline medium & \(0.7(0.3-1.6)\) & 5 & 1.3(0.6-3.7) & 6 & \[
\begin{aligned}
& 1.2(0.4 \\
& 4.0)
\end{aligned}
\] & 3 & -xxx & 1 \\
\hline high & 0.4(0.1-13) & 3 & 12(0.5-2.6) & 7 & - & 0 & -xxx & 6 \\
\hline & \multicolumn{2}{|l|}{LD P trend \(=0.09\)} & \multicolumn{2}{|l|}{LD P arend \(=071\)} & \multicolumn{2}{|l|}{LD P trend \(=008\)} & \multicolumn{2}{|l|}{LD \(P\) trend \(=x \times x\)} \\
\hline & \multicolumn{2}{|l|}{IWLD P trend \(=0.02\)} & \multicolumn{2}{|l|}{IWLD P trend \(=0.57\)} & \multicolumn{2}{|l|}{IWLD P trend=0.09} & \multicolumn{2}{|l|}{IVLD P trend=xx*} \\
\hline \multicolumn{9}{|l|}{Permethrin animals} \\
\hline None & 1.0 (ref) & 95 & 1.0 (ref) & 78 & 1.0)(ref) & 38 & 10 (ret) & 25 \\
\hline Jow & \(1.3(0.5-3.3)\) & 5 & 0.2(0.1-1.3) & 1 & \[
\begin{aligned}
& 2.8(1.1- \\
& 7.0)
\end{aligned}
\] & 5 & -xxx & 1 \\
\hline medium & 0.9(0.2-3.7) & & \(0.5(0.1-3.4)\) & 1 & \[
\begin{aligned}
& \frac{2.9(0.7-}{12.0)}
\end{aligned}
\] & 2 & -xxx & 2 \\
\hline \multirow[t]{3}{*}{high} & \(088(0.3-2.5)\) & 3 & - & 0 & \[
\begin{aligned}
& 0.8(0.2- \\
& 3.5)
\end{aligned}
\] & 2 & -xxx & 0 \\
\hline & \multicolumn{2}{|l|}{LDP \({ }^{\text {crend }}=0,75\)} & \multicolumn{2}{|l|}{LD P trend \(=0.19\)} & \multicolumn{2}{|l|}{LD P trend \(=0.93\)} & \multicolumn{2}{|l|}{LD P trend \(=0,87\)} \\
\hline & \multicolumn{2}{|l|}{IVLD P irend \(=0.70\)} & \multicolumn{2}{|l|}{IWLD P trend \(\Rightarrow\)) 29} & \multicolumn{2}{|l|}{IWLD P trend \(=0.73\)} & \multicolumn{2}{|l|}{IWLD P trend=xxx} \\
\hline Permethris crops & & & & & & & & \\
\hline
\end{tabular}

76
12/5/2016
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline None & 1.0 (ref) & 86 & 1.0 (ref) & 72 & 1.0 (ref) & 39 & 1.0 (ref) & 23 \\
\hline low & 1.9(0.6-5.4) & 6 & 0.6(0.1-2.2) & 3 & \[
\begin{aligned}
& 1.1(0.3- \\
& 3.5)
\end{aligned}
\] & 3 & \(-\mathrm{xxx}\) & 4 \\
\hline medium & 0.8(0.4-1.9) & 6 & 2.7(0.7-10.6) & 2 & \[
\begin{aligned}
& 1.5(0.4- \\
& 6.4)
\end{aligned}
\] & 2 & -xxx & 0 \\
\hline high & 1.2(0.4-4.0) & 4 & 0.4(0.1-1.8) & 2 & \[
\begin{aligned}
& \text { 0.5(0.1- } \\
& 3.9)
\end{aligned}
\] & 2 & -xxx & 0 \\
\hline & \multicolumn{2}{|l|}{LD P trend \(=0.76\)} & \multicolumn{2}{|l|}{LD P trend \(=0.28\)} & \multicolumn{2}{|l|}{LD P trend \(=0.57\)} & \multicolumn{2}{|l|}{LD P trend \(=0.37\)} \\
\hline & \multicolumn{2}{|l|}{IWLD P trend \(=0.70\)} & \multicolumn{2}{|l|}{IWLD P trend=0.33} & \multicolumn{2}{|l|}{IWLD P trend \(=0.45\)} & \multicolumn{2}{|l|}{IWLD P trend=xxx} \\
\hline \multicolumn{9}{|l|}{Phorate} \\
\hline None & 1.0 (ref) & 36 & 1.0 (ref) & 29 & 1.0 (ref) & 15 & 1.0 (ref) & 10 \\
\hline low & 1.4(0.7-3.0) & 9 & 1.0(0.4-2.6) & 5 & \[
\begin{aligned}
& 0.6(0.1- \\
& 2.7)
\end{aligned}
\] & 2 & 1.4 (0.4-4.6) & 4 \\
\hline medium & 1.4(0.6-3.2) & 6 & 2.0(0.9-4.7) & 7 & \[
\begin{aligned}
& 2.9(0.96- \\
& 8.7)
\end{aligned}
\] & 4 & 1.5 (0.2-11.6) & I \\
\hline high & 0.94(0.4-2.4) & 5 & 0.7(0.2-2.4) & 3 & - & 0 & 1.4 (0.2-11.2) & 1 \\
\hline & \multicolumn{2}{|l|}{LD P trend \(=0.90\)} & \multicolumn{2}{|l|}{LD P trend \(=0.92\)} & \multicolumn{2}{|l|}{LD P trend \(=0.82\)} & \multicolumn{2}{|l|}{LD P trend=XXX} \\
\hline & \multicolumn{2}{|l|}{IWLD P trend \(=0.53\)} & \multicolumn{2}{|l|}{IWLD P trend=0.98} & \multicolumn{2}{|l|}{IWLD P trend=0.33} & \multicolumn{2}{|l|}{IWLD P trend \(=x x x\)} \\
\hline \multicolumn{9}{|l|}{Terbufos} \\
\hline None & 1.0 (ref) & 53 & 1.0 (ref) & 47 & 1.0 (ref) & 26 & 1.0 (ref) & 10 \\
\hline low & 1.8(1.0-3.1) & 17 & 0.9(0.4-1.7) & 12 & \[
\begin{aligned}
& 2.5(1.1- \\
& 5.4)
\end{aligned}
\] & 8 & 2.3 (0.8-6.6) & 6 \\
\hline medium & 2.2(1.3-3.6) & 21 & 2.2(1.2-4.2) & 12 & \[
\begin{aligned}
& 1.8(0.7- \\
& 4.3)
\end{aligned}
\] & 7 & 3.1(1.1-9.2) & 5 \\
\hline high & 1.4(0.8-2.6) & 13 & 1.1(0.5-2.3) & 10 & \[
\begin{aligned}
& \text { 0.7(0.3- } \\
& 1.8)
\end{aligned}
\] & 6 & 4.1(1.4-11.9) & 5 \\
\hline & \multicolumn{2}{|l|}{LD P trend \(=0.16\)} & \multicolumn{2}{|l|}{LD P trend=0.34} & \multicolumn{2}{|l|}{LD P trend \(=0.54\)} & \multicolumn{2}{|l|}{LD P trend \(=0.01\)} \\
\hline & \multicolumn{2}{|l|}{IWLD P trend \(=0.14\)} & \multicolumn{2}{|l|}{IWLD P trend \(=0.40\)} & \multicolumn{2}{|l|}{IWLD P trend \(=0.18\)} & \multicolumn{2}{|l|}{IWLD P trend \(=x x x\)} \\
\hline
\end{tabular}
\({ }^{1}\) Age adjusted (\(<45,45-49,50-54,55-59,60-64,65-69, \geq 70\))

Supplemental Table 5. Estimated individual and joint effects of pesticide combinations and age-adjusted risk of NHL
\begin{tabular}{|c|c|c|}
\hline Individual and joint pesticide exposures & Exposed cases & Poisson Regression RR (95\% Cl) \({ }^{\text {I }}\) \\
\hline \multicolumn{3}{|l|}{Chlordane and DDT} \\
\hline -Neither & 174 & 10 (reference) \\
\hline -Chlordane only & 19 & 0.6 (0.4-1.0) \\
\hline -DDT only & 49 & 0.8(0.6-1.2) \\
\hline --Both & 56 & \(09(177-1.3)\) \\
\hline \multicolumn{3}{|l|}{Chlordane and Lindane} \\
\hline --Neither & 200 & 1.0 (reference) \\
\hline --Chlordane only & 47 & 0.8(0.6-1.2) \\
\hline -Lindane only & 23 & 1.0)(0.6-1.5) \\
\hline --hoth & 28 & 1.0(0.7-1.6) \\
\hline \multicolumn{3}{|l|}{Lindane and dicamba} \\
\hline --Neither & 113 & 1.0 (reierence) \\
\hline -Lindane only & 15 & 1.0 (0.6-1 7) \\
\hline --dicamóa only & 120 & 1,3(0.98-1.6) \\
\hline --both & 32 & 1.2(0.8-1.8) \\
\hline Altazine and Chlordane & . & \\
\hline --Ncither & 58 & 1.0 (reference) \\
\hline -atrazine only & 162 & 13(097-18) \\
\hline --Chlordane only & 19 & 100(0, 6-1.7) \\
\hline --Both & 57 & 1.1(0.8-1.6) \\
\hline 2,4.5 t and Lindane & & \\
\hline --Neither & 190 & 1.0 (reference) \\
\hline -2,4,5-t only & 57 & 1.1(0.9-1 6) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline --Lindane only & 27 & 1.1(0.7-1.6) \\
\hline --Both & 25 & \(1.2(0.8-1.8)\) \\
\hline \multicolumn{3}{|l|}{Atrazine and Lindane} \\
\hline --Neither & 73 & 1.0 (reference) \\
\hline --Atrazine only & 173 & 1.1 (0.9-1.5) \\
\hline -Lindane only & 4 & 0.5 (0.2-1.3) \\
\hline --both & 47 & 1.3 (0.9-1.9) \\
\hline \multicolumn{3}{|l|}{Atrazine and Dicamba} \\
\hline --Neither & 61 & 1.0 (reference) \\
\hline --Atrazine only & 72 & 1.0 (0.7-1.4) \\
\hline --Dicamba only & 17 & 1.0 (0.6-1.7) \\
\hline --both & 140 & 1.3 (0.97-1.8) \\
\hline \multicolumn{3}{|l|}{Atrazine and Carbofuran} \\
\hline --Neither & 68 & 1.0 (reference) \\
\hline --Atrazine only & 132 & 1.1 (0.9-1.5) \\
\hline --Carbofuran only & 9 & 0.9 (0.4-1.8) \\
\hline --Both & 81 & 1.2 (0.9-1.6) \\
\hline \multicolumn{3}{|l|}{Atrazine and Diazinon} \\
\hline --Neither & 58 & 1.0 (reference) \\
\hline --atrazine only & 163 & 1.2 (0.9-1.7) \\
\hline --Diazinon only & 20 & \(0.9(0.5-1.5)\) \\
\hline --Both & 59 & 1.1 (0.8-1.6) \\
\hline \multicolumn{3}{|l|}{Atrazine and alachlor} \\
\hline --Neither & 65 & 1.0 (reference) \\
\hline --atrazine only & 73 & 1.1 (0.8-1.5) \\
\hline \multicolumn{3}{|c|}{79} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline --chlordane only & 13 & 1.0 (0.5-1.7) \\
\hline --Both & 64 & 0.8 (0.6-1.1) \\
\hline 2,4-D and Lindane & & \\
\hline ---Neither & 60 & 1.0 (reference) \\
\hline ---only 2,4-D & 180 & 1.1(0.8-1.4) \\
\hline --only lindane & 3 & 0.6(0.2-1.8) \\
\hline ---both & 48 & 1.2(0.8-1.7) \\
\hline 2,4-D and atrazine & & \\
\hline ---Neither & 41 & 1.0 (reference) \\
\hline ---only 2,4-D & 49 & 1.0(0.7-1.5) \\
\hline --only atrazine & 35 & 1.2(0.8-1.9) \\
\hline ---both & 199 & 1.2(0.8-1.7) \\
\hline 2,4-D and dicamba & & \\
\hline ---Neither & 51 & 1.0 (reference) \\
\hline ---only 2,4-D & 81 & 0.9(0.6-1.3) \\
\hline ---only dicamba & 13 & 1.2(0.7-2.2) \\
\hline ---both & 144 & 1.2(0.9-1.7) \\
\hline 2,4-D and cyanazin & & \\
\hline ---Neither & 58 & 1.0 (reference) \\
\hline ---only 2,4-D & 104 & 0.9(0.6-1.2) \\
\hline --only cyanazine & 11 & 0.9(0.5-1.7) \\
\hline ---both & 130 & 1.2(0.9-1.6) \\
\hline 2,4-D and terbufos & & \\
\hline ---Neither & 48 & 1.0 (reference) \\
\hline ---only 2,4-D & 113 & 1.0(0.7-1.5) \\
\hline \multicolumn{3}{|c|}{81} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline- --only terbufos & 16 & \(1.7(0.97-3.0)\) \\
\hline- --both & 115 & \(1.5(1.0-2.0)\) \\
\hline & & \\
\hline Cyanazine and atrazine & & \\
\hline-- -Neither & 72 & \(1.0(\) reference \()\) \\
\hline-- -only cyanazine & 11 & \(1.3(0.7-2.4)\) \\
\hline- --only atrazine & 90 & \(1.0(0.8-1.4)\) \\
\hline- -both & 130 & \(1.3(0.97-1.7)\) \\
\hline
\end{tabular}
\({ }^{\text {' }}\) Age adjusted \((<45,45-49,50-54,55-59,60-64,65-69, \geq 70)\)
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Frequency of NHL in Agricultural Health Study applying New (InterLymp hierarchial classification of lymphoid neoplasms) and Older Definitions (ICD-O-3)} & \\
\hline Lymphoma category and type (ICD-0-3 codes) \({ }^{1}\) & \begin{tabular}{|l|}
\hline Number NHL \\
cases, new \\
definition \\
(InterLymph \\
hierarchical \\
clnssification)
\end{tabular} & Number cases
NHL, older
definition (ICD-
\(0-3)^{2}\) & \begin{tabular}{l}
SEER \\
Recode \({ }^{t}\)
\end{tabular} \\
\hline \multicolumn{4}{|l|}{} \\
\hline Small tymphocytic lymphoma (9670) & 27 & 27 & 08 \\
\hline Chronic lymphocy tic leukemia/small lymphocy Lic lymphoma (9823) & 74 & 0 & 08 \\
\hline Mantle -cell lymphoma (9673) & 16 & 16 & 10 \\
\hline \multicolumn{4}{|l|}{Diffuse Large B-cell Lymphoma (Mature NHL, B-celi)} \\
\hline DLBCL (9680) & 94 & 94 & 13 \\
\hline \multicolumn{4}{|l|}{Follicular Lymphoma (Mature NHL, B-cell)} \\
\hline Follicular lymphoma (9690, 9691,9695,9698) & 53 & 53 & 21 \\
\hline \multicolumn{4}{|l|}{Other B-cell Types.} \\
\hline Precursor acute lymphoblastic leukemia/iymphoma (\(9835(\mathrm{~B}), 9836\)) & 4 & 0 & 07 \\
\hline Waldenstrom macroglobulinemia (9761) & 2 & 0 & 12 \\
\hline Lymphoplasmacytic lymphoma (9671) & 2 & 2 & 11 \\
\hline Hairy-cell leukemia (9940) & 6 & 0 & 22 \\
\hline NHL , NOS (9591(B), 9675(B)) & 6 & 6 & 26 \\
\hline Burkitt lymphoma/leukemia (9687) & 1 & 1 & 17 \\
\hline Extranodal marginal zone lymphoma (MZL) Malt type \& Nodal MZL (9699) & 13 & 13 & 19,20 \\
\hline \begin{tabular}{l}
Plasma cell neoplasms \\
Plasmacytoma \((9734,9731)\)
\end{tabular} & 6 & 0 & 23 \\
\hline Multiple myeloma (9732) & 77 & 0 & 24 \\
\hline \multicolumn{4}{|l|}{Other NHL Types} \\
\hline Precursor acute lymphoblastic leukemia/lymphoma
\[
(9835(T), 9837)
\] & 1 & 0 & 27 \\
\hline Mycosis fungoides (9700) & 6 & 6 & 28 \\
\hline Peripheral T-cell lymphoma, NOS (9702) & 2 & 2 & 30 \\
\hline Anaplastıc large cell lymphoina, T or null cell (9714) & 2 & 2 & 33 \\
\hline Enteropathy type T-cell lymphoma (9717) & 1 & 1 & 35 \\
\hline Primary cutaneous anaplastic large cell lymphoma (9718) & 1 & 1 & 37 \\
\hline T-cell lymph, nasal-type/aggressive NK leukemia (9719) & 1 & 1 & 39 \\
\hline NHL, NOS (9591(T)) & 1 & 1 & 42 \\
\hline Lymphoid leukemia, NOS (9820(U)) & 1 & 0 & \\
\hline Precursor acute lymphoblastic leukemia/lymphoma (9727(U), \(9835(\mathrm{U}))\) & 3 & I & 43 \\
\hline & 6 & 6 & 45 \\
\hline Lymphoid neoplasm, NOS (9590(U)) & 10 & 10 & 47 \\
\hline Total & 416 & 243 & \\
\hline
\end{tabular}

\footnotetext{
Lineage: \(\mathrm{B}=\mathrm{B}\)-cell, \(\mathrm{T}=\mathrm{T}\)-cell, U=Unknown
hrto:/keer cancer geov/ivmphomarecode based on Morton LM ot al. Blood, 2007;110:695-708.
\({ }^{2}\) Percy C. et al. Lyon. France: IARC Press: 2001.
}

Comment [CL76]: This was priginally coded as 9713 , which is an ICD-O-2 code, which becomes 9719 in ICD-O-3 Since we are presenting ICD-Dcodes in this table, I have changed this code to \(971^{5}\)

Comment [CL.77]: Since IA and NC cancer registries are not yat uaing 2008 WHO codes, the reference for this table should be the Morton LM er ai publication noted here. This reference shoold also be noted in the text. Reference to the 2010 blood paper should not be noted in regard to the NBLL classification used in this paper.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Appendix 2. Pesticide Classification by Chemical/Functional Class} \\
\hline Chemical/functional class & Pesticide \\
\hline Acetamide herhicide & Metolachlor, alachilor \\
\hline Carbamate herbicde & Butlylate, EPTC \\
\hline Other herbicides & Chloromuron ethyi, 2,4-D, dicamba, glyphosate, herbicide oil, imazethapyr.
Paraquat, pendimethalin, \(2,4,5-\mathrm{T}, 2,4,5 \mathrm{TP}\), trifluralin \\
\hline Triazine/trazinone herbicides & Atrazine, cyanazine metribuzin \\
\hline Carbamare insecticides & Carbofuran, aldicarb, earbaryl \\
\hline Chlornated insecticides & Aldrin, chlordane, DDT, dieldrin, heptachlor, lindane, toxaphine. \\
\hline Organophosphate insecticides & ChJorpyrifos, coumaphos, diazinon, dichlorvos, fonofos, malathion, parathion, phorate, terbufos \\
\hline Other insecucides & Permethrin (crops \& anmmals), trichlorion \\
\hline Fungicides & Benornyl, ehlorihaloni, , captan, maneb/mancozeb, methylaxyl, ziram \\
\hline Fumigants & Methyl bromide, aluminum phosphate, ethylene dibromide, carbon tetra chionideloarbondisulfide \\
\hline
\end{tabular}

Supplemental table 7: Pesticide exposures (total days and intensify weight total days) age-adjusted risks of NHL incidence (1993 through 2008) [old nhl definition; \(n=243\)].

\begin{tabular}{|c|c|c|c|c|}
\hline Low & 26 & 1.2(0.8-1.8) & 22 & \(1.0(0.7-1.7)\) \\
\hline Medium & 18 & \(1.1(0.7-1.7)\) & 21 & 1.0 (0.6-1.6) \\
\hline High & 21 & \(1.1(0.7-1.7)\) & 21 & 1.3(0.8-2.0) \\
\hline & & \(P\) trend \(=0.70\) & & \(P\) trend \(=0.37\) \\
\hline \begin{tabular}{l}
Chlorpyrifos \\
(organophosphate-insecticide)
\end{tabular} & & & & \\
\hline None & 134 & I. 0 (ref) & I34 & 1.0 (ref) \\
\hline Low & 33 & 1.2(0.8-1.8) & 30 & 1,2(0.8-1.8) \\
\hline Medium & 33 & \(1.2(0.8-1.8)\) & 30 & 0.9 (0.6-1.3) \\
\hline High & 32 & 0.9(0.6-1.3) & 29 & 1.2 (0.8-1.7) \\
\hline & & P trend \(=0.50\) & & \(P\) trend \(=0.56\) \\
\hline Coumaphos & & & & \\
\hline None & 186 & 1.0(ref) & 186 & 1.0 (ref) \\
\hline Lew & 9 & 1.3(0.7-2.5) & 7 & \(1.6(0.7-3.3)\) \\
\hline Medium & 7 & 1.1(0.5-2.3) & 8 & 1.1(0.5-2.2) \\
\hline High & 5 & 1.4(0.6-3.4) & 6 & \(1.2(0.5-2.7)\) \\
\hline & & \(P\) trend \(=0.45\) & & P trend \(=0.65\) \\
\hline \begin{tabular}{l}
Diazinon \\
(organophosphosphorous-insecticide)
\end{tabular} & & & & \\
\hline None & 80 & 1.0 (ref) & 80 & 1.0 (ref) \\
\hline Low & 12 & 1.0(0.6-1.9) & 10 & 1.0(0.5-2.0) \\
\hline Medium & 8 & 0.9(0.4-1.9) & 10 & 1.1(0.6-2.1) \\
\hline High & 9 & 1.2(0.6-2.4) & 9 & 1.1(0.5-2.1) \\
\hline & & P trend \(=0.66\) & & P trend \(=0.82\) \\
\hline \multicolumn{5}{|l|}{DDVP} \\
\hline None & 190 & 1.0(ref) & 190 & 1.0 (ref) \\
\hline Low & 6 & 1.0(0.4-2.1) & 6 & 1.1 (0.5-2.5) \\
\hline Medium & 6 & 0.9(0.4-2.0) & 6 & 0.6(0.3-1.3) \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline None & 78 & 1.0 (ref) & 78 & 1.0 (ref) \\
\hline Low & 10 & 1.2(0.7-2.0) & 10 & 1.5(0.8-2.9) \\
\hline Medium & 8 & 1.3(0.7-2.4) & 9 & 1.0(0.4-2.3) \\
\hline \multirow[t]{2}{*}{High} & 10 & 1.0(0.9-1.1) & 9 & 1.1(0.6-2.1) \\
\hline & & \(P\) trend \(=0.89\) & & P trend \(=0.77\) \\
\hline \multicolumn{5}{|l|}{DDT} \\
\hline None & 71 & 1.0 (ref) & 71 & 1.0 (ref) \\
\hline Low & 14 & \(0.9(0.5-1.7)\) & 13 & 1.1(0.6-2.2) \\
\hline Medium & 12 & 1.4(0.7-2.6) & 12 & 1.0(0.5-1.8) \\
\hline \multirow[t]{2}{*}{High} & 11 & 1.1(0.6-2.2) & 12 & 1.3(0.7-2.4) \\
\hline & & P trend \(=0.61\) & & \(P\) trend \(=0.47\) \\
\hline \multicolumn{5}{|l|}{Dieldrin} \\
\hline None & 101 & 1.0 (ref) & 101 & 1.0 (ref) \\
\hline Low & 3 & 0.9(0.3-2.9) & 3 & 1.9(0.6-5.9) \\
\hline Medium & 3 & \(2.9(0.9-9.2)\) & 2 & 1.3(0.3-5.2) \\
\hline \multirow[t]{2}{*}{High} & 1 & 1.1(0.1-7.7) & 2 & 0.9(0.2-3.8) \\
\hline & & \(P\) trend \(=0.47\) & & P trend \(=0.97\) \\
\hline \multicolumn{5}{|l|}{Heptachlor} \\
\hline None & 88 & 1.0 (ref) & 88 & 1.0 (ref) \\
\hline Low & 8 & \(0.9(0.7-2.6)\) & 7 & 1.2(0.6-2.4) \\
\hline Medium & 8 & 1.4(0.7-2.6) & 8 & 1.7(0.7-3 8) \\
\hline \multirow[t]{2}{*}{High} & 5 & 1.1(0.6-2.2) & 6 & 1.4(0.6-3.3) \\
\hline & & \(P\) trend \(=0.26\) & & P trend \(=0.42\) \\
\hline \multicolumn{5}{|l|}{Lindane} \\
\hline None & 86 & 1.0 (ref) & 86 & 1.0 (ref) \\
\hline Low & 7 & 1.0(0.5-2.1) & 7 & 1.1(0.5-2.3) \\
\hline Medium & 8 & 1.2(0.6-2.4) & 7 & 1.0(0.5-2.2) \\
\hline High & 6 & \(3.7(1.6-8.4)\) & 6 & 2.8(1.2-6.4) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline & & \(P\) trend \(=0.0 .01\) & & \(P\) trend \(=0.04\) \\
\hline \multicolumn{5}{|l|}{Toxaphene} \\
\hline None & 90 & 1.0 (ref) & 90 & 1.0 (ref) \\
\hline Low & 8 & 1.2(0.6-2.5) & 6 & 1.6(0.7-3.5) \\
\hline Medium & 4 & 4.4(1.6-12.1 & 7 & 1.3(0.6-3.0) \\
\hline High & 6 & \(0.9(0.4-2.0)\) & 5 & 0.9(0.4-2.3) \\
\hline & & \(P\) trend \(=0.66\) & & \(P\) trend \(=0.83\) \\
\hline \multicolumn{5}{|c|}{Herbicides} \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{|l}
\hline Alachlor \\
(acetamide-herbicide)
\end{tabular}} \\
\hline None & 96 & 1.0 (ref) & 96 & 1.0 (ref) \\
\hline Low & 39 & 1.1(0.8-1.6) & 38 & 1.1(0.7-1.6) \\
\hline Medium & 45 & 0.9(0.6-1.2) & 40 & 0.8 (0.6-1.2) \\
\hline \multirow[t]{2}{*}{High} & 31 & 1.4(0.9-2.0) & 36 & 1.4(0.96-2.1) \\
\hline & & P trend \(=0.22\) & & \(P\) trend \(=0.09\) \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
Atrazine \\
(triazine-herbicide)
\end{tabular}} \\
\hline None & 59 & 1.0 (ref) & 59 & 1.0 (ref) \\
\hline Low & 64 & 1.1(0.8-1.6) & 58 & 1.1(0.8-1.6) \\
\hline Medium & 56 & 1.3(0.9-1.9) & 59 & 1.2(0.9-1.8) \\
\hline \multirow[t]{2}{*}{High} & 55 & 1.2(0.8-1.7) & 57 & 1.3(0.9-1.8) \\
\hline & & P trend \(=0.52\) & & P trend \(=0.27\) \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
Butylate \\
(thiocarbamate-herbicide)
\end{tabular}} \\
\hline None & 75 & 1.0 (ref) & 75 & 1.0 (ref) \\
\hline Low & 14 & 0.9 (0.5-1.6) & 12 & \(0.9(0.5-1.6)\) \\
\hline Medium & 15 & 3.4(1.9-5.9) & 11 & 2.7(1.4-5.0) \\
\hline High & 5 & 1.1(0.4-2.7) & 11 & 1.6(0.9-3.0) \\
\hline \multicolumn{5}{|c|}{89 12/5/2016} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline & & P trend \(=0.005\) & & P trend \(=0.049\) \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
Chlorimuron-ethyl \\
(benzoic acid ester-herbicide)
\end{tabular}} \\
\hline None & 75 & 1.0 (ref) & 75 & 1.0 (ref) \\
\hline low & 20 & 1.1(0.7-1.9) & 13 & 1.1(0.6-2.0) \\
\hline medium & 11 & 1.5(0.8-2.9) & 12 & 1.3(0.7-2.4)) \\
\hline \multirow[t]{2}{*}{high} & 6 & 0.7(0.3-1.7) & 12 & 1.0(0.5-1.9) \\
\hline & & P for trend \(=0.73\) & & P for trend \(=0.94\) \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
Cyanazine \\
(triazine-herbicide)
\end{tabular}} \\
\hline None & 114 & 1.0 (ref) & 114 & 1.0 (ref) \\
\hline Low & 41 & 1.4(0.95-1.9)) & 33 & 1.2(0.8-1.7) \\
\hline Medium & 32 & 1.3(0.9-1.9) & 32 & 1.3(0.9-1.9) \\
\hline \multirow[t]{2}{*}{High} & 25 & 1.1(0.7-1.6) & 32 & 1.2(0.8-1.8) \\
\hline & & P for trend \(=0.0 .89\) & & P for trend \(=0.34\) \\
\hline \multicolumn{5}{|l|}{\[
\begin{array}{|l|}
\hline \text { Dicamba } \\
\text { (benzoic-herbicide) }
\end{array}
\]} \\
\hline None & 92 & 1.0 (ref) & 92 & 1.0 (ref) \\
\hline Low & 39 & 1.5(1.0-2.2) & 38 & 1.2(0.8-1.8) \\
\hline Medium & 38 & 1.2(0.8-1.8) & 39 & 1.4(0.9-2.0) \\
\hline \multirow[t]{2}{*}{High} & 38 & 1.0(0.7-1.5) & 37 & 1.0(0.7-1.5) \\
\hline & & P trend \(=0.64\) & & P trend \(=0.95\) \\
\hline \multicolumn{5}{|l|}{\[
\begin{aligned}
& \text { 2,4-D } \\
& \text { (phenoxy-herbicide) }
\end{aligned}
\]} \\
\hline None & 53 & 1.0 (ref) & 53 & 1.0 (ref) \\
\hline Low & 60 & \(0.9(0.6-1.3)\) & 59 & 0.9(0.6-1.4) \\
\hline Medium & 59 & 1.0(0.7-1.5) & 60 & 1.0(0.7-1.4) \\
\hline High & 59 & 0.9(0.6-1.3) & 58 & 0.9(0.6-1.3) \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Metolachlor} \\
\hline None & 101 & 1.0 (ref) & 101 & 1.0(ref) \\
\hline Low & 36 & 1.2(0.8-1.8) & 35 & \(11(08-17)\) \\
\hline Medium & 36 & 1,3(0,9-1 9) & 36 & 1.4(0.9-2.0) \\
\hline \multirow[t]{2}{*}{Iligh} & 34 & 1.1(0.7-1.6) & 34 & 1.1(0.8-1.6) \\
\hline & & P trend \(=0.73\) & & P trend=0.71 \\
\hline \multicolumn{5}{|l|}{Metribuzin (triazine-herbicide)} \\
\hline None & 70 & 1.0 (ref) & 70 & 1.0 (ref) \\
\hline Low & 15 & 0.8 (0.5-1.5) & 14 & \(09(0.5-1.6)\) \\
\hline Medium & 20 & 1.2(0.7-2.0) & 14 & 1.1(0.6-20) \\
\hline \multirow[t]{2}{*}{High} & 6 & 1.1 (0.5-2.5) & 13 & 12(0.6-2.1) \\
\hline & & P trend=0.0.59 & & P trend-0.55 \\
\hline \multicolumn{5}{|l|}{Paraquat} \\
\hline None & 88 & 1.0 (ref) & 88 & 1.0(ref) \\
\hline Low & 8 & 2.1(10-4.3) & 8 & 48(23-9.9) \\
\hline Medium & 8 & 0.8(0.4-1.7) & 7 & 0.7(0.3-1.5) \\
\hline \multirow[t]{2}{*}{High} & 6 & 10(0.4-2.3) & 7 & 0.9(0.4-2.0) \\
\hline & & \(P\) trend \(=0.91\) & & P trend \(=0.73\) \\
\hline \multicolumn{5}{|l|}{Pendumethalin} \\
\hline None & 63 & 10 (ref) & 53 & 1.0 (ref) \\
\hline Low & 22 & 1.3(0.8-2.0) & 19 & 1.5(0.9-25) \\
\hline Medium & 17 & 1.3(0.8-2.3) & 19 & 1.C(0.6-1.7) \\
\hline \multirow[t]{2}{*}{High} & 17 & 1.1(0.6-1.9) & 18 & 1.3(0.8-2.2) \\
\hline & & P trend \(=0.68\) & & Ptrend \(=0.43\) \\
\hline \multicolumn{5}{|l|}{Permethran (Crop)} \\
\hline None & 179 & 1.0 (ref) & 179 & 10 (ref) \\
\hline Low & 12 & 1.0(0.6-1.9) & 9 & 1.4(0.7-2.7) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Medium & 6 & 2.2(1.0-5.1) & 9 & 1.2(0.6-2.4) \\
\hline High & 8 & \(0.6(0.3-1.2)\) & 8 & 0.6(0.3-1.2) \\
\hline & & P trend \(=0.18\) & & P trend \(=0.15\) \\
\hline \begin{tabular}{l}
Trifluralin \\
(dinitroaniline-herbicide)
\end{tabular} & & & & \\
\hline None & 104 & 1.0 (ref) & 104 & 1.0 (ref) \\
\hline Low & 39 & 1.0 (0.7-1.5) & 37 & 1.0(0.7-1.4) \\
\hline Medium & 40 & 1.0(0.7-1.4) & 36 & 1.0(0.7-1.4) \\
\hline High & 29 & 0.8(0.6-1.3) & 34 & 0.9(0.6-1.3) \\
\hline & & P trend \(=0.0 .36\) & & \(P\) trend \(=0.44\) \\
\hline \begin{tabular}{l}
\[
2,4,5 \mathrm{~T}
\] \\
(phenoxyacetic acid)
\end{tabular} & & & & \\
\hline None & 73 & 1.0 (ref) & 73 & 1.0 (ref) \\
\hline low & 22 & 1.9(1.2-3.1) & 13 & 2.0(1.1-3.6) \\
\hline medium & 3 & 1.3(0.4-4.3) & 12 & 1.8(0.99-3.4) \\
\hline high & 12 & 1.5(0.8-4.3) & 12 & 1.4(0.7-2.5) \\
\hline & & P for trend \(=0.0 .27\) & & P for trend \(=0.94\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Carbofuran & & & & & & & & \\
\hline None & 1.0(ref) & 67 & 1.0(ref) & 58 & 10(ref) & 33 & 10 (ref) & 19 \\
\hline Low & 1.4 (0.8-2.5) & 15 & \(0.9(0.4-1.9)\) & 8 & 0.96(0.4-2.5) & 5 & \(10(04-2.7)\) & 5 \\
\hline Medium & \(1.2(0.6-2.4)\) & 10 & 0.9 (0.4-1 8) & 9 & 16(07.3.9) & 6 & 1.4(0.2-10.7) & \(!\) \\
\hline High & \(1.3(0.7-2.4)\) & 12 & \(1.1(0.5-2.9)\) & 5 & 066(02-2.0) & 3 & 0.94(02-4.1) & 2 \\
\hline & \multicolumn{2}{|l|}{P trend \(=0.36\)} & \multicolumn{2}{|l|}{P trend \(=0.81\)} & \multicolumn{2}{|l|}{\(P\) trend \(=0.79\)} & \multicolumn{2}{|l|}{\(P\) trend \(=0.99\)} \\
\hline \multicolumn{9}{|l|}{Chlorpyrifos} \\
\hline None & 10 (ref) & 69 & 1.0 (ref) & 55 & 10 (ref) & 26 & \(1.0(\mathrm{ref})\) & 18 \\
\hline Low & \(0.9(0.5-1.7)\) & 15 & 12(0.6-2.1) & 13 & 14(0.7-3.1) & 10 & \(09(03-26)\) & 5 \\
\hline Medium & 1.I(0,7-2,0) & 16 & 1.0(0.5-1.7) & 15 & 1.2(0.5-2.9) & 7 & \(4.2(1.7-10.6)\) & 6 \\
\hline High & 1.0(0.5-1.7) & 14 & 0.9(0.6-4.0) & 7 & 1.4(6,6-3,4) & 6 & \(0.8(0.3-2.3)\) & 4 \\
\hline & \multicolumn{2}{|l|}{P trend \(=0.99\)} & \multicolumn{2}{|l|}{P trend \(=0.66\)} & \multicolumn{2}{|l|}{\(P\) trend \(=0.56\)} & \multicolumn{2}{|l|}{P Lrend \(=0.97\)} \\
\hline \multicolumn{9}{|l|}{Diazinon} \\
\hline None & 1.0 (ref) & 40 & 1.0 (ref) & 33 & 1.0 (ref) & 13 & 1,0(ref) & 12 \\
\hline Low & 1.5(0.7-3.1) & 9 & \(12(0.4-3.1)\) & 5 & 1.6(0.4-5.5) & 3 & xxX & 2 \\
\hline Medium & 1.2(0.4-3.6) & 5 & 09(03-2.8) & 4 & 1.60.4-7.4) & 3 & xNX- & 1 \\
\hline High & 1.2(0.5-3.0) & 5 & 1,2(0.4-3 8) & 3 & \(20.0(0.4-100)\) & 2 & xsx & 0 \\
\hline & \multicolumn{2}{|l|}{P trend \(=0.72\)} & \multicolumn{2}{|l|}{\(P\) trend \(=0.84\)} & \multicolumn{2}{|l|}{P trend \(=0\)) 35} & \multicolumn{2}{|l|}{P trend \(=\mathrm{xxx}\)} \\
\hline \multicolumn{9}{|l|}{Permethrin animals} \\
\hline None & 1.0 (ref) & 95 & 1.0 (ref) & 78 & 1.0 (ref) & 38 & 1.9 (ref) & 25 \\
\hline Low & 1.3(0.5-3.3) & 5 & Xxx & I & 2.8(1.1-7.0) & 5 & xxx- & 1 \\
\hline Medium & \(0.9(0,2-3.7)\) & 3 & xxx & 1 & 2.9(0.7-120) & 2 & -xxx & 2 \\
\hline High & 0,8(0,3-2.5) & 3 & \(-\mathrm{xXX}\) & 0 & 0.8(0.2-35) & 2 & -xxx & 0 \\
\hline & \multicolumn{2}{|l|}{Ptrend \(=0.75\)} & \multicolumn{2}{|l|}{P trend \(=\lambda \times x\)} & \multicolumn{2}{|l|}{P trend \(=0.93\)} & \multicolumn{2}{|l|}{\(P\) trend \(=x \times x\)} \\
\hline Cyanazine & & & & & & & & \\
\hline
\end{tabular}

12/5/2016
\begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline (triazine) & & & & & & & & \\
\hline None & \(1.0(\mathrm{ref})\) & 65 & \(1.0(\mathrm{ref})\) & 46 & \(1.0(\mathrm{ref})\) & 24 & \(1.0(\mathrm{ref})\) & 10 \\
\hline Low & \(1.2(0.7-2.2)\) & 15 & \(1.4(0.8-2.4)\) & 16 & \(1.9(0.9-3.8)\) & 12 & \(3.7(1.4-9.7)\) & 7 \\
\hline Medium & \(0.9(0.5-1.6)\) & 16 & \(0.8(0.4-1.8)\) & 8 & \(1.7(0.8-3.6)\) & 9 & \(2.9(1.5-7.5)\) & 8 \\
\hline High & \(1.1(0.6-2.0)\) & 14 & \(1.0(0.5-2.1)\) & 8 & \(0.8(0.3-2.2)\) & 4 & \(2.6(0.9-7.5)\) & 5 \\
\hline & P trend \(=0.93\) & & Ptrend \(=0.93\) & & P trend \(=0.87\) & \(P\) trend \(=0.17\) & \\
\hline
\end{tabular}
20. Dosemeci M,

Alavanja MCR, Mage D, Rothman N, Rowland A, Sandler D, Blair A. A quantitative approach for estimating exposure to pesticides in the Agricultural Health Study. The Annals of occupational Hygiene 2002; 46:245260.
42. Turner JJ, Morton LM, Linet MS, Clarke CA, Kadin ME, Vajdic CM, Monnereau A, Maynadie M, Chiu B C,H, Marcos-Gragera R, Constantini AS, Cerhan JR, Weisenberger DD. InterLymph hierarchical classification of lymphoid neoplasms for epidemiologic research based on the WHO classification (2008): update and future directions. Blood, 18 November 2010;116(20):e90-e98.

\section*{ORIGINAL ARTICLE}

\title{
Using multiple imputation to assign pesticide use for non-responders in the follow-up questionnaire in the Agricultural Health Study
}

\author{
Sonya L. Heltshe \({ }^{1,2}\), Jay H. Lubin \({ }^{1}\), Stella Koutros \({ }^{1}\), Joseph B. Coble \({ }^{1}\), Bu-Tian Ji' \({ }^{1}\), Michael C.R. Alavanja \({ }^{1}\), Aaron Blair \({ }^{1}\), Dale P. Sandler \({ }^{3}\), Cynthia J. Hines \({ }^{4}\), Kent W. Thomas \({ }^{5}\), Joseph Barker \({ }^{6}\), Gabriella Andreotti \({ }^{1}\), Jane A. Hoppin \({ }^{3}\) and Laura E. Beane Freeman \({ }^{1}\)
}

\begin{abstract}
The Agricultural Health Study (AHS), a large prospective cohort, was designed to elucidate associations between pesticide use and other agricultural exposures and health outcomes. The cohort includes 57,310 pesticide applicators who were enrolled between 1993 and 1997 in lowa and North Carolina. A follow-up questionnaire administered 5 years later was completed by \(36,342(63 \%)\) of the original participants. Missing pesticide use information from participants who did not complete the second questionnaire impedes both long-term pesticide exposure estimation and statistical inference of risk for health outcomes. Logistic regression and stratifed sampling were used to impute key variables related to the use of specific pesticides for 20,968 applicators who did not complete the second questionnaire. To assess the imputation procedure, a \(20 \%\) random sample of participants was withheld for comparison. The observed and imputed prevalence of any pesticide use in the holdout dataset were \(85.7 \%\) and \(85.3 \%\), respectively. The distribution of prevalence and days/year of use for specific pesticides were similar across observed and imputed in the holdout sample. When appropriately implemented, multiple imputation can reduce bias and increase precision and can be more valid than other missing data approaches.
\end{abstract}

Journal of Exposure Science and Environmental Epidemiology (2012) 22, 409-416; doi:10.1038/jes.2012.31; published online 9 May 2012
Keywords: agriculture; cohort studies; missing data; pesticides; precision

\section*{INTRODUCTION}

Missing data is a common probiem in epidemiological studies and the statistical implications of ignoring missing data are well known, including loss of statistical power and potentially biased estimates of association. The multiple imputation technique \({ }^{1}\) is an approach whereby the investigator replaces each missing value with several plausible values sampled from a probability distribution, conducts multiple analyses for replicate datasets built from each plausible value, then combines the multiple results to account for the fact that the replacement data were imputed. Multiple imputation has been widely accepted and has been used to account for missing data in large national surveys and studies, including NHANES \(1 \mathrm{H}_{1}{ }^{2}\) National Assessment of Educational Progress, \({ }^{3}\) Children's Mental Health Initiative, \({ }^{4}\) and the Framingham Heart Study; \({ }^{5}\) however, detailed accounts of the application of multiple imputation and particularly the evaluation and validation of the methods are not often published. This paper demonstrates a practical implementation of multiple imputation and is vital for investigators of the Agricultural Health Study (AHS).

The AHS is a prospective cohort study designed to evaluate the effect of agriculturally related exposures on health outcomes. The study includes 57,310 licensed pesticide applicators from lowa and North Carolina, as well as 32,345 spouses of licensed applicators,
who are not included in this imputation. In lowa, both private applicators, who are primarily farmers, and commercia! applicators were included. In North Carolina, only private applicators were enrolled. Cancer incidence and mortality are obtained by annual linkage to state cancer and mortality registries and to the National Death Index. Exposure information is collected by questionnaire. In the Phase 1 enrollment period (1993-97), applicators provided information on the use of 50 specific pesticides through completion of two self-administered questionnaires that included information on demographics, health history, and lifetime farming and pesticide use practices. \({ }^{6-8}\) The study was approved by the Institutional Review Boards of the National Institutes of Health (Bethesda, Maryland) and its contractors. From the enrollment data, two exposure metrics were developed; the first was lifetime days of pesticide use, calculated as the product of years of use of each specific pesticide and average number of days used per year. The second metric, intensity-weighted lifetime days of use, incorporated information about factors that might impact exposure, such as the use of personal protective equipment, whether the applicator mixed pesticides, performed equipment repair, and methods of application. \({ }^{9}\) Five years later in Phase 2 (1999-2005), we administered a computer-assisted telephone interview questionnaire that described pesticide use since enrollment. Specifically,

\footnotetext{
\({ }^{1}\) Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Rockville, Maryland, USA; \({ }^{2}\) Department of Pediatrics, School of Medicine, University of Washington, Seattle, Washington, USA; \({ }^{3}\) Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA; \({ }^{4}\) National Institute for Occupational Safety and Health, Cincinnati, Ohio, USA; \({ }^{5}\) National Exposure Research Laboratory, United States Environmental Protection Agency, Research Triangle Park, North Carolina, USA; \({ }^{6}\) Information Management Systems, Rockville, Maryland USA. Correspondence to: Dr. Laura E. Beane Freeman, Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, 6120 Executive Boulevard, RM 8112, MSC 7240, Rockville, Maryland, 20892, USA.
Tel.: - 3014518793 . Fax: - 3014021819
E-mail: freemala@mail.nih.gov
Received 22 September 2011; accepted 27 January 2012; published online 9 May 2012
}
participants were asked about the last year that they applied pesticides, which was denoted as the Phase 2 reference year, and the type and frequency of use of specific pesticides. A total of \(36,342(63 \%)\) of the original participants completed the questionnaire; \(8 \%\) had died between enrollment and the administration of Phase 2, 15\% refused, and \(14 \%\) could not be reached. \({ }^{10}\) For epidemiological analyses, pesticide use information collected in Phase 2 was cumulatively added to information collected in Phase 1 for both aforementioned exposure metrics, using details of specific pesticide use.
When using pesticide exposure in an analysis, there are several ways to handle missing Phase 2 information, including omission of those subjects, simple imputation (e.g., mean value substitution), or ignoring non-response in Phase 2 and implicitly assume zero pesticide exposure after Phase 1, which would be erroneous for most participants who did not complete the Phase 2 questionnaire. To correct for this potential bias, a data-driven multiple imputation for the 20,968 applicators (\(37 \%\)) who did not complete the Phase 2 questionnaire was employed. This paper describes the complex, multi-step process used to impute missing information on pesticide use from Phase 2 and an evaluation of the imputation procedure based on a holdout subset of participants with complete data (i.e., individuals who completed both Phase 1 and Phase 2). We also discuss the assumptions and advantages of multiple imputations.

\section*{MATERIALS AND METHODS}

Imputation Strategy
An overarching principal of multiple imputation is to model the response of interest, in this case the use of pesticides in the interim period between the administration of the Phases 1 and 2 questionnaires. We used covariates from participants with complete data from both phases, and then applied that model to participants missing Phase 2 to obtain estimates of the missing data. Our specific multiple imputation procedure imputes four primary AHS exposure metric variables of interest: (1) use (yes \(/ \mathrm{no}\)) of any pesticide in the interim period between Phases 1 and 2: (2) use (yes/no) of 50 specific pesticides in the interim period (see Table 1); (3) number of days of use for a specific pesticide during Phase 2; and (4) last year of application of any pesticides within the 5 -year period between Phases 1 and 2 (Phase 2 reference year). Phase 2 respondents report use of many pesticides that were not specifically on the Phase 1 questionnaires; however, we limit this imputation to the subset of 50 pesticides that were chosen as the focus in Phase 1 . The value of days of use per year on the Phase 2 questionnaire is a discrete count variable that was collapsed into categories and therefore skewed, and reference year is an ordinal variable. We use logistic regression and stratified sampling to impute the 102 variables (any use of pesticides: reference year of use, and for 50 specific pesticides: any use, and days per year) from Phase 2 that are needed to construct the pesticide-exposure metrics in the AHS.

We withheld a randomly selected subset (\(20 \%, n \div 7269\)) of participants from both Phase 1 and Phase 2 data to assess the proposed imputation method. We compared true and imputed percent usage and days/year of pesticide use within this subset using graphical displays and calculated the Brier score and Brier skill score \({ }^{11-13}\) - measures of prediction accuracy. After assessment, the complete data were used to generate the final imputed datasets; nothing was withheld. All analyses were based on AHS data releases P1REL201005.00 and P2REL201007.00 and performed using SAS Version 9.1.

\section*{Use of any Pesticide}

The first step in the imputation process was to impute the use of any pesticides since Phase 1 using subjects who completed both Phase 1 and 2 questionnaires. Both the enrollment and the take-home portions of the Phase 1 questionnaire were used in the modeling process. The use of any pesticides was a binary variable, and we therefore used logistic regression to model its probability based on Phase 1 responses. We considered all variables from

Table 1. Phase 2 (1999-2005) pesticide usage in the AHS: observed and imputed.
\begin{tabular}{|c|c|c|c|}
\hline & \multicolumn{3}{|c|}{Prevalence estimates (\%)} \\
\hline & Observed
\[
(N=36,342)
\] & \[
\begin{gathered}
\text { Imputed }^{a} \\
(N=20,968)
\end{gathered}
\] & Observed and imputed \({ }^{\sigma}\) (\(N=57,310\)) \\
\hline Personally mix/load/apply any pesticides & 85.21 & 82.82 & 84.33 \\
\hline METHYL BROMIDE & 0.51 & 0.49 & 0.51 \\
\hline ALUMINUM PHOSPHIDE & 0.79 & 0.84 & 0.81 \\
\hline CARBON TETRACHLORIDE/ & 0.00 & 0.00 & 0.00 \\
\hline \multicolumn{4}{|l|}{DISULFIDE} \\
\hline ETHYLENE-DIBROMIDE & 0.03 & 0.02 & 0.03 \\
\hline BENOMYL & 0.40 & 0.30 & 0.36 \\
\hline CHLOROTHALONIL & 2.53 & 2.75 & 2.61 \\
\hline CAPTAN & 2.37 & 1.65 & 2.11 \\
\hline MANEB/MANCOZEB & 0.18 & 0.14 & 0.16 \\
\hline METALAXYL & 2.52 & 2.60 & 2.55 \\
\hline ZIRAM & 0.10 & 0.08 & 0.10 \\
\hline ATRAZINE & 31.16 & 25.86 & 29.22 \\
\hline DICAMBA & 19.35 & 15.31 & 17.87 \\
\hline CYANAZINE & 1.64 & 1.44 & 1.57 \\
\hline CHLORIMURON-ETHYL & 3.24 & 3.19 & 3.22 \\
\hline METOLACHLOR & 14.74 & 13.03 & 14.11 \\
\hline EPTC & 0.35 & 0.30 & 0.33 \\
\hline ALACHLOR & 2.81 & 2.49 & 2.69 \\
\hline METRIBUZIN & 1.96 & 1.62 & 1.84 \\
\hline Paraquat & 2.08 & 2.19 & 2.12 \\
\hline PETROLEUM OIL/PETROL. & 0.58 & 0.41 & 0.52 \\
\hline \multicolumn{4}{|l|}{DISTILLATES} \\
\hline PENDIMETHALIN & 11.71 & 10.77 & 11.37 \\
\hline IMAZETHAPYR & 8.16 & 6.68 & 7.62 \\
\hline GLYPHOSATE & 51.82 & 43.98 & 48.95 \\
\hline SILVEX & 0.00 & 0.00 & 0.00 \\
\hline BUTYLATE & 0.09 & 0.08 & 0.09 \\
\hline trifluralin & 11.10 & 9.13 & 10.38 \\
\hline 2,4-D & 37.32 & 29.54 & 34.47 \\
\hline 2,4,5-T & 0.14 & 0.11 & 0.13 \\
\hline PERMETHRIN (for crops) & 3.17 & 2.73 & 3.01 \\
\hline PERMETHRIN (tor animats) & 3.12 & 2.29 & 2.82 \\
\hline TERBUFOS & 3.79 & 3.47 & 3.67 \\
\hline FONOFOS & 0.17 & 0.17 & 0.17 \\
\hline TRICHLORFON & 0.20 & 0.19 & 0.20 \\
\hline LINDANE & 1.31 & 0.92 & 1.17 \\
\hline CARBOFURAN & 1.35 & 1.21 & 1.30 \\
\hline CHLORPYRIFOS & 8.93 & 7.97 & 8.58 \\
\hline MALATHION & 12.78 & 10.00 & 11.76 \\
\hline parathion & 0.00 & 0.00 & 0.00 \\
\hline CARBARYL & 9.06 & 6.63 & 8.17 \\
\hline DIAZINON & 2.91 & 2.42 & 2.73 \\
\hline ALDICARB & 1.67 & 2.31 & 1.91 \\
\hline PHORATE & 0.72 & 0.82 & 0.75 \\
\hline Aldrin & 0.00 & 0.00 & 0.00 \\
\hline CHLORDANE & 0.05 & 0.00 & 0.03 \\
\hline DIELDRIN & 0.00 & 0.00 & 0.00 \\
\hline DDT & 0.00 & 0.00 & 0.00 \\
\hline HEPTACHLOR & 0.01 & 0.00 & 0.00 \\
\hline TOXAPHENE & 0.01 & 0.00 & 0.01 \\
\hline COUMAPHOS & 0.44 & 0.28 & 0.38 \\
\hline DICHLORVOS & 0.61 & 0.47 & 0.56 \\
\hline
\end{tabular}
\({ }^{\text {a }}\) Imputed prevalence is average of five imputations

Phase 1 that had the potential to be associated with either missingness or pesticide use (see Table 2 for candidate covariates). We first conducted a univariate analysis of Phase 1 variables, except the pesticide-specific variables. The variables most strongly predictive of use of any pesticide on the Phase 2 questionnaire were sex, marital status, farm ownership, farm size, days/year mixing pesticides, percent time personally mixing pesticides, percent time personally applying pesticides, and application of any pesticide in the prior year. Covariates associated with non-response to Phase 2 were continuous

Table 2. Phase 1 candidate covariates to predict use of any pesticide in Phase 2 (1999-2005) of AHS.
```

Demographics
Age (AGE AT_ENROLLMENT) ${ }^{\text {a }}$
Sex (GENDER) ${ }^{\text {a }}$
State (SITE) ${ }^{\text {a }}$
County (COUNTY)
Professional/private license type (APP_TYPE) ${ }^{\text {a }}$
Marital status / family size (AMARITAL) ${ }^{\text {a }}$
Education (ASCHOOL, collapsed) ${ }^{\text {a }}$
Farm characteristics
Owner (AOWNFARM) ${ }^{\text {a }}$
Farm size (AACRES) ${ }^{\text {a }}$
Pesticide use
Years mixing pesticides (AYRSMIX) ${ }^{\text {a }}$
Days/year mixing pesticides (AMIXDPY) ${ }^{\text {a }}$
Percent Mix (APCTMIX) ${ }^{\text {a }}$
Percent Apply (APCTAPPL) ${ }^{\text {a }}$
Application Methods (AAPMTH1 - AAPMTH21)
Do not personally apply (AAPMTH 1$)^{\text {b }}$
Hand spray gun application (AAPMTH 4) ${ }^{\text {b }}$
Backpack spray application (AAPMTH 5) ${ }^{\text {b }}$
in furrow or banded application (AAPMTH 8) ${ }^{\text {b }}$
Application Uses (APSTAP 1 - APSTAP17)
Rodent control (APSTAP2) ${ }^{\text {b }}$
Highway right-of-way weed control (APSTAP6) ${ }^{\text {b }}$
Herbicide (weed killers) applications to farm crops (APSTAP9) ${ }^{\text {b }}$
Insecticide applications to farm animals/animal shelters
(APSTAP12) ${ }^{\text {b }}$
Fungicides (chemicals for controlling disease on crops)
(APSTAP16) ${ }^{\text {b }}$
Fumigants (gases or liquids that turn into gas when released)
(APSTAP17) ${ }^{\text {b }}$
Application in past 12 mos (APSTAP 18) ${ }^{\text {a }}$
Personal Protective Equipment (APROTEQ1- APROTEQ8)
Chemical resistant gloves (APROTEQ7) ${ }^{\text {b }}$
Crops and Amimals (ACRPAN1-ACRPAN8)
No Crops or animals (ACRPAN2) ${ }^{\text {b }}$
Medical conditions
Diagnosis of various conditions and diseases (A_MEDCOND5 -
A_MEDCOND56)
Ever diagnosed with other chronic lung disease
(A_MEDCOND10) ${ }^{\text {b }}$
Ever diagnosed with Diabetes (A MEDCOND16E) ${ }^{\text {b }}$

```
\({ }^{a}\) Covariates forced into the model.
\({ }^{\text {b }}\) Covariates selected for the final model in step-wise selection process.
age, education, state, applicator type, and years mixing chemicals. \({ }^{10}\) These variables and covariates were forced into the logistic regression model. Other potential covariates from Phase 1 (Table 2) were included or excluded based on the SAS step-wise regression procedure, with entrance and removal criteria of \(P \leq 0.001\) and \(P>0.01\), respectively. Strict criteria were set because the dataset of individuals with complete data was so large. See Table 2 for final covariates in the model.
We used the aforementioned logistic model with covariates based on Phase 1 data to compute a predicted probability of the use of any pesticides for each individual who did not complete Phase \(2 \hat{p}_{\text {, }}\), \(i=1, \ldots, 20,968\)). For the \(i^{\text {th }}\) individual, we imputed use (yes/no) of any pesticides as follows. With \(p_{i}\) between 0 and 1 , we generated five uniform random variables between 0 and \(1, z_{i j}, j=1, \ldots, 5\). If \(z_{i j} \leq \hat{p}_{i}\), then we assigned \(U_{i j}=1\), otherwise we assigned \(U_{i j}=0\), where \(U_{i 1}, \ldots, U_{i 5}\) were the imputed values for use of any pesticides in Phase 2.

For each individual and each imputation with an imputed "no" \(\left(U_{i j}=0\right)\), the 50 pesticide-specific use variables (yes \(/ \mathrm{no}\)) and the 50 chemicalspecific days/year variables in Phase 2 (Table 1) were set to zero. For each individual and each imputation with an imputed "yes" to use of any pesticide (\(U_{\mathrm{ij}}=1\)), the 50 missing chemical specific use variables and days/ year were then imputed.

Multiple imputation in the Agricultural Health Study Heltshe et al

Use of Specific Pesticides
Using data from participants who completed both Phase 1 and 2 questionnaires, we applied the same process to generate a model for the probability of use of a specific pesticide in the interim period between Phases 1 and 2. However, we forced pesticide-specific covariates from Phase 1 (use of the specific chemical in the past year, ever mixed or applied the chemical in the past, number of years using the chemical, and days per year using the chemical) into the logistic model in addition to the 13 covariates for the model of use of any pesticide (see Table 2). The stepwise procedure in SAS identified other meaningful covariates for each pesticide, based on the entrance and removal criteria and likelihood ratio statistics. For each participant missing Phase 2 information for whom we imputed a "yes" to use of any pesticide, \(U_{i \mathrm{i}}=1\), we generated a predicted probability for the use of a specific pesticide and randomly imputed five binary responses based on a uniform random number generator. Five responses (yes/no) were imputed for each of the 50 specific pesticides, \(V_{i j k}\) with \(k=1, \ldots, 50\). For those with Phase 1 and 2 data, it was not uncommon for participants to indicate applying or mixing of pesticides in Phase 2, while providing no affirmative response for any of 50 specific pesticides considered. This could suggest use of other pesticides or the inability to recall a specific pesticide. For that reason, we did not require that at least 1 specific pesticide be imputed as "yes", nor did we reverse the order by first imputing the 50 pesticides and then infer overall usage.

\section*{Days Per Year Use of Specific Pesticides}

For each individual with an imputed "yes" to use of a specific pesticide, \(V_{i j k}=1\), we next developed a procedure to impute days/year of use. Because the Phase 2 question for days/year had an ordinal response and because data were skewed and sparse, we implemented a stratified sampling scheme using participants who completed both Phase 1 and 2 and who reported the number of days/year they used the pesticide of interest. For those missing Phase 2 data and imputed to have used a specific pesticide, we randomly selected days/year of use from the empirical frequency distribution derived from those with Phase 1 and 2 data who used the pesticide and who were in an appropriate stratum. The first step in this process was to identify an informative stratification. Table 1 indicates that the prevalence of the use of specific pesticides in Phase 2 ranged from \(0 \%\) (pesticide use was discontinued) to \(>50 \%\). For infrequently used pesticides, which were the majority, we could use only a limited number of Phase 1 stratification variables. By contrast, for widely used pesticides (e.g., 2,4dichlorophenoxyacetic acid (\(2,4-\mathrm{D}\)), we could potentially use many stratification variables. However, to maintain consistency of methods across variables, we selected only variables most strongly associated with Phase 2 days/year use as stratification factors. After considering several possible stratification variables (age, state, applicator type, Phase 1 days use, and others; data not shown), we based the imputation of Phase 2 days/year of use of a specific pesticide on a stratification by Phase 1 days/year of use of a specific pesticide. Thus, for an applicator missing Phase 2 days/year of use of a specific pesticide, we identified the Phase 1 days/year of use category, then randomly sampled (with replacement) a value from the frequency distribution for Phase 2 days/year of use that corresponded to the same Phase 1 days/year of use category.

Finally, for those missing Phase 2 data, we also needed to impute the most recent year of farming activity. This year (see questions 10 and 13 of the private and commercial Phase 2 Questionnaires, respectively at www.aghealth.org/questionnaires.html) was critical for calculating cumulative exposure to pesticides. Because reference year is an integer with a 12-year range (1993-2004), we again employed stratified sampling with replacement. The primary stratification variable was the use of any pesticide in Phase 2. If the imputed value for use of any pesticide was "no", then we defined 10 strata (applicator type [commercial or private] by enrollment year [1993-1997]). If the imputed value for use of any pesticide was "yes", then we defined 50 strata (applicator type by enrollment year by age at AHS enrollment in quintiles). For each stratum, we computed the frequency distribution of the most recent year of farming activity from those with complete Phase 1 and 2 data. We constrained the imputed reference year to occur after the enroliment year and, when an individual
was known to have died, before the year of death. If the enrollment year was equal to or within 1 year of death, we set the reference year to the enrollment year.

\section*{RESULTS}

Imputation Assessment
We assessed the imputation method by holding out a randomly selected subset (\(20 \%, n=7269\)) of the observed complete data and imputing multiple values for Phase 2 as though the data were missing. The "true" use of any pesticides in this subset was \(85.68 \%\) with standard error \(0.41 \%\). The average of the five imputations indicated a prevalence of \(85.25 \%\) with imputation adjusted standard error of \(0.59 \%\). This indicates that the logistic regression model underpinning the multiple imputation procedure did indeed preserve essential features of the data. Recall, the modeling process we used first generated a probability of use (the use of any pesticide, or the use of a specific pesticide) for each individual, \(\hat{p}_{i}\). To assess the accuracy of the implemented prediction model, and how it compares with a "naïve" reference prediction (e.g., change prediction based on observed prevalence), we calculated the Brier \({ }^{11}\) and Brier skill scores, \({ }^{12}\) commonly utilized in atmospheric probability forecasting and risk prediction modeling. In the holdout set, let \(X_{i}\) be the observed use of any pesticides, \(X_{i}=0\) or \(1, i=1, \ldots, n\), for the \(i^{\text {th }}\) individual in the holdout data. Let \(\hat{p}_{i}\) be the predicted probability of use from the logistic model. The Brier score estimator is \(B=1 / n \times \sum_{i=1}^{n}\left(X_{i}-\hat{p}_{i}\right)^{2}\) and is equivalent to the mean squared error of prediction; the smaller the value the better the prediction. To assess the utility of any prediction model, it can be compared to a naïve prediction using the skill score, \(S S=1-B / B_{R f}\), where \(B_{R f}\) is the Brier score estimator using a reference, or naïve forecast, \(p^{\prime}\) in place of the model \(\hat{p}_{i}\) prediction. In this evaluation, we use the observed Phase 2 prevalence of pesticide use in the complete data (\(N=36,342\)) less the holdout observations (\(n=7269\)) as the reference prediction, \(p^{\prime}=1 / n^{\prime} \times \sum_{n^{\prime}}^{n^{\prime}}, X_{i}\), where \(n^{\prime}=N-n\). For use of any chemicals, \(B=0.1092, B_{R f}=0.1227\), for a \(S S=0.1103\), an \(11 \%\) improvement in accuracy using the predictive model over simple prediction based on observed Phase 2 usage. Parker and Davis \({ }^{13}\) proposed a similar metric to the skill score, which was the sum of sensitivity and specificity, whereby the sum must be \(>1\) for the observed accuracy to be larger than chance. Figure 1 is a plot of Brier skill score versus the sum of sensitivity and specificity

Figure 1. Scatterplot of Brier skill score versus sensitivity + specificity for commonly used pesticides (\(P>0.05 \%\)).
(pooling all five imputations for calculations) for overall pesticide use and commonly used pesticides (percent usage \(>0.05 \%\)). The two metrics are highly correlated (\(r=0.925\)) and essentially measure the same thing, proportional improvement of prediction model over naïve/chance prediction.

\section*{Use of Specific Pesticides}

Table 3 gives the observed ("true") and imputed prevalence for the 38 pesticides where observed prevalence \(>0.05 \%\). The mean and standard error of a variable that includes multiply imputed values is well known. Therefore, for any chemical, let \(X_{i}\) be the observed use of the pesticide of interest, \(X_{i}=0\) or \(1, i=1, \ldots, n\) for the \(i^{\text {th }}\) individual in the holdout data. The estimated mean and variance of the percent usage (prevalence) in the holdout data is: \(p=(1 / n) \times \sum_{i=1}^{n} X_{i}\) and \(s^{2}=p \times(1-p) / n\), respectively. It follows that the usual standard error of the estimated prevalence \(p\), is \(s\). The prevalence from one of the \(m\) multiply imputed datasets is \(\bar{p}_{\mathrm{j}}=\) \((1 / n) \times \sum_{i=1}^{n} \tilde{X}_{i j}\) where \(\tilde{X}_{\mathrm{ij}}=0\) or 1 , the imputed use of the pesticide of interest for individual \(i\). Then, the overall prevalence estimate and its variance from the \(m\) (in this case 5) imputed datasets are \(\tilde{p}=(1 / m) \times \sum_{j=1}^{m} \tilde{p}_{j}\) and \(\tilde{s}^{2}=1^{m}\left(\tilde{p}_{j}-\tilde{p}\right)^{2}\), where \(\tilde{s}_{j}^{2}=\) \((1 / n) \times \tilde{p}_{j} \times\left(1-\tilde{p}_{\mathrm{j}}\right)\) and sis the standard error of \(\tilde{p}\).
As expected, the multiple imputation estimates of the standard error are slightly higher than the "true" standard error because the variability of the random imputations are included in the estimates, and pesticides with the highest prevalence (e.g., atrazine, \(31.47 \%\)) have the largest standard errors while rarely used pesticides (e.g., methyl bromide, \(0.41 \%\)) have little variability. Imputed prevalence is generally lower than observed both in Table 1 (across Phase 2 responders and non-responders) and Table 3 (the validation set). The Brier skill scores in Table 3 show a range of improvement from none to \(25 \%\) over the naive, or reference prediction model. Models for aldicarb and chlorothalonil appear to perform the best (\(S S\) of 0.256 and 0.214 , respertively). while the majority of pesticides fall between \(S S=0.05\) and 0.20 , including 2,4-D and atrazine with an 18\% improvement in accuracy over naïve predictions. Some of the least prevalent pesticides did not benefit much from the implemented modeling scheme, and some of their skill scores were slightly negative (e.g., EPTC, phorate, benomyl, fonofos, and trichlorphon). The variability corresponding to rare event predictions can be large relative to the naïve estimates, and can yield negative skill scores. Skill scores close to zero (negative or positive) indicate that the predictive model was of limited additional value for these pesticides.

Figure 2 is a plot of the relative errors of the imputed prevalence estimate, \(\tilde{p}\) to their respective true estimate, \(p\), i.e., \(\varepsilon=(\tilde{p}-p) / p\), for the 38 pesticides with \(>0.05 \%\) use. Relative errors, \(\varepsilon\), are centered about zero, and mostly fall within \(\pm 0.20\). For only a few of the rare pesticides (\(<1.0 \%\) usage) used in Phase 2 does the imputed prevalence differ from the "true" prevalence by more than \(20 \%\) (e.g., petroleum oil/petroleum distillates, methyl bromide, maneb/mancozeb, trichlorfon, metalaxyl, dichlorvos, coumaphos, and phorate).

\section*{Days Per Year Use of Specific Pesticides}

We imputed days per year for a specific pesticide by sampling with replacement from the observed Phase 2 data stratified by Phase 1 days use of that pesticide. Figure 3 shows the box plots of the observed data from the validation dataset alongside the imputed data for days/year for three pesticides. Alachlor, diazinon, and 2,4-D were chosen for illustration because they were widely used and represent common usage patterns in the AHS cohort. The distributions of the imputed values for the three pesticides were very similar to those of the "true" data. The means (solid
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Multiple imputation in the Agricultural Health Study Heltshe et al} \\
\hline \multicolumn{8}{|l|}{Table 3. Prevalence, standard error and Brier scores of pesticide use in holdout dataset (\(N=7269\)) of the AHS.} \\
\hline \multirow{2}{*}{Pesticide name} & \multicolumn{2}{|r|}{Observed} & \multicolumn{2}{|r|}{Imputed \({ }^{\text {a }}\)} & \multirow{2}{*}{Reference Brier} & \multirow{2}{*}{Brier score} & \multirow{2}{*}{Brier skill score} \\
\hline & Prevalence (\%) & Standard error & Prevalence (\%) & Standard error & & & \\
\hline METHYL BROMIDE & 0.43 & 0.08 & 0.56 & 0.12 & 0.004 & 0.004 & --0.001 \\
\hline ALUMINUM PHOSPHIDE & 0.59 & 0.09 & 0.71 & 0.13 & 0.006 & 0.005 & 0.149 \\
\hline BENOMYL & 0.37 & 0.07 & 0.29 & 0.08 & 0.004 & 0.004 & -0.007 \\
\hline CHLOROTHALONIL & 2.39 & 0.18 & 2.33 & 0.26 & 0.023 & 0.018 & 0.214 \\
\hline CAPTAN & 2.12 & 0.17 & 2.11 & 0.28 & 0.021 & 0.020 & 0.053 \\
\hline MANEB/MANCOZEB & 0.15 & 0.05 & 0.18 & 0.06 & 0.002 & 0.002 & -0.020 \\
\hline METALAXYL & 2.66 & 0.19 & 2.09 & 0.23 & 0.026 & 0.023 & 0.124 \\
\hline ZIRAM & 0.12 & 0.04 & 0.11 & 0.05 & 0.001 & 0.001 & 0.090 \\
\hline ATRAZINE & 31.85 & 0.55 & 27.64 & 0.69 & 0.217 & 0.177 & 0.185 \\
\hline DICAMBA & 19.16 & 0.46 & 17.39 & 0.48 & 0.155 & 0.128 & 0.177 \\
\hline CYANAZINE & 1.75 & 0.15 & 1.50 & 0.21 & 0.017 & 0.017 & 0.029 \\
\hline CHLORIMURON-ETHYL & 2.93 & 0.20 & 2.93 & 0.36 & 0.028 & 0.027 & 0.050 \\
\hline METOLACHLOR & 14.87 & 0.42 & 13.23 & 0.55 & 0.127 & 0.113 & 0.109 \\
\hline EPTC & 0.30 & 0.06 & 0.30 & 0.09 & 0.003 & 0.003 & -0.003 \\
\hline ALACHLOR & 2.82 & 0.19 & 2.43 & 0.32 & 0.027 & 0.026 & 0.052 \\
\hline METRIBUZIN & 2.19 & 0.17 & 1.75 & 0.22 & 0.021 & 0.021 & 0.022 \\
\hline PARAQUAT & 1.91 & 0.16 & 1.88 & 0.22 & 0.019 & 0.017 & 0.086 \\
\hline PETRO. OIL/PETRO. DISTILLATES & 0.47 & 0.08 & 0.60 & 0.13 & 0.005 & 0.005 & --0.006 \\
\hline PENDIMETHALIN & 11.24 & 0.37 & 10.36 & 0.48 & 0.100 & 0.093 & 0.068 \\
\hline IMAZETHAPYR & 7.76 & 0.31 & 7.36 & 0.39 & 0.072 & 0.067 & 0.070 \\
\hline Glyphosate & 52.73 & 0.59 & 45.42 & 0.83 & 0.249 & 0.225 & 0.097 \\
\hline TRIFLURALIN & 10.58 & 0.36 & 10.21 & 0.58 & 0.095 & 0.080 & 0.157 \\
\hline 2,4-D & 36.92 & 0.57 & 33.30 & 0.86 & 0.233 & 0.190 & 0.184 \\
\hline PERMETHRIN (for crops) & 3.36 & 0.21 & 2.71 & 0.24 & 0.032 & 0.031 & 0.036 \\
\hline PERMETHRIN (for animals) & 3.05 & 0.20 & 2.83 & 0.33 & 0.030 & 0.028 & 0.061 \\
\hline TERBUFOS & 3.80 & 0.22 & 3.38 & 0.33 & 0.037 & 0.033 & 0.095 \\
\hline FONOFOS & 0.17 & 0.05 & 0.15 & 0.07 & 0.002 & 0.002 & --0.009 \\
\hline TRICHLORFON & 0.17 & 0.05 & 0.13 & 0.05 & 0.002 & 0.002 & -0.028 \\
\hline LINDANE & 1.39 & 0.14 & 1.07 & 0.18 & 0.014 & 0.013 & 0.046 \\
\hline CARBOFURAN & 1.36 & 0.14 & 1.14 & 0.24 & 0.013 & 0.013 & 0.014 \\
\hline CHLORPYRIFOS & 8.87 & 0.33 & 7.90 & 0.46 & 0.081 & 0.074 & 0.081 \\
\hline MALATHION & 12.88 & 0.39 & 11.50 & 0.49 & 0.112 & 0.103 & 0.083 \\
\hline CARBARYL & 9.34 & 0.34 & 7.69 & 0.65 & 0.085 & 0.079 & 0.072 \\
\hline DIAZINON & 2.94 & 0.20 & 2.71 & 0.28 & 0.029 & 0.028 & 0.027 \\
\hline ALDICARB & 1.66 & 0.15 & 1.51 & 0.18 & 0.016 & 0.012 & 0.250 \\
\hline PHORATE & 0.59 & 0.09 & 0.69 & 0.17 & 0.006 & 0.006 & 0.024 \\
\hline COUMAPHOS & 0.56 & 0.09 & 0.33 & 0.10 & 0.006 & 0.005 & 0.056 \\
\hline DICHLORVOS & 0.65 & 0.09 & 0.48 & 0.12 & 0.006 & 0.006 & 0.010 \\
\hline
\end{tabular}
\({ }^{a}\) Imputed prevalence is average of five imputations and standard error is calculated via equation in text.
squares) were more sensitive to outliers for the less frequently used pesticides since fewer than 200 individuals reported use of those pesticides in the \(20 \%\) holdout set. Comparing the observed reference year with its imputed value, Figure 4 indicates that for \(90 \%\) of participants with reference year 1998 through 2004, the imputed years were centered around the expected year. When the "true" reference year is 1994-1997 the sampled imputation values were higher than expected and indicated bimodality. This was due to the ordinal nature of reference year and the scheduled pattern of interviews. The first interviews were conducted between 1993 and 1997 (Phase 1), while the follow-up Phase 2 interviews occurred between 1999 and 2005. When an individual participated in Phase 2, the most likely responses for reference year were 1) the year prior to the Phase 2 interview, 2) 5 years prior (year of Phase 1), or 3) the last year of farming prior to enrollment. This bimodal behavior seen in approximately \(10 \%\) of the holdout dataset tended to occur in individuals who reported "no farming" or "no pesticide application" in Phase 2, and therefore a reference year for pesticide use in Phase 2 was irrelevant.

Post-assessment of the holdout dataset, all of the observed data were used to generate the complete predictive model and populate the sampling data. The final multiple imputations were generated and prevalence estimates for the 50 pesticides in the imputed subset and overall are shown in Table 1.

\section*{DISCUSSION}

The lifetime exposure of an individual to a specific pesticide or set of pesticides is the primary quantity of interest in the AHS for studying the association between exposure and disease outcomes. A substantial number of AHS participants were nonresponders to a Phase 2 questionnaire used to update lifetime pesticide use following enrollment. In analyses, imputation is generally preferable to omitting individuals who did not complete Phase 2 (in our case, \(37 \%\) of enrolled individuals) due to possible selection bias in the subset with complete data and decreased precision of parameter estimates using only a subset of the data. This paper illustrates the use of a multi-step, conditional imputation procedure combining parametric modeling and sampling from an empirical distribution for several variable types. Using multiple imputation, the variables necessary to calculate exposure for those missing Phase 2 data are replaced by five imputed values. For validation purposes, we estimated prevalence of pesticide use and showed the form of the variance estimate for prevalence resulting from multiple imputation. Prevalence estimates for the Phase 2 non-responders were slightly lower than in the responders and this is likely due to the slightly different makeup of individuals in each. Logistic regression is known to perform sub-optimally when modeling rare events, \({ }^{14}\) which may
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{PESTICIDE \(p(\% ;)\)}} & & & & \multicolumn{2}{|c|}{\multirow[b]{2}{*}{\(\bigcirc\)}} \\
\hline & & & & & & \\
\hline PEtroleum olldistillates & 0.47 & & & & \multicolumn{2}{|c|}{\(\bigcirc\)} \\
\hline MANEBMANCOZEB & 0.15 & & & & \multicolumn{2}{|l|}{0} \\
\hline ALUMINUM PHOSPHIDE & 0.59 & & & & \multicolumn{2}{|l|}{\(\bigcirc\)} \\
\hline Phorate & 0.59 & & & & \multicolumn{2}{|l|}{0} \\
\hline EPTC & 0.31 & & & 0 & & \\
\hline CHLORIMURON-ETHYL & 2.93 & & & \(\bigcirc\) & & \\
\hline CAPTAN & 2.12 & & & \(\bigcirc\) & & \\
\hline paraquat & 1.91 & & & \(\bigcirc\) & & \\
\hline CHLOROTHALONIL & 2.39 & & & 0 & & \\
\hline TRIFLURALIN & 10.58 & & & 0 & & \\
\hline IMAZETHAPYR & 7.76 & & & 0 & & \\
\hline ALDICARB & 1.66 & & & \(\bigcirc\) & & \\
\hline PERMETHRIN (For Animals) & 3.05 & & & \(\bigcirc\) & & \\
\hline DIAZINON & 2.94 & & & \(\bigcirc\) & & \\
\hline PENDIMETHALIN & 11.24 & & & \(\bigcirc\) & & \\
\hline ZIRAM & 0.12 & & & 0 & & \\
\hline DICAmBA & 19.16 & & & 0 & & \\
\hline 2.4-D & 36.92 & & & \(\bigcirc\) & & \\
\hline MALATHION & 12.88 & & & 0 & & \\
\hline CHLORPYRIFOS & 8.87 & & & \(\bigcirc\) & & \\
\hline METOLACHLOR & 14.87 & & & 0 & & \\
\hline terbufos & 3.81 & & & 0 & & \\
\hline ATRAZINE & 31.85 & & & \(\bigcirc\) & & \\
\hline ALACHLOR & 2.82 & & & 0 & & \\
\hline GLYPHOSATE & 52.73 & & & - & & \\
\hline CYANAZINE & 1.75 & & &) & & \\
\hline FONOFOS & 0.17 & & & & & \\
\hline CARBOFURAN & 1.36 & & 0 & & & \\
\hline CAREARYL & 934 & & 0 & & & \\
\hline PERMETHRIN (For Crops) & 3.36 & & O & & & \\
\hline METRIBUZIN & 2.19 & & 0 & & & \\
\hline BENOMYL & 0.37 & & \(\bigcirc\) & & & \\
\hline METALAXYL & 2.66 & & \(\bigcirc\) & & & \\
\hline LINDANE & 1.39 & & \(\bigcirc\) & & & \\
\hline TRICHLORFON & 0.17 & & \(\bigcirc\) & & & \\
\hline DICHLORVOS & 0.65 & & \(\bigcirc\) & & & \\
\hline COLMAPHOS & 0.56 & \(\bigcirc\) & & & & \\
\hline & & 1 & 1 & T & 1 & ! \\
\hline & & 0.4 & 02 & 0.0 & 0.2 & 0.4 \\
\hline & & & & nutcing & & \\
\hline
\end{tabular}

Figure 2. Relative errors of imputed prevalence or percent usage (p) for commonly used pesticides (\(P>0.05 \%\)).
explain the low imputed prevalence estimates in the validation set; the underestimation makes our imputation slightly conservative, favoring specificity over sensitivity.

Rubin's method of scalar estimands in multiple imputation procedures \({ }^{15}\) is generalizable and can be used to calculate standard errors and confidence intervals for any estimator including risk ratios, absolute risk, and hazard ratios. We applied fractional hot deck imputation \({ }^{15}\) to impute days/year use of a pesticide, for which other variance estimators have been proposed; \({ }^{16-19}\) however, their utility has not been explored here.

Multiple imputation, in contrast to single imputation, accounts for the uncertainty of predicting missing data with limited loss of efficiency (nearly \(94 \%\) efficient when imputed five times with \(35 \%\) missing data, as opposed to \(74 \%\) efficiency with a single imputation'). The observed data, together with the five imputed values for missing variables, generate five complete datasets to be analyzed by standard statistical techniques resulting in five slightly different results. These results and their variance/covariance matrices are combined to represent the variability induced by the imputing process. For simplicity, modeling and sampling were performed using the single set of observed complete data, as opposed to first bootstrapping the complete data to perform a proper imputation, which accounts for variability of regression parameter estimates used in the imputation.' An assessment of proper versus improper imputation on a dataset similar to the AHS shows mixed results. \({ }^{20}\) Multiple imputation was chosen
for pesticide use in the AHS over other approaches such as probability weighting or the EM algorithm \({ }^{21}\) because of its familiarity and ease of use. Providing a single set of multiply imputed data will facilitate consistent results in future analyses.

A key assumption of any imputation is that missingness is independent of the unobserved outcome of interest or unobservable confounders (i.e., missing at random). The reduction of bias and increase in precision from multiple imputations is dependent on the covariates associated with both nonresponse and the endpoint variable, \({ }^{22}\) and factors associated with non-participation, which were included in our imputation model. For our imputation analysis, the "outcome" of interest is the missing pesticide use itself; Montgomery et al. \({ }^{10}\) show there is little evidence for selection bias in Phase 2 of the AHS, however missing at random is an untestable assumption without additional data; thus it is possible that non-responders differ from responders in variables we have not measured. It is worth emphasizing that the set of individuals with both Phase 1 and 2 responses had a full range of exposure, including those who were no longer farming, and therefore our data-driven imputation approach did not necessitate that non-responders be imputed as active pesticide users. To implement multiple imputation, missingness may be conditional on observable covariates from Phase 1 and our models incorporated covariates associated with Phase 2 pesticide use in constructing the values for missing data.

Multiple imputation in the Agricultural Health Study Heltshe et al

Figure 3. Box plots of observed and imputed days/year use of 2,4-D, alachlor, and diazinon in the holdout subset of the AHS.
\begin{tabular}{ll|lll}
& & \begin{tabular}{c}
Holdout \\
N
\end{tabular} & \begin{tabular}{c}
Observations \\
Cumulative \(\%\)
\end{tabular} \\
& 1994 & & 37 & \(0.5 \%\)
\end{tabular}

Figure 4. Histogram display of the distribution of imputed Phase 2 reference year by true, observed reference year in the holdout dataset of the AHS.

As was done for information collected from participants who completed the Phase 2 questionnaire, for epidemiologic analyses, the imputed pesticide use information has been cumulatively added to information collected in Phase 1. This multiple imputation will allow for bias reduction and improved efficiency in future analyses of the AHS.

\section*{CONFLICT OF INTEREST}

The authors declare no conflict of interest.

\section*{ACKNOWLEDGEMENTS}

This work is supported by the intramural Research Program of the Nationai Cancer Institute at the National Institutes of Health (grant number Z01-CP010119); and the National Institute of Environmental Health Sciences at the Nationai Institutes of Health (grant number Z01-ES049030). The United States Environmental Protection Agency through its Office of Research and Development collaborated in the research described here. It has been subjected to Agency review and approved for publication. The findings and conclusions in this report are those of the authors and do not necessarily represent the views of the National institute for Occupational Safety and Health.

\section*{REFERENCES}

1 Rubin D.B. Multiple imputation of Nonresponse in Surveys. J. Wiley and Sons: New York, NY, 1987.
2 Schafer J.L., Ezzatti-Rice T.M., Johnson W., Khare M., Little R.J.A., and Rubin D.B. The NHANES III multiple imputation project. Proc Survey Res Methods Section Am Stat Assoc 1996, 28-37.
3 Mislevy R.J., Johnson, E.G., and Muraki E. Scaling procedures in NAEP. J Educational Stat 1992: 17: 131-154.
4 Stuart E.A., Azur M., Frangakis C., and Leaf P. Multiple imputation with large data sets: a case study of the children's mental health initiative. Am J Epidemiol 2009: 169(9): 1133-1139
5 Kang T., Kraft P., Gauderman W.J., and Thomas D. Multiple imputation methods for longitudinal blood pressure measurements from the Framingham Heart Study. BMC Genet 2003: 4(suppl 1): S43.
6 Alavanja M.C., Sandler D.P., McMaster S.B., Zahm S.H., McDonnell CJ., and Lynch C.F., et al. The Agricultural Health Study. Environ Health Perspect 1996: 104: 362-369.

7 National Cancer institute, Nationai Institutes of Health. Agricultural Health Study (AHSQ). Full Text of Questionnaires. 2010. (www.aghealth.org/questionnaires. ntml). (Accessed November 8, 2010).
8 Tarone R.E., Alavanja M.C., Zahm S.H., Lubin J.H., Sandler D.P., and McMaster S.B., et al. The Agricultural Health Study: factors affecting completion and return of self-administered questionnaires in a large prospective cohort study of pesticide applicators. Am J Ind Med 1997: 31: 223-242.

16 Kim J.K., and Fuller W.A. Fractional hot deck imputation. Biometrics 2004: 91(3). 559-578.
17 Rao J.N.K., and Shao J. Jackknife variance estimation with survey data under hot deck imputation. Biometrika 1992: 79: 811-822.
18 Rubin D.B., and Schenker N. Multiple imputation for interval estimation from simple random samples with ignorable nonresponse. J Am Stat Assoc 1986: 81: 366-374.
19 Tollefson M., and Fuller W.A. Variance estimation for samples with random imputation. American Statistical Association Proceedings of the Section of Survey Research Methods 1992: 15: 758-763.
20 Heitjan D.F., and Little R.J.A. Multiple imputation for the fatal accident reporting system. Appl Stat 1991: 40: 13-29.
21 Dempster A.P., Laird N.M., and Rubin D.B. Maximum likelihood from incomplete data via the EM aigorithm. J R Stat Soc Ser B 1977: 39(1): 1-38.
22 Spratt M., Carpenter J., Sterne J.A., Carlin J.B., Heron J., and Henderson J., et al. Strategies for multiple imputation in longitudinal studies. Am J Epidemiol 2010: 172(4): 478-487.

\title{
Non-Hodgkin Lymphoma Risk and Insecticide, Fungicide and Fumigant Use in the Agricultural Health Study
}

\author{
Michael C. R. Alavanja \({ }^{1 *}\), Jonathan N. Hofmann \({ }^{1}\), Charles F. Lynch \({ }^{2}\), Cynthia J. Hines \({ }^{3}\), Kathryn H. Barry \({ }^{1}\), Joseph Barker \({ }^{4}\), Dennis W. Buckman \({ }^{4}\), Kent Thomas \({ }^{5}\), Dale P. Sandler \({ }^{6}\), Jane A. Hoppin \({ }^{6}\), Stella Koutros \({ }^{1}\), Gabriella Andreotti \({ }^{1}\), Jay H. Lubin \({ }^{1}\), Aaron Blair \({ }^{1}\), Laura E. Beane Freeman \({ }^{1}\) \\ 1 Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, United States of America, \(\mathbf{2}\) College of Public Health, University of Iowa, lowa City, lowa, United States of America, 3 National Institute for Occupational Safety and Health, Cincinnati, Ohio, United States of America, 4 IMS, Inc, Calverton, Maryland, United States of America, 5 National Exposure Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America, 6 Epidemiology Branch, National Institute for Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
}

\begin{abstract}
Farming and pesticide use have previously been linked to non-Hodgkin lymphoma (NHL), chronic lymphocytic leukemia (CLL) and multiple myeloma (MM). We evaluated agricultural use of specific insecticides, fungicides, and fumigants and risk of NHL and NHL-subtypes (including CLL and MM) in a U.S.-based prospective cohort of farmers and commercial pesticide applicators. A total of 523 cases occurred among 54,306 pesticide applicators from enrollment (1993-97) through December 31, 2011 in lowa, and December 31, 2010 in North Carolina. Information on pesticide use, other agricultural exposures and other factors was obtained from questionnaires at enrollment and at follow-up approximately five years later (1999-2005). Information from questionnaires, monitoring, and the literature were used to create lifetime-days and intensity-weighted lifetime days of pesticide use, taking into account exposure-modifying factors. Poisson and polytomous models were used to calculate relative risks (RR) and 95\% confidence intervals (Cl) to evaluate associations between 26 pesticides and NHL and five NHL-subtypes, while adjusting for potential confounding factors. For total NHL, statistically significant positive exposure-response trends were seen with lindane and DDT. Terbufos was associated with total NHL in ever/never comparisons only. in subtype analyses, terbufos and DDT were associated with small cell lymphoma/chronic lymphocytic leukemia/marginal cell lymphoma, lindane and diazinon with follicular lymphoma, and permethrin with MM. However, tests of homogeneity did not show significant differences in exposure-response among NHL-subtypes for any pesticide. Because 26 pesticides were evaluated for their association with NHL and its subtypes, some chance finding could have occurred. Our results showed pesticides from different chemical and functional classes were associated with an excess risk of NHL and NHL subtypes, but not all members of any single class of pesticides were associated with an elevated risk of NHL or NHL subtypes. These findings are among the first to suggest links between DDT, lindane, permethrin, diazinon and terbufos with NHL subtypes.
\end{abstract}

> Citation: Alavanja MCR, Hofmann JN, Lynch CF, Hines CJ, Barry KH, et al. (2014) Non-Hodgkin Lymphoma Risk and Insecticide, Fungicide and Fumigant Use in the Agricultural Health Study. PLoS ONE \(9(10)\) : e109332, doi: 10.1371 /journal.pone. 0109332
> Editor: Suminori Akiba, Kagoshima University Graduate School of Medical and Dental Sciences, Japan
> Received March 10, 2014; Accepted August 30,2014 ; Published October 22,2014
> This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.
> Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper and the Supporting Information files.
> Funding: This work was supported by the Intramural Research Program of the NiH, National Cancer Institute, Division of Cancer Epidemiology and Genetics (Zo1CP0101 19) and The National Institutes of Environmental Health Sciences (Z01ESO49030). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. IMS, Inc, provided support in the form of salaries for authors Joseph Barker and Denis W Buckman, but did not have any additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. The specific roles of these authors are articulated in the 'author contributions' section.
> Competing Interests: The authors have the following interests. Joseph Barker and Dennis W. Buckman are employed by IMS, Inc. There are no patents, products in development or marketed products to declare. This does not alter the authors' adherence to all the PLOS ONE policies on sharing data and materials, as detailed online in the guide for authors.
> * Email: alavanjm@mail.nih.gov

\section*{Introduction}

Since the 1970 s , cpidemiologic studies of non-Hodgkin lymphoma (NHL) and multiple myeloma (MM) have shown increased risk among farmers and associations with the type of farming practiced [1-6]. While farmers are exposed to many agents that may be carcinogenic [7]; there has been a particular focus on pesticides. Studies from around the world have suggested increased risk of NHL or MM [8,9] and other NHL subtypes [10] in relation to the use of specific pesticides in different functional classes (i.e., insecticides, fungicides, fumigants and herbicides). A
meta-analysis of 13 case-control studies published between 19932005 observed an overall significant meta-odds ratio (OR) between occupational exposure to pesticides and NHL (OR \(=1.35 ; 95 \%\) CI: \(1.2-1.5\)) [11]. This risk was greater among individuals with more than 10 years of exposure (\(\mathrm{OR}=1.65 ; 95 \% \mathrm{CI}: 1.08-1.95\)) [11], but the meta-analysis lacked details about the use of specific pesticides and other risk factors [11]. Although the International Agency for Research on Cancer (IARC) has classified "Occupational exposures in spraying and application of non-arsenical insecticides" as "probably carcinogenic to humans", the human
evidence for the 17 individual pesticides cvaluated in this monograph was determined to be inadequate for nine and there were no epidemiological studies for eight pesticides [12]. Since then, more studics have focused on cancer risk from specific pesticides, although the information is still relatively limited for many cancer-pesticide combinations [8,9].

To hclp fill the current information gap we evaluated the relationships between the use of specific insecticides, fungicides and fumigants and NHL in the Agricuitural Health Study (AHS), a prospective cohort of licensed private (i.e., mostly farraer) and commercial pesticide applicators. Because the ctiology of NHL and its \(B\) and \(T\) cell subtypes may differ by cell typc \({ }^{13}\), we also cvaluated risk by subtype while controling for potential confounding factors suggested from the literature [13], and the AHS data.

\section*{Novelty and Impact}

These findings on occupationally exposed pesticide applicators with high quality exposure information are among the first to suggest links between DDT, lindanc, permethrin, diazinon and terbufos and specific NHL subtypes in a prospective cohort study.

\section*{Materials and Methods}

\section*{Study Population}

The AHS is a prospcctivc cohort study of 52,394 licensed private pesticide applicators (mostly farmers) in Iowa and North Carolina and 4,916 licensed commercial applicators in Iowa (individuals paid to apply pesticides to farms, homes, lawns, etc.), and 32,346 spouses of private applicators. Only applicators are included in this analysis. The cohort has been previously described in detail \([14,15]\) and study questionnaires are available on the AHS website (www.aghealth.nih.gov). Briefly, individuals seeking licenses to apply restricted use pesricides were enrolled in the study from December 1993 through December \(1997(82 \%\) of the target population enrolled). At enrolment, subjects did not sign a written informed consent form. However, the cover letter of the questionnaire bookiet informed subjects of the voluntary nature of participation, the ability to not answer any question, and it provided an assurance of confidentiality (including a Privacy Act Notification statement). The letter aiso included a written summary of the purpose of research, time involved, bencfits of research, and a contact for questions about the research. The cover letter to the take-home questionnaire included all of the above and also informed the participant that they had the right to withdraw at any time. Finally, subjects were specifically informed that their contact information (including Social Security Number) would be used to search health and vital records in the future. The participants provided consent by completing and returning the questionnaire bookiet. These documents and procedures were approved in 1993 by all relevant institutional review boards (i.e., National Cancer Institute Special Studics Institutional Review Board, Westat Institutional Review Board, and the University of Lowa Institutional Review Board-01).

Excluded from this analysis were study participants who had a history of any cancer at the time of enroliment (\(n=1094\)), individuals who sought pesticide registration in Iowa or North Carolina but did not Xive in these states at the time of registration (\(\mathrm{n}=341\)) and were thus outside the catchment area of these cancer registries and individuais that were missing information on potential confounders (i.e., race or total herbicides application days \([\mathrm{n}=1,569]\)). This resulted in an analysis sampie of 54,306 . We obtained cancer incidence information by regular linkage to the population-bascd cancer registry files in Iowa and North

Carolina. In addition, we linked cohort members to state mortality registries of Iowa and North Carolina and the nation-wide National Death Index to determine vital status, and to the nationwide address records of the Internal Revenue Service, state-wide motor vchicle registration files, and pesticide license registries of state agricultural departments to determine residence in lowa or North Carolina. The current analysis included all incident primary NHL, as well as CLL and MM (which are now classified as NHL) [13] (\(n=523\)) diagnosed from cnroliment (1993-1997) through December 31, 2010 in North Carolina and from enrollment (1993-1997) through December 31, 2011 in Iowa, the last date of compiete cancer incidence reports in each state. We ended followup and person-year accumulation at the date of diagnosis of any cancer, death, movement out of state, or December 31, 2010 in North Caroina and December 31, 2011 in Iowa, whichever was earlier.

\section*{Tumor Characteristics}

Information on tumor characteristics was obtained from statc cancer registries. We followed the definition of NHL and six subtypes of NHL used by the Surveiliance Epidemioiogy and End Rcsults (SEER) coding scheme [16] which was based on the Pathology Working Group of the International Lymphoma Epidcmioiogy Consortium (IGD-O-3 InterLymph modification) classification (Table St in File Si, [17], i.e., 1. Small B-cell iymphocytic lymphomas (SLL)/chronic B-cell tymphocytic lymphomas (CLL)/mantle-cell lymphomas (MCL); 2. Diffuse large Bcell lymphomas; 3. Follicular lymphomas; 4. 'Other B-cell lymphomas' consisting of a diverse set of B-cell lymphomas; 5. Multiple myeloma; and 6. T-cell NHL and undefined cell sype). There were too few T-cell NHL cases avalable for analysis [\(\mathrm{n}=19\)] so this cell type was not included in the subtype analysis). The ICD-O-3 original definition (used in many carlicr studies of pesticides and cancer) of NHL [18] was also evaluated in relation to pesticide exposure to allow a clearer comparison of our results with previous studies.

\section*{Exposure Assessment}

Initial information on lifetime use of 50 specific pesticides Table \(S 2\) in File \(S 1\), including 22 insecticides, 6 fungicides and 4 fumigants was obtained from two self-administered questionnaires [14,15] completed during cohort enrollment (Phase 1). All 57,310 applicators completed the first enroliment questionnaire, which inquired about ever/never use of 50 pesticides, as well as duration (years) and frcquency (average days/year) of use for a subset of 22 pesticides including 9 insecticides, 2 fungicides and 1 fumigant. In addition, 25,291 (\(44 \%\)) of the applicators returned the second (take-home) questionnaire, which inquired about duration and frequency of use for the remaining 28 pesticides, including 13 insecticides, 4 fungicides and 3 fumigants.

A follow-up questionnaire, which ascertained pesticide use since cnroliment, was administered approximately 5 years after enrollment (1999-2005, Phase 2) and completed by \(36,342(63 \%)\) of the original participants. The full text of the questionnaires is available at www.agheaith.nih.gov. For participants who did not complete the Phase 2 questionnaire (20,968 applicators, \(37 \%\)), a data-driven multiple imputation procedure which used logistic regression and stratified sampling [19] was employed to impute use of specific pesticides in Phase 2. Information on pesticide use from Phase 1, Phase 2 and imputation for Phase 2 was used to construct threc cumulative exposure metrics: (i) lifetime days of pesticide use (i.c., the product of years of use of a specific pesticide and the number of days uscd per ycar); (ii) intensity-weighted lifetime days of use (i.e., the product of lifetime days of use and a measure of exposure
intensity) and (iii) ever/never use data for each pesticide. Intensity was derived from an exposure-algorithm, which was based on exposure measurements from the literature and individual information on pesticide use and practices (c.g., whether or not they mixed pesticides, application method, whether or not they repaired equipment and use of personal protective equipment) obtained from questionnaires completed by study participants [20].

\section*{Statistical Analyses}

We divided follow-up time into 2-year intervals to accumulate person-time and update time-varying factors, such as attained age and pesticide use. We fit Poisson models to estimate rate ratios (RRs) and 95\% confidence intervals (95\% CI) to evaluate the effects of pesticide use on rates of overall NHL and the five NHL subtypes.

We evaluated pesticides with 15 or more exposed cases of total NHL, thereby excluding aluminum phosphide, carbon tetrachloride/carbon disulfide, ethylene dibromide, trichlorfon, and ziram leaving 26 insecticides, fungicides and fumigants for analysis (permethrin for animal use and crop use were combined into one category, all insecticides, fungicides and fumigants are listed in Table S2 in File S1). For each pesticide, we evaluated ever vs. never exposure, as well as tertiles of exposure which were created based on the distribution of all NHL exposed cases and compared to those unexposed. In the NHL subtype analysis and in circumstances where multiple pesticides were included in the model we categorized exposure for each pesticide into uncxposed (i.e., never users) and two exposed groups (i.e., low and high) separated at the median exposure level. The number of exposed cases included in the ever/never analysis and in the trend analysis can differ because of the lack of information necessary to construct quantitative exposure metrics for some individuals.
Several lifestyle and demographic factors associated with NHL in the AHS cohort or previously suggested as possible confounders in the NHL literature \({ }^{13}\) were evaluated as potential confounders in this analysis. These included: age at enrollment, gender, race, state, license type, education, autoimmune diseases, family history of lymphoma in first-degree relatives, body mass index, height, cigarette smoking history, alcohol consumption per week and several occupational exposures \({ }^{1-13}\) including number of livestock, cartle, poultry, whether they raised poultry, hogs or sheep, whether they provided veterinary services to their animals, number of acres planted, welding, diesel engine use, number of years lived on the farm, total days of any pesticide use, and total days of herbicide use. However, since most of these variables did not change the risk estimates for specific pesticides, we present results adjusted for age, race, state and total days of herbicide use, which impacted risk estimates by more than \(10 \%\) for some subtypes. We also performed analyses adjusting for specific insecticides, fungicides and fumigants shown to be associated with NHL or a specific NHL subtype in the current analysis. Tests for trend used the median value of each exposure category. All tests were two-sided and conducted at \(\alpha=0.05\) level. Analysis by NHL subtype was limited to insecticides, fungicides, and fumigants with 6 or more exposed cases.
We also fit polytomous logit models, where the dependent variable was a five-level variable (i.c., five NHL subtypes) and a baselinc level (i.e., no NHL) to estimate exposure-response odds ratios (ORs) and \(95 \%\) confidence intervals (CIs) for each subtypes of NHL. We then used polytomous logit models to estimate exposure-response trend while adjusting for age, state, race and total days of herbicide use, as in the Poisson models, and tested homogeneity among the 5 NHL subtypes.

Poisson models were fit using the GENMOD procedure and polytomous logit models were fit using the LOGISTIC procedure of the SAS 9.2 statistical software package (SAS Institute, Cary, NC). Summary estimates of NHL and NHL subtype risks for both Poisson models and polytomous logit models incorporated imputed data and were calculated along with standard error estimates, confidence intervals, and p -values, using multiple imputation methods implemented in the MIANALYZE procedure of SAS 9.2.

We also evaluated the impact of the additional pesticide exposure information imputed for Phase 2 on risk cstimates. We compared risk estimates for those who completed both the phase 1 cnrollment and take-home questionnaires and the phase 2 questionnaires (\(\mathrm{n}=17,545\)) with risk estimates obtained from the combined completed questionnaire data plus the imputed phase 2 data (\(n=54,306\)). We also explored the effect of lagging exposure data 5 years because recent exposures may not have had time to have an impact on cancer development. For comparison to previous studies, we also assessed the exposurc-response association for NHL using the original ICD-O-3 definition of NHL [18] and the new dcfinition [16] in Table S3 in File S1. Unless otherwise specified, reported results show un-lagged exposure information from both Phase 1 and Phase 2 including Phase 2 imputed data for lifetime exposure-days and intensity-wcightcd lifetime days of use and NHL defined by the InterLymph modification of ICD-O-3 [17]. Data were obtained from AHS data release versions PlREL201005.00 (for Phase l) and P2REL201007.00 (for Phase 2).

\section*{Results}

The 54,306 applicators in this analysis contributed 803,140 person-ycars of follow-up from enrollment through December 31, 2010 in North Carolina and December 31, 2011 in Iowa (Table 1). During this period, there were 523 incident cases of NHL, including 148 SLL/CLL/MCL, 117 diffuse large B-cell lymphomas, 67 follicular lymphomas, 53 'other B-cell lymphomas' (consisting of a diverse set of B-cell lymphomas) and 97 cases of MM. Another 41 cases consisting of T-cell lymphomas (\(\mathrm{n}=19\)) and non-Hodgkin lymphoma of unknown lineage (\(\mathrm{n}=22\)) were excluded from cell type-specific analyses because of small numbers of cases with identified cell types. Between enrollment and the end of follow-up, 6,195 individuals were diagnosed with an incident cancer other than NHL, 4,619 died without a record of cancer in the registry data, and 1,248 cohort members left the state and could not be followed-up for cancer. Person-years of follow-up accumulated for all of these study participants after enrollment until they were censored for the incident cancer, death or moving out of the state (data not shown). The risk of NHL increased significantly and monotonically with age in the AHS cohort in this analysis (\(p=0.001\)) and age-adjusted risks were significant for state and NHL overall and race for multiple myeloma (data not shown). Total days of herbicide use had a small but significant effect on the risk of some NHL subtypes, but not on NHL overall. No other demographic or occupational factors showed evidence of confounding so they were not included in the final models.

In Table 2 we present ever/never results for 26 insecticides, fungicides and fumigants by total NHL and by NHL subtype adjusted for age, race, state and herbicide usc (total life-time days). Terbufos was the only pesticide associated with an increased risk of total NHL in the ever/never use analysis (\(\mathrm{RR}=1.2\) [1.0-1.5]), although the trend for increasing use and risk of total NHL was not significant (\(p\) trend \(=0.43\)) (Table 3). In contrast, there were a few chemicals that were not associated with ever/never usc, but

Table 1. Baseline characteristics of AHS study participants in the NHL incidence analysis \({ }^{1.2}\).
\begin{tabular}{|c|c|c|}
\hline Variables & All NHL cases (\%) & Cohort Person-years. \\
\hline \multicolumn{3}{|l|}{Age at Enrollment} \\
\hline \(<45\) & 84 (16.1) & 426,288 \\
\hline 45-49 & 51 (9.8) & 101,018 \\
\hline 50-54 & 75 (14.3) & 84,998 \\
\hline 55-59 & \(90172)\) & 74,440 \\
\hline 60-64 & 78 (14.9) & 56,978 \\
\hline 65-69 & 79 (15.1) & 35,071 \\
\hline \(\geq 70\) & 66 (12.6) & 24,347 \\
\hline \multicolumn{3}{|l|}{Race} \\
\hline White & 509 (97.3) & 787,799 \\
\hline Biack & 14 (27) & 15,341 \\
\hline \multicolumn{3}{|l|}{State} \\
\hline IA & 332 (63.5) & 537,252 \\
\hline NC & 791 (36.5) & 265,888 \\
\hline \multicolumn{3}{|l|}{Lifetime Total Herbicide Exposure Days} \\
\hline 0-146 days & 170 (32.5) & 251,401 \\
\hline 147-543 days & 169 (32 3) & 273,107 \\
\hline 544-2453 days & 184 (35.2) & 278,632 \\
\hline
\end{tabular}
'During the period from enrollment (1993-1997) to December 31, 201C in NC and December 31, 2011 in lowa.
\({ }^{\text {ind }}\) individuais with missing ever/never exposure information or missing confounding variable information were not included in the table.
doi:10.1371/journal.pone.0109332.4001
did show evidence of an exposure-response association. Lindane was the only pesticide that showed a statistically significant increasing trend in risk for NHL with both exposure metrics, for iffetime-days of lindane use the \(R R\) were \(=1.0\) (ref), 1.2 (0.7-1.9), \(1.0(0.6-1.7), 2.5(1.4-4.4) ; p\) trend \(=0.004\) and intensity-weighted lifetime-days of use the: RR were: \(=1.0\) (ref), 1.3 (0.8-2.2), 1.1 \((0.7-1.8), 1.8(1.0-3.2) ; p\) trend \(=0.04\). DDT showed a significant trend for NHL risk with life-time days of use \(R R=1.0\) (reff, 1.3 \((0.9-1.8), 1.1(0.7-1.7), 1.7(1.1-2.6) ; p\) trend \(=0.02\), while the intensity weighted lifetime days of use of DDT was of borderline significance: \(R R=1.0\) (ret), \(1.2(0.8-1.8), 1.1(0.8-1.7), 1.6\) (1.02.3); p trend \(=0.05\). The number of lifetime days of use of lindane and DDT was weakly correlated (coefficient of determination \(=0.04\)), and the pattern of NHL risk showed little change when both were inchuded in the model. The resuits for lindane adjusted for DDT were, \(\mathrm{RR}=1.0\) (ret), \(1.2(0.7-2.0), 1.0(0.5-1.8\), , \(1.6(0.9-3.3) ; p\) trend \(=0.07\) and the results for DDT adjusted for lindane were, \(\mathrm{RR}=1.0\) (ref), 1.3 (0.9-2.0), 0.9 (0.6-1.6), 1.6 (0.92.6); p trend \(=0.08\)).

We also evaluated pesticides by NHL sub-type. In the ever/ never analyses (Table 2), permethrin was significantly associated with multiple myeloma, \(\mathrm{RR}=2.2(1.4-3.5)\) and also demonstrated an exposure-response trend \((\mathrm{RR}=1.0\) (ref), 1.4 (0.8-2.7), 3.i (1.56.2); p trend \(=0.002\)) (Table 4). Similarly, there was an elevated risk of SLL/CLL/MCL with terbufos in ever/never analyses \(\mathrm{RR}=1.4\) (\(0.97-2.0\); and an exposure response trend \((\mathrm{RR}=1.0\) (ref), 1.3 (0.8-2.0), \(1.6(1.0-2.5) ; p\) trend \(=0.05\)). For folicular lymphoma, indane showed an elevated but non-significant association for ever use, \(\mathrm{RR}=1.7(0.96-3.2)\) and a significant exposure-response association \((\mathrm{RR}=1.0\) (ret), 4.9 (1.9-12.6), 3.6 (1.4-9.5); \(p\) trend \(=0.04\)). There were also two chemicals with evidence of exposure-response that were not associated with specific subtypes in the ever/never analyses: DDT \{Dichlorodiphenyltrichloroethane) with SLL/CLL/MCL (\(\mathrm{RR}=1.0\) (ref), 1.0
(0.5-1.8), \(2.6(1.3-4.8 ; \mathrm{p}\) trend \(=0.04)\); and diazinon with follicular lymphoma (\(\mathrm{RR}=1.0\) (refi, 2.2 (0.9-5.4), 3.8 (1.2-11.4); p trend \(=0.02\)) (Table 4).

The pattern of increased CLL/SLL/MCL risk with increased use of DDT and terbufos remained after both insecticides were placed in our model concurrently. CLL/SLL/MCL risk increased with \(\operatorname{DDT}\) use \((\mathrm{RR}=1.0\) (ref), 0.9 (\(0.5-4.7\)); \(2.4(1.1-4.7\); p trend \(=0.04\), and a pattern of increased CLL/SLL/MCL risk was also obscrved with terbufos use \((\mathrm{RR}=1.0\) (ref), 1.1 (0.6-2.1), 1.7 (0.9-3.3) p trend \(=0.07\)), although the trend was not significant for terbutos. Similarly, the pattern of increased follicular lymphoma risk with lindane use and diazinon use remained after both insecticides were placed in our model concurrently. Follicular lymphoma risk increased with diazinon use \((\mathrm{RR}=1.0\) (ref, 4.1 (\(1.5-11.1) ; 2.5(0.9-7.2 ;\) p trend \(=0.09)\), and a similarly, pattern of increased follicular lymphoma risk was observed with lindane use \((\mathrm{RR}=1.0\) (ref, \(1.6(0.6-4.1), 2.5(0.8-8.3) \mathrm{p}\) trend \(=0.09)\), although neither remained statistically significant (Table 4).

Three chemicals showed elevated risks in ever/never analyses for ccrtain subtypes, with no apparent pattern in exposureresponse analyses: metalaxyi and chlordane with \(\mathrm{SLL} / \mathrm{CLL} /\) \(\mathrm{MCL}, \mathrm{RR}=1.6(1.0-2.5)\) and \(\mathrm{RR}=1.4\) (\(0.97-2.0\)) respectively, and methyl bromide with diffuse large B -cell lymphoma \(\mathrm{RR}=1.9\) (1.1-3.3). Although there was evidence of association by subtype, and polytomous logit modeis indicated homogeneity across subtypes for lindane (\(p=0.54\)), DDT (\(p=0.44\)) and any other pesticide evaluated in this study (e.g., permethrin (\(p=0.10\)), diazinon (\(p=0.09\)), terbufos (\(p=0.63\)), ?ast column in Table 4).

There was no evidence of confounding of the total NHL associations with either lindane or DDT. We aiso calculated RR for those who completed both the phase 1 enroliment and takehome questionnaires and the phase 2 questionnaire (\(n=17,545\)) and found no meaningful difference in the RR that also included imputed exposures, although there was an increase in precision of
Pesticides and Non-Hodgkins Lymphoma
Table 2. Cont
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|l|}{Insecticide} \\
\hline \multirow[t]{3}{*}{Pesticide (chemical-functional class)} & \multicolumn{2}{|l|}{Total NHL Cases \({ }^{2}\)} & \multicolumn{2}{|l|}{SLL/CLL/MCL Cases \({ }^{2}\)} & \multicolumn{2}{|l|}{Diffuse Large B-Cell Cases \({ }^{2}\)} & \multicolumn{2}{|l|}{Follicular B-Cell Cases \({ }^{2}\)} & \multicolumn{2}{|l|}{Other B-cell Cases \({ }^{2}\)} & \multicolumn{2}{|l|}{Multiple Myeloma Cases \({ }^{\text {2 }}\)} \\
\hline & Ever/Never Exposed & \(\mathbf{R R}^{3,4}\) & Ever/Never Exposed & \(\mathbf{R R}^{3,4}\) & Ever/Never Exposed & RR \({ }^{3,4}\) & Ever/Never Exposed & \(\mathbf{R R}^{3,4}\) & Ever/Never Exposed & RR \({ }^{3,4}\) & Ever/Never Exposed & RR \({ }^{\text {,4 }}\) \\
\hline & & (95\% CI) & & (95\% Cl) \\
\hline (chlorinated insecticide) & & (0.8-1.3) & & (0.8-1.8) & & (0.5-1.3) & & (0.5-1.6) & & (0.6-2.1) & & (0.7-1.8) \\
\hline Dieldrin & 35/442 & 0.9 & 5/130 & xxx & 4/101 & xxx & 4/54 & x xx & 7/42 & 1 & 10/81 & 0.9 \\
\hline (chlorinated insecticide) & & (0.6-1.2) & & & & & & & & (0.7-2.0) & & (0.5-1.4) \\
\hline Heptachlor & 90/384 & 1 & 33/104 & 1.1 & 10/95 & 1.1 & 9/48 & 1.1 & 13/36 & 0.9 & 17772 & 1.1 \\
\hline (chlorinated insecticide) & & (07-1.2) & & (0.7-3.0) & & (0.3-3.1) & & (0.5-3.2) & & (0.5-2.7) & & 10.6-2.0) \\
\hline Lindane & 85/396 & 1 & 27/113 & 1.2 & 12/95 & 0.6 & 16/41 & 1.7 & \(9 / 40\) & 0.7 & 13/73 & 1.1 \\
\hline (chlorinated insecticide) & & (0.8-1.2) & & (0.6-1.5) & & (0.3-1.1) & & (0.96-32) & & (0.4-1.2) & & (0.5-2.0) \\
\hline Toxaphene & 79/397 & 1 & 21/116 & 0.9 & 14/90 & 0.8 & 9/47 & 1 & 10/40 & 1.1 & 19/73 & 1.1 \\
\hline (chlorinated insecticide) & & (0.7-1.2) & & (0.5-1.5) & & (0.4-1.4) & & (0.6-2.0) & & (0.6-2.0) & & (0.6-1.9) \\
\hline \multicolumn{13}{|l|}{Fungicides} \\
\hline Benomyl & 54/428 & 1.1 & 18/123 & 1.2 & 12/95 & 11 & 4/51 & xox & 4/51 & xox & 11/80 & 1.1 \\
\hline (carbamate fungicide) & & (0.8-1.5) & & (0.7-2.0) & & (0.6-1.9) & & & & & & (0.6-2.0) \\
\hline Captan & 60/406 & 1.1 & 18/118 & 1.1 & 12/91 & 0.9 & 5/51 & xox & 6/39 & 1.1 & 12/76 & 12 \\
\hline (phthalimide fungicide) & & (0.8-1.4) & & (0.6-1.B) & & (0.5-1.8) & & & & (0.5-2.7) & & (0.6-2.2) \\
\hline Chloro-thalonil & 35/474 & 0.8 & 9/135 & 0.9 & 6/107 & 0.5 & 5/60 & xox & 2/50 & xoox & 11/84 & 1.2 \\
\hline (poly-chlorinated aromatic thalonitrile fungicide) & & (0.5-1.2) & & (0.4-1.9) & & (0.2-1.3) & & & & & & (0.6-2.3) \\
\hline Maneb/ & 44/437 & 0.9 & 13/127 & 1.1 & 12/95 & 1.1 & 4/60 & rox & 5/49 & 300 & 10/79 & 0.8 \\
\hline Mancozeb & & (0.7-1.3) & & (0.6-2.1) & & (0.6-2.1) & & & & & & (0.4-1.7) \\
\hline \multicolumn{13}{|l|}{(dithiocarbamate fungicide)} \\
\hline Metalaxyl & 108/381 & 1 & 34/106 & 1.6 & 27/82 & 1.1 & 10/48 & 0.7 & 10/40 & 0.9 & 21/71 & 0.8 \\
\hline (acylalanine fungicide) & & (0.8-1.3) & & (1.0-2.5) & & (0.6-1.8) & & (0.4-1.4) & & (0.4-1 7) & & (0.4-13) \\
\hline \multicolumn{13}{|l|}{Fumigant} \\
\hline Methyl bromide & 85/425 & 1.1 & 18/126 & 0.9 & 28/86 & 1.9 & 7/58 & 0.6 & 8/44 & 2.2 & 19/76 & 1 \\
\hline (methyl halide fumigant) & & (0.9-1.5) & & (0.5-1.7) & & (1.1-3.3) & & (0.2-1.4) & & (0.9-5.7) & & (0.6-1.8) \\
\hline
\end{tabular}
1 During the period from enrollment (1993-1997) to December 31, 2010 in NC and December 31, 2011 in lowa.
\({ }^{2}\) Numbers of cases by NHL subtype do not sum to total number of NHL cases (\(n=523\)) due to missing data.

Table 3. Pesticide exposure (lifetime-days \& intensity weighted life-time days) and adjusted risks of total NHL incidence¹.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Insecticides} \\
\hline \begin{tabular}{l}
Pesticide \\
(chemical-functional class)
\end{tabular} & NHL Cases \({ }^{2}\) & Non-Cases \({ }^{2}\) & RR \(^{3,4}\) (\(95 \%\) CI) by Total Days of Exposure & NHL & Non-Cases & \(\mathbf{R R}^{3,4}\) (95\% CI) \\
\hline [days of lifetime exposure for each categoryl & & & & Cases \({ }^{2}\) & & Intensity-weighted days of exposure \\
\hline \multicolumn{7}{|l|}{Aldicarb (carbamate-insecticide)} \\
\hline None & 238 & 21557 & 1.0 (ref) & 238 & 21557 & 1.0 (ref) \\
\hline Low [58.75] & 7 & 633 & 1.1 (0.5-2.3) & 6 & 383 & 1.3 (0.6-3.3)) \\
\hline Medium [>8.75-25.5] & 5 & 522 & \(0.9(0.3-2.5)\) & 6 & 853 & 0.9 (0.4-1.9) \\
\hline \multirow[t]{2}{*}{High [\(>25.5-224.75\)]} & 5 & 1266 & 0.5 (0.2-1.3) & 5 & 1183 & 0.5 (0.2-1.3) \\
\hline & & & P trend \(=0.23\) & & & \(\mathbf{P}\) trend \(=0.22\) \\
\hline \multicolumn{7}{|l|}{Carbofuran (carbamate-Insecticide)} \\
\hline None & 317 & 36296 & 1.0 (ref) & 317 & 36296 & 1.0 (ref) \\
\hline Low [58.75] & 63 & 4775 & 1.2 (0.9-1.6) & 46 & 3695 & 1.2 (0.9-1.6) \\
\hline Medium [>8.75-38.75] & 32 & 3648 & 0.8 (0.6-1.2) & 46 & 4590 & 1.0 (0.7-1.3) \\
\hline \multirow[t]{2}{*}{High [\(>38.75-767.25\)]} & 44 & 4370 & 0.97 (0.7-1.4) & 45 & 4477 & 1.0 (0.7-1.4) \\
\hline & & & \(P\) trend \(=0.69\) & & & P trend \(=0.74\) \\
\hline \multicolumn{7}{|l|}{Carbaryl (carbamate-insecticide)} \\
\hline None & 128 & 12864 & 1.0 (ref) & 128 & 12864 & 1.0 (ref) \\
\hline Low [58.75] & 54 & 4128 & 1.1 (0.7-1.6) & 46 & 3962 & 1.0 (0.7-1.5) \\
\hline Medium [8.75-56] & 43 & 5096 & 0.9 (0.6-1.2) & 45 & 4433 & 0.9 (0.7-1.5) \\
\hline \multirow[t]{2}{*}{High [>56-737.5]} & 39 & 3281 & 1.0 (0.7-1.6) & 44 & 4029 & 1.0 (0.6-1.5) \\
\hline & & & P trend \(=0.87\) & & & P trend \(=0.94\) \\
\hline \multicolumn{7}{|l|}{Chlorpyrifos (organophosphateinsecticide)} \\
\hline None & 300 & 30393 & 1.0 (ref) & 300 & 30393 & 1.0 (ref) \\
\hline Low [\(\leq 8.75\)] & 71 & 6493 & 1.1 (0.9-1.5) & 61 & 6383 & 1.1 (0.8-1.4) \\
\hline Medium [\(>8.75\)-44] & 65 & 6892 & 1.1 (0.8-1.4) & 60 & 7549 & 0.9 (0.7-1.2) \\
\hline \multirow[t]{2}{*}{High [>44-767.25]} & 67 & 9380 & 0.8 (0.6-1.1) & 60 & 7044 & 1.0 (0.7-1.3) \\
\hline & & & \(P\) trend \(=0.11\) & & & P trend \(=0.85\) \\
\hline \multicolumn{7}{|l|}{Coumaphos (organophosphateinsectlicide)} \\
\hline None & 411 & 44846 & 1.0 (ref) & 411 & 44846 & 1.0 (ref) \\
\hline Low [<8.75] & 16 & 1510 & 1.0 (0.6-1.7) & 15 & 1132 & 1.3 (0.8-2.1) \\
\hline Medium [>8.75-38.75] & 14 & 1076 & 1.2 (0.7-2.1) & 14 & 1452 & 1.0 (0.6-1.6) \\
\hline \multirow[t]{2}{*}{High [>38.75-1627.5]} & 13 & 1175 & 1.2 (0.7-2.0) & 14 & 1170 & 1.2 (0.7-2.1) \\
\hline & & & \(P\) for trend \(=0.50\) & & & \(P\) trend \(=0.48\) \\
\hline \multicolumn{7}{|l|}{DDVP (dimethyl phosphate-insecticide)} \\
\hline None & 407 & 44551 & 1.0 (ref) & 407 & 44551 & 1.0 (ref) \\
\hline Low [58.75] & 19 & 1342 & 1.4 (0.9-2.1) & 18 & 1281 & 1.4 (0.9-2.3) \\
\hline Medium [>8.75-87.5] & 17 & 1519 & 1.2 (0.7-1.9) & 18 & 1633 & 1.1 (0.7-1.8) \\
\hline \multirow[t]{2}{*}{High [>87.5-2677.5]} & 17 & 1893 & 0.9 (0.6-1.5) & 17 & 1824 & 1.0 (0.6-1.6) \\
\hline & & & \(P\) trend \(=0.78\) & & & \(\mathbf{P}\) trend \(=0.83\) \\
\hline \multicolumn{7}{|l|}{Diazinon (organophosphorousinsecticide)} \\
\hline Nane & 187 & 17943 1, & 1.0 (ref) & 187 & 17943 & 1.0 (ref) \\
\hline Low [58.75\(]\) & 28 & 2506 & 1.1 (0.7-1.6) & 23 & 2047 & 1.1 (0.7-1.8) \\
\hline Medium [>8.75-25] & 19 & 1515 & 1.0 (0.6-1.8) & 24 & 2246 & 0.9 (0.5-1.5) \\
\hline \multirow[t]{2}{*}{High [>25-457.25]} & 23 & 1990 & 1.2 (0.7-1.9) & 22 & 1708 & 1.3 (0.8-2.1) \\
\hline & & & \(P\) trend \(=0.52\) & & & \(\mathbf{P}\) trend \(=0.33\) \\
\hline
\end{tabular}

Table 3. Cont.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Insecticides} \\
\hline Pesticide (chemical-functional class) & NHL Cases \({ }^{2}\) & Non-Cases \({ }^{2}\) & RR \({ }^{3,4}\) (95\% CI) by Total Days of Exposure & NHL & Non-Cases & RR \({ }^{3,4}\) (95\% CI) \\
\hline [days of lifetime exposure for each category] & & & & Cases \({ }^{2}\) & & Intensity-weighted days of exposure \\
\hline \multicolumn{7}{|l|}{Fonofos (organophosphorous-insecticide)} \\
\hline None & 349 & 39570 & 1.0 (ref) & 349 & 39570 & 1.0 (ref) \\
\hline Low [\(\leq 20]\) & 47 & 3812 & 1.3 (0.96-1.8) & 37 & 2906 & 1.4 (0.97-1.9) \\
\hline Medium [>20-50.75] & 28 & 2819 & 1.1 (0.7-1.6) & 38 & 3487 & 1.1 (0.8-7.6) \\
\hline \multirow[t]{2}{*}{High [\(>50.75-369.75\)]} & 37 & 3385 & 1.1 (0.7-1.5) & 36 & 3606 & 1.0 (0.7-1.4) \\
\hline & & & \(P\) trend \(=0.83\) & & & \(P\) trend \(=0.87\) \\
\hline \multicolumn{7}{|l|}{Malathion (organophosphorousinsecticlde)} \\
\hline None & 90 & 8368 & 1.0 (ref) & 90 & 8368 & 1.0 (reff) \\
\hline Low [\(\leq 8.75\)] & 75 & 7284 & 0.97 (0.7-1.3) & 60 & 5535 & 1.0 (07-1.4) \\
\hline Medium \(\gg 8.75-38.751\) & 47 & 5779 & 0.7 (0.5-1.1) & 59 & 6899 & 0.8 (0.6-1.1) \\
\hline \multirow[t]{2}{*}{High [>38.75-737.5]} & 57 & 5037 & 09 (0.6-1.3) & 59 & 5588 & 0.9 (0.6-1.2) \\
\hline & & & P trend \(=0.63\) & & & \(P\) trend \(=0.46\) \\
\hline \multicolumn{7}{|l|}{Parathion (ethyl or methyl) (organophosphorous insecticide)} \\
\hline None & 228 & 21457 & 1.0 (ref) & 228 & 21457 & 1.0 (ref) \\
\hline Low [\(\leq 8.75\)] & 9 & 693 & 1.0 (0.5-20) & 7 & 612 & 0.9 (0.4-2.0) \\
\hline Medium [\(>8.75\)-24.5] & 6 & 351 & 1.4 (0.6-3.2) & 8 & 462 & 1.4 (0.7-2.9) \\
\hline \multirow[t]{2}{*}{High [>24.5-1237.5]} & 6 & 652 & 0.8 (0.3-1.8) & 6 & 621 & 08 (0.4-1.9) \\
\hline & & & P trend \(=0.64\) & & & F trend \(=0.74\) \\
\hline \multicolumn{7}{|l|}{\begin{tabular}{l}
Permethrin \\
(animal and crop applications)
\end{tabular}} \\
\hline \multicolumn{7}{|l|}{(pyrethroid insecticide)} \\
\hline None & 371 & 37496 & 1.0 (ref) & 371 & 37496 & 1.0 (ref) \\
\hline Low [58.75] & 38 & 4315 & 1.1 (0.8-1.5) & 33 & 4263 & 0.9 (0.6-1.3) \\
\hline Medium [\(>8.75-50.75\)] & 31 & 4611 & 0.8 (0.5-1.2) & 33 & 4200 & 1.0 (0.7-1.4) \\
\hline \multirow[t]{2}{*}{High [>50.75-1262.25]} & 33 & 4121 & 1.2 (0.8-1.7) & 32 & 4553 & 1.0 (0.7-1.5) \\
\hline & & & P trend \(=0.54\) & & & \(P\) trend \(=0.99\) \\
\hline \multicolumn{7}{|l|}{Phorate (organophosphorous-insecticide)} \\
\hline None & 171 & 16834 & 1.0 (ref & 171 & 16834 & 1.0 (ref) \\
\hline Low \(\{\leq 8.75\)] & 27 & 2621 & 0.8 (0.5-1.2) & 26 & 2320 & 0.9 (0.6-1.4) \\
\hline Medium [8.75-245] & 33 & 1819 & 1.4 (0,96-2.1) & 27 & 1951 & 1.1 (0.7-1.7) \\
\hline \multirow[t]{2}{*}{High P>24.5-224.75)} & 18 & 2246 & 0.6 (0.4-1.1) & 25 & 2409 & 0.8 (0.5-1.3) \\
\hline & & & \(P\) trend \(=0.25\) & & & \(P\) trend \(=0.44\) \\
\hline \multicolumn{7}{|l|}{Terbufos (organophosphorousinsecticide)} \\
\hline None & 267 & 31076 & 10 (ref) & 267 & 31076 & 1.0 (ref) \\
\hline Low \(\leq 24.5\)] & 82 & 8410 & 1.2 (0.9-1.5) & 64 & 6895 & 1.1 (0.9-1.5) \\
\hline Medium [\(=24.5-56]\) & 54 & 3925 & 1.6 (1.2-2.1) & 64 & 4642 & 1.6 (1.2-22) \\
\hline \multirow[t]{2}{*}{High [>56-1627.5]} & 57 & 6080 & 1.1 (0.8-1.5) & 63 & 5842 & 1.1 (0.8-1.5) \\
\hline & & & \(P\) trend \(=0.43\) & & & \(P\) trend \(=0.44\) \\
\hline \multicolumn{7}{|l|}{Chlorinated Insecticides} \\
\hline \multicolumn{7}{|l|}{Aldrin (chlorinated insecticide)} \\
\hline None & 193 & 19743 & P. 0 (ref) & 193 & 19743 & 7.0 (ref) \\
\hline Low [\(\leq 8.75\)] & 27 & 1613 & 0.9 (0.6-1.4) & 20 & 1212 & 0.9 (0.6-1.4) \\
\hline Medium \(>8.75-24.5\)] & 16 & 1002 & 0.8 (0.5-1.3) & 20 & 1279 & 0.8 (0.5-1.3) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Insecticides} \\
\hline \begin{tabular}{l}
Pesticide \\
(chemical-functional class)
\end{tabular} & NHL Cases \({ }^{2}\) & Non-Cases \({ }^{2}\) & \(\mathbf{R R}^{3,4}\) (95\% CI) by Total Days of Exposure & NHL & Non-Cases & RR \({ }^{3,4}\) (95\% CI) \\
\hline [days of lifetime exposure for each category] & & & & Cases \({ }^{2}\) & & Intensity-weighted days of exposure \\
\hline \multirow[t]{2}{*}{High [>24.5-457.25]} & 17 & 903 & 0.9 (0.5-1.5) & 19 & 1026 & 0.9 (0.6-1.5) \\
\hline & & & P trend \(=0.58\) & & & P trend \(=0.74\) \\
\hline \multicolumn{7}{|l|}{Chlordane (chlorinated insecticide)} \\
\hline None & 179 & 19115 & 1.0 (ref) & 179 & 19115 & 1.0 (ref) \\
\hline Low [58.75] & 47 & 2687 & 1.3 (0.97-1.9) & 23 & 1303 & 1.4 (0.9-2.2) \\
\hline Medium \({ }^{5}\) & 0 & 0 & xxx & 24 & 1747 & 1.0 (0.6-1.5) \\
\hline \multirow[t]{2}{*}{High [>8.75-1600]} & 23 & 1450 & 1.1 (0.7-1.7) & 22 & 1085 & 1.4 (0.9-2.2) \\
\hline & & & \(P\) trend \(=0.43\) & & & \(P\) trend \(=0.16\) \\
\hline \multicolumn{7}{|l|}{DDT (chlorinated insecticide)} \\
\hline None & 152 & 18543 & 1.0 (ref) & 152 & 18543 & 1.0 (ref) \\
\hline Low [\(\leq 8.75\)] & 43 & 2121 & 1.3 (0.9-1.8) & 33 & 1601 & 1.2 (0.8-1.8) \\
\hline Medium [>8.75-56] & 28 & 1598 & 1.1 (0.7-1.7) & 32 & 1760 & 1.1 (0.8-1.7) \\
\hline \multirow[t]{2}{*}{High [>56-1627.5]} & 27 & 953 & 1.7 (1.1-2.6) & 32 & 1305 & 1.6 (1.0-2.3) \\
\hline & & & P trend \(=0.02\) & & & P trend \(=0.06\) \\
\hline \multicolumn{7}{|l|}{Dieldrin (chlorinated insecticide)} \\
\hline None & 235 & 22510 & 1.0 (ref) & 235 & 22510 & 1.0 (ref) \\
\hline Low [58.75] & 7 & 472 & 0.7 (0.3-1.5) & 6 & 363 & 0.8 (0.4-1.8) \\
\hline Medium [>8.75-24.5] & 8 & 154 & 2.3 (1.1-4.7) & 5 & 106 & 2.2 (0.9-5.3) \\
\hline \multirow[t]{2}{*}{High [>24.5-224.75]} & 2 & 140 & 0.7 (0.2-2.9) & 5 & 298 & 0.8 (0.3-2.0) \\
\hline & & & \(P\) trend \(=0.47\) & & & P trend \(=0.84\) \\
\hline \multicolumn{7}{|l|}{Heptachlor (chlorinated insecticlda)} \\
\hline None & 205 & 20844 & 1.0 (ref) & 205 & 20844 & 1.0 (ref) \\
\hline Low [\(\leq 8.75\)] & 21 & 1261 & 1.0 (0.6-1.6) & 15 & 1110 & 0.8 (0.5-1.4) \\
\hline Medium [>8.75-24.5] & 18 & 679 & 1.5 (0.9-2.4) & 16 & 425 & 2.0 (1.2-3.4) \\
\hline \multirow[t]{2}{*}{High [>24.5-457.25]} & 7 & 600 & 0.7 (0.3-1.4) & 14 & 1001 & 0.8 (0.5-1.4) \\
\hline & & & \(P\) trend \(=0.82\) & & & \(P\) trend \(=0.88\) \\
\hline \multicolumn{7}{|l|}{Lindane (chlorinated insecticide)} \\
\hline None & 205 & 20375 & 1.0 (ref) & 205 & 20375 & 1.0 (ref) \\
\hline Low [58.75] & 18 & 1285 & 1.2 (0.7-1.9) & 15 & 976 & 1.3 (0.8-2.2) \\
\hline Medium [>8.75-56] & 13 & 1103 & 1.0 (0.6-1.7) & 16 & 1205 & 1.1 (0.7-1.8) \\
\hline \multirow[t]{2}{*}{High [\(>56-457.25\)]} & 14 & 467 & 2.5 (1.4-4.4) & 14 & 673 & 1.8(1.0-3.2) \\
\hline & & & P trend \(=0.004\) & & & P trend \(=0.04\) \\
\hline \multicolumn{7}{|l|}{Toxaphene (chlorinated insecticide)} \\
\hline None & 214 & 20911 & 1.0 (ref) & 214 & 20911 & 1.0 (ref) \\
\hline Low [\(\leq 8.75\)] & 14 & 1198 & 0.8 (0.5-1.4) & 11 & 630 & 1.3 (0.7-2.3) \\
\hline Medium [>8.75-24.5] & 13 & 564 & 1.5 (0.9-2.7) & 12 & 931 & 0.9 (0.5-1.6) \\
\hline \multirow[t]{2}{*}{High [>24.5-4.57.25]} & 6 & 686 & 0.6 (0.3-1.4) & 10 & 886 & 0.8 (0.4-1.5) \\
\hline & & & \(P\) trend \(=0.50\) & & & \(P\) trend \(=0.38\) \\
\hline \multicolumn{7}{|l|}{Fungicides} \\
\hline \multicolumn{7}{|l|}{Benomyl (carbamate fungicide)} \\
\hline None & 219 & 21425 & 1.0 (ref) & 219 & 21425 & 1.0 (ref) \\
\hline Low [\(\leq 12.25\)] & 14 & 896 & 1.7 (0.9-2.9) & 9 & 432 & 2.2 (1.1-4.3) \\
\hline Medium [>12.25-24.5] & 4 & 214 & 2.4 (0.9-6.6) & 10 & 732 & 1.7 (0.9-3.2) \\
\hline
\end{tabular}

Table 3. Cont.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Insecticides} \\
\hline \begin{tabular}{l}
Pesticide \\
(chemical-functional class)
\end{tabular} & NHL Cases \({ }^{2}\) & Non-Cases \({ }^{2}\) & \(\mathrm{RR}^{3,4}\) (\(95 \% \mathrm{Cl}\)) by Total Days of Exposure & NHL & Non-Cases & \(\mathbf{R R}^{3,4}\) (95\% CI) \\
\hline [days of lifetime exposure for each category] & & & & Cases \({ }^{\text {2 }}\) & & Intensity-weighted days of exposure \\
\hline \multirow[t]{2}{*}{High [>24.5-457.25]} & 8 & 834 & 1.0 (0.5-2.1) & 7 & 779 & 0.9 (0.4-2.0) \\
\hline & & & \(P\) trend \(=0.93\) & & & \(P\) trend \(=0.75\) \\
\hline \multicolumn{7}{|l|}{Captan (phthalimide fungicide)} \\
\hline Nane & 407 & 43433 & 1.0 (ref) & 407 & 43433 & 1.0 (ref) \\
\hline Low [\(\leq 0.25\)] & 15 & 2334 & 0.8 (0.5-1.4) & 15 & 2108 & 0.9 (0.6-1.5) \\
\hline Medium [\(>0.25-12.25\)] & 16 & 1004 & 1.5 (0.8-2.6) & 15 & 1171 & 1.2 (0.7-2.2) \\
\hline \multirow[t]{2}{*}{High [\(>12.25-875\) ?} & 14 & 7823 & 0.8 (0.5-1.5) & 14 & 1805 & 0.8 (0.5-1.5) \\
\hline & & & P trend \(=0.69\) & & & P trend \(=0.52\) \\
\hline \multicolumn{7}{|l|}{Chlorothalonil Ipolychlorinated aromatic thalonitrile fungicide)} \\
\hline None & 474 & 48442 & 10 (ref) & 474 & 48442 & 1.0 (ref) \\
\hline Low [512.25\(]\) & 13 & 1509 & 0.9 (0.5-1.6) & 10 & 1800 & 0.6 (0.3-1.2) \\
\hline Medium [\(>12.25-54\)] & 9 & 1492 & 0.8 (0.4-1.6) & 11 & 1501 & 0.9 (0.5-1.7) \\
\hline \multirow[t]{2}{*}{High [>64-395.25]} & 9 & 1578 & 0.6 (0.3-1.3) & 9 & 1362 & 0.8 (0.4-1.6) \\
\hline & & & \(P\) trend \(=0.16\) & & & PP trend \(=0.52\) \\
\hline \multicolumn{7}{|l|}{Maneb/Mancozeb (dithiocarbamate fungicide)} \\
\hline None & 228 & 21512 & 1.0 (ref) & 228 & 21512 & 1.0 (ref) \\
\hline Low [57\(]\) & 8 & 400 & 1.9 (0.9-3.9) & 8 & 486 & 1.6 (0.8-3.3) \\
\hline Medium [\(>7-103.25\)] & 9 & 990 & 0.9 (0.4-1.7) & 9 & 680 & 1.3 (06-2.6) \\
\hline \multirow[t]{2}{*}{High \(>103.25-737.51\)} & 7 & 454 & 1.4 (0.6-2.9) & 7 & 677 & 0.9 (0.4-1.9) \\
\hline & & & P trend \(=0.49\) & & & \(P\) trend \(=0.78\) \\
\hline \multicolumn{7}{|l|}{Metalaxyl (acylalanine fungicide)} \\
\hline None & 209 & 18833 & 1.0 (ref) & 209 & 18833 & 1.0 (ref) \\
\hline Low [56] & 16 & 1439 & 1.0 (0.6-1.8) & 15 & 1079 & 1.3 (0.8-2.2) \\
\hline Medium [>6-28j & 15 & 2182 & 0.7 (0.4-1.3) & 15 & 2203 & 0.8 (0.4-1.3) \\
\hline \multirow[t]{2}{*}{High [>28-224.75]} & 13 & 1566 & 1.1 (0.6-2.1) & 14 & 1893 & 0.9 (0.5-1.6) \\
\hline & & & \(\mathbf{P}\) trend \(=0.76\) & & & P trend \(=0.63\) \\
\hline \multicolumn{7}{|l|}{Fumigant} \\
\hline \multicolumn{7}{|l|}{Methyl bromide (methyl halide fumigant)} \\
\hline None & 425 & 45265 & 1.0 (ref) & 425 & 45265 & 1.0 (ref) \\
\hline Low [58] & 37 & 2060 & 2.0 (1.4-29) & 26 & 1680 & 1.8 (1.2-2.7) \\
\hline Medium [>8-28] & 24 & 3011 & 0.9 (0.6-1.4) & 25 & 2501 & 1.1 (0.7-1.8) \\
\hline \multirow[t]{2}{*}{High [>28-387.5]} & 17 & 2768 & 0.6 (0.4-1.0) & 25 & 3571 & 0.8 (0.5-1.2) \\
\hline & & & P trend \(=0.04\) & & & P trend \(=0.10\) \\
\hline
\end{tabular}
\({ }^{1}\) During the periad from enroliment (1993-1997) to December 31, 2010 in NC and December 31, 2011 in lowa.
\({ }^{2}\) Numbers of cases in coiumns do not sum to totai number of NHL cases (\(n=523\)) due to missing data. In the enroliment questionraire, fetime-ciays \& intensity weighted life-time days of pesticide use was obtained for the insecticides: carbofuran, chlorpyrifos, coumaphos, DDVP, fonofos permethrin and terbufos; the fungicides: captan, chlothalonil and the fumgantu methyl bromide. In the take home questionnaire lifetime-days \& intensity weighted life-time days of pesticide use were obtained for the insecticides; aldicarb, carbaryl, diazinon, malathion, parathion, and phorate, the chiorinated insecticides: aldrin, chlordane, DDT, die:drin, heptachior, indane, and toxaphene, the fungicides: benomyi, maneb/mancozeb and metaiaxyi, theefore, numbers of NHL cases can vary among pesticides ilsted in the tabie.
\({ }^{3}\) Adjusted RR: age (<45, 45-49, 50-54, 55-59, 60-64, 65-69, \(\geq 70\)), State (NC vs. IA), Race (White vs. Black), AHS herbicides (tertiles of tota herbicide use-days). Statisticaily significant \(P\) trends are boided.
\({ }^{4}\) Permethrin for animal use and crop use were combined into one category.
\({ }^{5}\) The distribution of life-time days of chiordane exposure was clumped into two exposed groups those who with, \(\leq 8.75\) life-time days of exposure and those with \(>8.75\) ife-time days of exposure.
doi:10.137\%/journat.cone.0109332,t003

Table 4. Pesticide exposure (Lifetime-Days of Exposure) and adjusted risks for NHL Subtypes.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|l|}{Insecticides} \\
\hline & \multicolumn{2}{|l|}{SLL, CLL, MCL} & \multicolumn{2}{|l|}{Diffuse Large B-cell} & \multicolumn{2}{|l|}{Follicular B-cell} & \multicolumn{2}{|l|}{Other B-cell types} & \multicolumn{2}{|l|}{Multiple Myeloma} & \multirow[b]{2}{*}{NHL subtype} \\
\hline & \[
\begin{aligned}
& \overline{\mathrm{RR}^{3,4}} \\
& (95 \% \mathrm{CI})
\end{aligned}
\] & \(\mathrm{N}^{\mathbf{2}}\) & \[
\begin{aligned}
& \mathbf{R R}^{3.4} \\
& (95 \% \mathrm{CI})
\end{aligned}
\] & \(\mathrm{N}^{2}\) & \[
\begin{aligned}
& \mathbf{R R}^{3,4} \\
& {[95 \% \mathrm{CI}]}
\end{aligned}
\] & \(\mathbf{N}^{2}\) & \[
\begin{aligned}
& \overline{\mathbf{R R}^{3,4}} \\
& (95 \% \mathrm{CI})
\end{aligned}
\] & \(\mathrm{N}^{\mathbf{2}}\) & \[
\begin{aligned}
& \mathbf{R R}^{3,4} \\
& (95 \% \mathrm{CI})
\end{aligned}
\] & \(\mathrm{N}^{2}\) & \\
\hline & & & & & & & & & & & Homogencity \\
\hline & & & & & & & & & & & Test \\
\hline & & & & & & & & & & & (p-value) \\
\hline \multicolumn{12}{|l|}{Carbaryl} \\
\hline None & 1.0 (ref) & 42 & 1.0 (ref) & 29 & 1.0 (ref) & 11 & 1.0 (ref) & 14 & 1.0 (ret) & 22 & \\
\hline Low & 1.1 (0.6-2.2) & 19 & 0.8 (0.4-1.6) & 17 & 1.6 (0.6-3.9) & 10 & 1.8 (0.7-4.3) & 10 & 0.7 (0.3-1.4) & 14 & \\
\hline \multirow[t]{2}{*}{High} & 0.6 (0.3-1.3) & 15 & 7.3 (0.6-2.8) & 15 & 2.8 (1.0-7.4) & 10 & 0.4 (0.1-1.5) & 3 & 1.1 (0.7-7.8) & 13 & \\
\hline & \multicolumn{2}{|l|}{\(p\) trend \(=0.16\)} & \multicolumn{2}{|l|}{p trend \(=0.33\)} & \multicolumn{2}{|l|}{\(p\) trend \(=0.06\)} & \multicolumn{2}{|l|}{\(p\) trend \(=0.63\)} & \multicolumn{2}{|l|}{\(p\) trend \(=0.98\)} & 0.19 \\
\hline \multicolumn{12}{|l|}{Carbofuran} \\
\hline None & 1.0 (ref) & 87 & 1.0 (ref) & 78 & 1.0 (ref) & 39 & 1.0 (ref) & 33 & 1.0 (ref) & 56 & \\
\hline Low & 1.1 (0.7-1.8) & 28 & 0.9 (0.5-1.7) & 13 & 1.3 (0.7-2.4) & 15 & 0.8 (0.4-1.8) & 8 & 1.9 (1.1-3.3) & 16 & \\
\hline \multirow[t]{2}{*}{High} & 1.5 (0.9-2.5) & 19 & 0.8 (0.5-1.3) & 13 & 0.4 (0.1-1.4) & 3 & 0.7 (0.2-2.0) & 4 & 0.9 (0.4-1.6) & 12 & \\
\hline & \multicolumn{2}{|l|}{\(p\) trend \(=0.16\)} & \multicolumn{2}{|l|}{\(p\) trend \(=0.37\)} & \multicolumn{2}{|l|}{\(p\) trend \(=0.31\)} & \multicolumn{2}{|l|}{\(p\) trend \(=0.46\)} & \multicolumn{2}{|l|}{\(p\) trend \(=0.57\)} & 0.52 \\
\hline \multicolumn{12}{|l|}{Chlorpyrifos} \\
\hline None & 1.0 (ref) & 84 & 1.0 (ref) & 70 & 1.0 (ref) & 33 & 1.0 (ref) & 31 & 1 (ref) & 58 & \\
\hline Low & 1.2 (0.8-1.8) & 31 & 0.9 (0.6-1.5) & 22 & 1.6 (0.9-2.9) & 20 & 1.2 (0.6-2.2) & 14 & 1.0 (0.6-1.8) & 17 & \\
\hline \multirow[t]{2}{*}{High} & 0.9 (0.6-1.3) & 30 & 1.1 (0.6-1.7) & 22 & 1.0 (0.5-2.1) & 11 & 0.5 (0.2-1.3) & 7 & 0.7 (0.4-1.3) & 14 & \\
\hline & \multicolumn{2}{|l|}{\(p\) trend \(=0.45\)} & \multicolumn{2}{|l|}{p trend \(=0.80\)} & \multicolumn{2}{|l|}{p trend=0.94} & \multicolumn{2}{|l|}{p trend \(=0.13\)} & \multicolumn{2}{|l|}{p trend \(=0.27\)} & 0.90 \\
\hline \multicolumn{12}{|l|}{Coumaphos} \\
\hline None & 1.0 (ref) & 120 & 1.0 (ref) & 92 & 1.0 (ref) & 48 & 1.0 (ref) & 40 & 1.0 (ref) & 78 & \\
\hline Low & 1.1 (0.5-2.2) & 8 & 0.7 (0.3-1.9) & 4 & 2.1 (0.7-5.8) & 4 & xox- & 4 & 0.7 (0.2-2.2) & 3 & \\
\hline \multirow[t]{2}{*}{High} & 1.5 (0.6-3.4) & 6 & 1.6 (0.6-4.5) & 4 & 1.4 (0.5-4.0) & 4 & \(x x^{\prime}\) - & 1 & 1.2 (0.4-4.0) & 3 & \\
\hline & \multicolumn{2}{|l|}{\(\rho\) trend \(=0.35\)} & \multicolumn{2}{|l|}{\(p\) trend \(=0.42\)} & \multicolumn{2}{|l|}{\(p\) trend \(=0.47\)} & \multicolumn{2}{|l|}{p trend \(=8000\)} & \multicolumn{2}{|l|}{\(p\) trend \(=0.84\)} & 0.63 \\
\hline \multicolumn{12}{|l|}{Diazinon} \\
\hline Nane & 1.0 (ref) & 53 & 1.0 (ref) & 40 & 1.0 (ref) & 15 & 1.0 (ref) & 20 & 1.0 (refl & 41 & \\
\hline Low & 1.4 (0.7-2.7) & 14 & 1.5 (0.7-3.2) & 9 & 2.2 (0.9-5.4) & 8 & xxx & 3 & 0.4 (0.1-1.2) & 4 & \\
\hline \multirow[t]{2}{*}{High} & 1.9 (0.98-3.6) & 12 & 1.1 (0.5-2.4) & 8 & 3.8 (1.2-11.4) & 7 & \(x_{x} \times\) & 2 & 0.5 (0.2-1.7) & 3 & \\
\hline & \multicolumn{2}{|l|}{\(p\) trend \(=0.06\)} & \multicolumn{2}{|l|}{\(p\) trend \(=0.72\)} & \multicolumn{2}{|l|}{\(p\) trend \(=0.02\)} & \multicolumn{2}{|l|}{p trend \(=\mathrm{xox}\)} & \multicolumn{2}{|l|}{\(p\) trend \(=0.35\)} & 0.09 \\
\hline \multicolumn{12}{|l|}{DDVP} \\
\hline None & 1.0 (ref) & 124 & 1.0 (ref) & 93 & 1.0 (ref) & 48 & 1.0 (ref) & 39 & 1.0 (ref) & 73 & \\
\hline Low & 0.8 (0.4-1.9) & 6 & 1.1 (0.4-2.7) & 5 & 1.5 (0.6-3.9) & 5 & 1.1 (0.4-3.7) & 3 & 2.7 (1.2-5.8) & 7 & \\
\hline \multirow[t]{2}{*}{High} & 0.7 (0.3-1.7) & 6 & 0.9 (0.4-2.3) & 5 & 1.0 (0.3-3.4) & 3 & 0.9 (0.3-3.1) & 3 & 1.0 (0.3-2.7) & 4 & \\
\hline & \multicolumn{2}{|l|}{\(p\) trend \(=0.49\)} & \multicolumn{2}{|l|}{\(p\) trend \(=0.87\)} & \multicolumn{2}{|l|}{\(p\) trend \(=0.90\)} & \multicolumn{2}{|l|}{p trend \(=0.91\)} & \multicolumn{2}{|l|}{p trend \(=0.81\)} & 0.96 \\
\hline \multicolumn{12}{|l|}{Fonofos} \\
\hline None & 1.0 (ref) & 100 & 1.0 (ref) & 81 & 1.0 (ref) & 45 & 1.0 (ref) & 30 & 1.0 (ref) & 66 & \\
\hline Low & 1.2 (0.7-2.0) & 20 & 1.2 (0.7-2.2) & 13 & 1.5 (0.8-3.0) & 11 & 1.4 (0.6-3.1) & 8 & 1.2 (0.6-2.5) & 9 & \\
\hline \multirow[t]{2}{*}{High} & 1.0 (0.6-1.8) & 15 & 1.2 (0.6-2.3) & 11 & 0.3 (0.1-1.2) & 2 & 1.1 (0.4-2.7) & 6 & 1.4 (0.7-3.0) & 9 & \\
\hline & \multicolumn{2}{|l|}{\(p\) trend \(=0.96\)} & \multicolumn{2}{|l|}{\(p\) trend \(=0.65\)} & \multicolumn{2}{|l|}{\(p\) trend \(=0.19\)} & \multicolumn{2}{|l|}{\(p\) trend \(=0.84\)} & \multicolumn{2}{|l|}{\(p\) trend \(=0.33\)} & 0.35 \\
\hline \multicolumn{12}{|l|}{Malathion} \\
\hline None & 1.0 (ref) & 27 & 1.0 (ref) & 20 & 1.0 (ref) & 6 & 1.0 (ref) & 11 & 1.0 (ref) & 17 & \\
\hline Low & 0.7 (0.4-1 3) & 29 & 0.96 (0.5-1.8) & 23 & 1.0 (0.4-2.9) & 12 & 1.0 (0.5-2.4) & 11 & 1.0 (0.5-2.1) & 18 & \\
\hline High & 1.0 (0.6-1.8) & 22 & 1.0 (0.5-2.0) & 20 & 1.6 (0.6-4.4) & 11 & 0.3 (0.1-0.8) & 6 & 1.0 (0.5-2.0) & 17 & \\
\hline \multirow[t]{2}{*}{Ever/Never} & \multicolumn{2}{|l|}{1.0 (0.7-1.4)} & \multicolumn{2}{|l|}{0.9 (0.6-1.4)} & \multicolumn{2}{|l|}{1.3 (0.7-2.4)} & \multicolumn{2}{|l|}{0.6 (0.3-1.0)} & \multicolumn{2}{|l|}{0.9 (0.6-1.5)} & \\
\hline & \multicolumn{2}{|l|}{\(p\) trend \(=0.65\)} & \multicolumn{2}{|l|}{p trend \(=0.88\)} & \multicolumn{2}{|l|}{\(p\) trend \(=0.25\)} & \multicolumn{2}{|l|}{\(p\) trend \(=0.17\)} & \multicolumn{2}{|l|}{\(p\) trend \(=0.86\)} & 0.33 \\
\hline \multicolumn{12}{|l|}{Permethrin} \\
\hline
\end{tabular}

Table 4. Cont.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|l|}{Insecticides} \\
\hline & \multicolumn{2}{|l|}{SLL, CLL, MCL} & \multicolumn{2}{|l|}{Diffuse Large B-cell} & \multicolumn{2}{|l|}{Follicular B-cell} & \multicolumn{2}{|l|}{Other B-cell types} & \multicolumn{2}{|l|}{Multiple Myeloma} & \multirow[b]{2}{*}{NHL subtype} \\
\hline & \[
\begin{aligned}
& \mathrm{RR}^{3,4} \\
& (95 \% \mathrm{Cl})
\end{aligned}
\] & \(\mathbf{N}^{\mathbf{2}}\) & \[
\begin{aligned}
& \mathrm{RR}^{3,4} \\
& (95 \% \mathrm{Cl})
\end{aligned}
\] & \(\mathrm{N}^{\mathbf{2}}\) & \[
\begin{aligned}
& \mathrm{RR}^{3,4} \\
& (95 \% \mathrm{Cl})
\end{aligned}
\] & \(\mathrm{N}^{\mathbf{2}}\) & \[
\begin{aligned}
& \mathrm{RR}^{3,4} \\
& (95 \% \mathrm{Cl})
\end{aligned}
\] & \(\mathrm{N}^{2}\) & \[
\begin{aligned}
& \text { RR }^{3,4} \\
& (95 \% \mathrm{CI})
\end{aligned}
\] & \(\mathbf{N}^{2}\) & \\
\hline & & & & & & & & & & & Homogeneity \\
\hline & & & & & & & & & & & Test \\
\hline & & & & & & & & & & & (p-value) \\
\hline None & 1.0 (ref) & 108 & 1.0 (ref) & 89 & 1.0 (ref) & 41 & 10 (ref) & 38 & 10 (ref) & 64 & \\
\hline Low & 1.1 (0.6-2.0; & 15 & 0.6 (0.3-1.2) & 8 & 1.3 (0.6-2.7) & 8 & 0.9 (0.3-2.7) & 5 & 1.4 (0.8-2.7) & 13 & \\
\hline \multirow[t]{2}{*}{High} & 0.8 (0.5-1.5) & 15 & 1.0 (0.5-2.1) & 8 & 1.0 (0.5-2.4) & 8 & 0.5 (0.2-1.7) & 4 & 3.1 (1.5-6.2) & 12 & \\
\hline & \multicolumn{2}{|l|}{\(p\) trend \(=0.53\)} & \multicolumn{2}{|l|}{\(p\) trend \(=0.99\)} & \multicolumn{2}{|l|}{\(p\) trend \(=0.88\)} & \multicolumn{2}{|l|}{\(p\) trend \(=0.28\)} & \multicolumn{2}{|l|}{\(p\) trend \(=0.002\)} & 0.10 \\
\hline \multicolumn{12}{|l|}{Phorate} \\
\hline None & 1.0 (ref) & 48 & 1.0 (ref) & 37 & 1.0 (ref) & 20 & 1.0 (ref) & 16 & 1.0 (ref) & 36 & \\
\hline Low & 10 (0.6-1.9) & 14 & 1.4 (0.7-2.7) & 15 & 1.1 (0.4-3.0) & 5 & 0.9 (03-2.2) & 6 & 0.7 (0.3-18) & 6 & \\
\hline \multirow[t]{2}{*}{High} & 0.8 (0.4-1.6) & 11 & 0.7 (0.3-2.1) & 4 & 0.8 (0.3-2.2) & 5 & 1.1 (0.4-3.5) & 4 & 0.8 (0.3-2.4) & 4 & \\
\hline & \multicolumn{2}{|l|}{\(p\) trend \(=0.51\)} & \multicolumn{2}{|l|}{\(p\) trend \(=0.80\)} & \multicolumn{2}{|l|}{p trend \(=0.67\)} & \multicolumn{2}{|l|}{\(p\) trend \(=0.91\)} & \multicolumn{2}{|l|}{\(p\) trend \(=0.73\)} & 0.77 \\
\hline \multicolumn{12}{|l|}{Terbufos} \\
\hline None. & 1.0 (ref) & 72 & 1.0 (ref) & 63 & 1.0 (ref) & 31 & 1.0 (ref) & 19 & 1.0 (ref) & 59 & \\
\hline Low & 1.3 (0.8-2.0) & 32 & 1.2 (0.8-1.9) & 29 & 1.6 (0.9-3.1) & 15 & 1.8 (0.9-3.6) & 17 & 1.1 (0.6-1.9) & 12 & \\
\hline \multirow[t]{2}{*}{High} & 1.6 (1.0-2.5) & 31 & 1.0 (0.5-2.0) & 12 & 0.8 (0.4-1.7) & 10 & 1.6 (0.7-3.9) & 8 & 1.3 (0.7-2.7) & 5 & \\
\hline & \multicolumn{2}{|l|}{p trend \(=0.05\)} & \multicolumn{2}{|l|}{p trend \(=0.90\)} & \multicolumn{2}{|l|}{p trend \(=0.48\)} & \multicolumn{2}{|l|}{\(p\) trend \(=0.29\)} & \multicolumn{2}{|l|}{\(\rho\) trend \(=0.42\)} & 0.63 \\
\hline \multicolumn{12}{|l|}{Chlorinated Insecticides} \\
\hline \multicolumn{12}{|l|}{Aldrin} \\
\hline None & 1.0 (ref) & 53 & 10 (ref) & 46 & 1.0 (ref) & 22 & 1.0 (ref) & 20 & 1.0 (ref) & 34 & \\
\hline Low & 1.0 (0.5-2.0) & 11 & yoox & 2 & 1.2 (0.4-3.8) & 4 & 0.4 (0.1-1.5) & 3 & 2.1 (0.9-4.7) & 8 & \\
\hline \multirow[t]{2}{*}{High} & 1.0 (0.5-2.0) & 10 & xox & 3 & 0.8 (0.3-2.5) & 4 & 1.7 (03-3.9) & 3 & 1.2 (05-3.2) & 6 & \\
\hline & \multicolumn{2}{|l|}{p trend \(=0.70\)} & \multicolumn{2}{|l|}{\(p\) trend \(=s \infty \times\)} & \multicolumn{2}{|l|}{\(p\) trend \(=0.21\)} & \multicolumn{2}{|l|}{\(p\) trend \(=0.67\)} & \multicolumn{2}{|l|}{\(p\) trend \(=0.40\)} & 0.98 \\
\hline \multicolumn{12}{|l|}{Chlordane} \\
\hline None & 1.0 (ref) & 48 & 1.0 (ref) & 42 & 1.0 (ref) & 20 & 1.0 (ref) & 21 & 1.0 (ref) & 32 & \\
\hline Low & 1.8 (1.0-3.1) & 16 & 1.0 (0.5-2.2) & 8 & 1.7 (0.7-4.3) & 6 & x \(\times x\) & 2 & 1.7 (0.9-3.3) & 13 & \\
\hline \multirow[t]{2}{*}{High} & 1.5 (0.7-3.3) & 8 & 1.4 (0.6-3.3) & 7 & 1.3 (0.4-4.6) & 3 & xxx & 2 & 0.7 (0.2-2.2) & 3 & \\
\hline & \multicolumn{2}{|l|}{p trend \(=0.34\)} & \multicolumn{2}{|l|}{\(p\) trend \(=0.69\)} & \multicolumn{2}{|l|}{\(\rho\) trend \(=0.70\)} & \multicolumn{2}{|l|}{\(p\) trend \(=x 00 x\)} & \multicolumn{2}{|l|}{\(p\) trend \(=0.57\)} & 0.85 \\
\hline \multicolumn{12}{|l|}{DDT} \\
\hline None & 1.0 (ref) & 42 & 1.0 (ref) & 34 & 1.0 (ref) & 17 & 1.0 (ref) & 16 & 1.0 (ref) & 28 & \\
\hline Low & 1.0 (0.5-1.8) & 15 & 1.6 (0.4-3.1) & 2 & 3.3 (1.4-8.1) & 9 & 0.4 (0.3-2.5)) & 5 & 1.2 (0.6-2.6) & 10 & \\
\hline \multirow[t]{2}{*}{High} & 2.6 (1.3-4.8) & 15 & 1.4 (0.6-3.5) & 3 & 1.1 (0.3-3.6) & 4 & 2.1 (0.7-6.5) & 5 & 0.8 (0.4-1.8) & 9 & \\
\hline & \multicolumn{2}{|l|}{P trend \(=0.04\)} & \multicolumn{2}{|l|}{\(P\) trend \(=0.17\)} & \multicolumn{2}{|l|}{p trend \(=0.80\)} & \multicolumn{2}{|l|}{\(p\) trend \(=0.64\)} & \multicolumn{2}{|l|}{p trend \(=0.37\)} & 0.44 \\
\hline \multicolumn{12}{|l|}{Heptachlor} \\
\hline None & 1.0 (ref) & 58 & 1.3 (ref) & 47 & 1.0 (ref) & 24 & 1.0 (ref) & 21 & 1.0 (ref) & 40 & \\
\hline Low & 1.1 (0.5-2.3) & 9 & 100 & 3 & \(x \times x\) & 2 & xox & 3 & 1.3 (0.4-3.8) & 4 & \\
\hline \multirow[t]{2}{*}{High} & 1.4 (0.7-3.0) & 9 & 00x & 1 & xxx & 1 & xox & 2 & 1.2 (0.4-3.6) & 4 & \\
\hline & \multicolumn{2}{|l|}{\(p\) trend \(=0.16\)} & \multicolumn{2}{|l|}{\(p\) trend \(=\operatorname{xox}\)} & \multicolumn{2}{|l|}{\(p\) trend \(=x x x\)} & \multicolumn{2}{|l|}{\(p\) trend \(=x x x\)} & \multicolumn{2}{|l|}{\(p\) trend \(=0.91\)} & 0.68 \\
\hline \multicolumn{12}{|l|}{Lindane} \\
\hline None & 1.0 (ref) & 57 & 1.0 (ref) & 49 & 1.0 (ref) & 16 & 1.0 (ref) & 21 & 1.0 (ref) & 43 & \\
\hline Low & 1.2 (0.6-2.5) & 10 & 0.6 (0.2-1.7) & 4 & 4.9 (1.9-12.6) & 6 & xxx & 2 & xxx & 3 & \\
\hline \multirow[t]{2}{*}{High} & 2.6 (1.2-5.6) & 9 & 2.0 (0.6-6.5) & 3 & 36 (1.4-9.5) & 6 & xox & 1 & xxx & 2 & \\
\hline & \multicolumn{2}{|l|}{p trend \(=\mathrm{C} .13\)} & \multicolumn{2}{|l|}{\(p\) trend \(=0.96\)} & \multicolumn{2}{|l|}{p trend \(=0.04\)} & \multicolumn{2}{|l|}{p trend \(=\mathrm{xxx}\)} & \multicolumn{2}{|l|}{\(\rho\) trend \(=x x x\)} & 0.54 \\
\hline \multicolumn{12}{|l|}{Toxaphene} \\
\hline None & 1.0 (ref) & 68 & 1.0 (ref) & 47 & 1 (ref) & 23 & 3.0 (ref) & 22 & 1.0 (ref) & 40 & \\
\hline
\end{tabular}

\({ }^{1}\) During the period from enrollment (1993-1997) to December 31, 2010 in NC and December 31, 2011 in lowa.
\({ }^{2}\) Numbers of cases in columns do not sum to total number of NHL cases \((n=523)\) due to missing data. Ever/never use of all 26 pesticides (table 3) do not always match with exposure-response data in table 4 because of missing data to calculate lifetime-days of use.
\({ }^{3}\) Adjusted for age (\(<45,45-49,50-54,55-59,60-64,65-69, \geq 70\)), State (\(N C\) vs. IA), Race (White vs. Black), AHS herbicides (in tertiles of total herbicide use-days). Significant RR and \(95 \%\) confidence limits are bolded.
\({ }^{4}\) RR was not calculated if the number of exposed cases for any NHL subtype was \(<6\) and these cells are marked XXX. Four pesticides included in Table 2 (i.e., aldicarb, benomyl, dieldrin and parathion) were not included in Table 4 because no NHL subtype included \(\geq 6\) cases of a specific cell types with lifetime-days of exposure.
doi:10.1371/journal.pone.0109332.t004
risk estimates (i.e., narrower confidence intervals) when we included phase 2 imputed data (\(\mathbf{n}=54,306\)) (data not shown). Lagging exposures by five years did not meaningfuilly change the association between lindane or DDT and total NHL (data not shown). The significant exposure-response trends linking use of a particular pesticide to NHL and certain NHL subtypes did not
always correspond to a significant excess risk among those who ever used the same pesticide. For chemicals for which the detailed information was only asked about in the take-home questionnaire, we evaluated potential differences between the ever/never analyses based on the enrolment questionnaire and data from the same sub-set of participants who completed the exposurc-
response in the take-home questionnaire and found no meaningful differences in the results. We aiso evaluated the impact of using an updated definition of NHL; when using the original ICD-O-3 definition of \(\mathrm{NHL}^{19}\), lifetime-days of lindane use remained significantly associated with NHL risk (\(\mathrm{RR}=1.0\) (ref), 1.3 ! \(0.7-\) \(2.6), 1.2(0.6-2.8), 2.7(1.3-5.4), \mathrm{p}\) trend \(=0.006)\). The trend between totai NHL and lifetime-days of DDT, however, was less cicar and not statistically significant \((\mathrm{RR}=1.0\) (ref) 1.3 (0.9-1.8), \(1.1(0.5-2.1)\), i. \((0.8-2.6), \mathrm{p}\) trend \(=0.32\)) [Table S3 in File S1]. Carbaryl and diazinon showed non-significant trends with the older definition of NHL, but not with the newer definition uscd here.

\section*{Discussion}

A significant exposure-response trend for total NHL was observed with increasing lifetime-days of use for two organochlorine insecticides, lindane and DDT, although RRs from ever/ never comparisons were not elevated. On the other hand, terbufos use showed a significant excess risk with total NHL in ever vs. never exposed analysis, but displayed no clear exposure-response trend. Several pesticides showed significant exposure-response trends with specific NHL subtypes however, when polytomous models were used to test the difference in parametric estimates of trend among the five NHL subtypes, there was no evidence of heterogencity in the sub-types for specific chemicals. The subtype relationships that looked particularly interesting werc DDT and terbufcs with the SLL/CLL/MCL subtype, lindane and diazinon with the follicular subtype, and permethrin with MM. These pesticide-NHL links should be evaluated in future studies.

Lindane (gamma-hexachlorocyclohexane) is a chlorinated hydrocarbon insecticide. Production of lindane was terminated in the United States in 1976, but imported lindane was used to treat scabies and lice infestation and for agricultural seed treatment [2]] until its registration was cancelled in 2009 [22], the same year production was banned worldwide [23]. In our study, \(3,4 \frac{10}{}\) people reporting ever using lindane \((6 \%)\) prior to enrollment, 433 reported use at the phase 2 questionnaire (\(1 \%\)), indicating that use had dropped substantially. Orai administration of lindanc has increased the incidence of hiver tumors in mice and less clearly, thyroid tumors in rats [24]. Lindanc produces free radicais and oxidative stress (reactive oxygen species [ROS]) [25] and has been linked with chromosomal aberrations in human peripheral iymphocytes in vitro [26].

Lindane has been linked with NHL in previous epidemiologic studies. A significant association between lindane use and NHL was observed in a pooled analysis of three population-based casecontrol studics conducted in the Midwestern US, with stronger relative risks observed for greater duration and intensity of use [27]. NHL was aiso associated with lindane use in a Canadian case-control study [28]. Lindane was significantly associated with NHL risk in an earlier report from the AHS [29]. We are not aware of any previous study that assessed the association between a NHL subtype and lindanc usc. The exposure-response pattern with total NHL and the follicular lymphoma subtype indicates a need for further evaluation of lindane and NHL.

DDT is an organochlorine insccticide that was used with great success to control malaria and typhus during and after World War II [29] and was widely used for crop and livestock pest control in the United States from the mid-1940s to the 1960s [30]. Its registration for crop use was cancelled in the US in 1972 [30] and banned worldwide for agricultural use in 2009, but continues to bc used for disease vector control in some parts of the world [23]. In our study, 12,471 participants (\(23 \%\)) reported ever using DDT
prior to enrollment; \(12 \%, 8.7 \%\) and \(2.3 \%\) responding to the takehome questionnaire reported their first use occurred prior to the 1960s, during the 1960s, and during the 1970s, respectively. The National Toxicology Program classifies DDT as "reasonably anticipated to be a human carcinogen" [31] and IARC classifies DDT as a "possible human carcinogen (2B;" [12], both classifications were based on experimental studies in which excess liver tumors were observed in two rodent species. Epidemiology data on the carcinogenic risk of DDT is inconsistent. NHL was not associated with use of DDT in a pooled analysis of three casecontrol studies in the U.S. where information on exposure was obtained from farmers by questionnaire [32]. There also was no association between the use of DDT and NHL in our study when we used an earlice definition of NHL [18], suggesting some of the inconsistency may be due to disease definition. In the large Epilymph study, no meaningfui links between DDT and the risk of NHL, or diffuse large B cel lymphoma were observed, and only limited support was found for a link to CLL [331, athough a casecontrol study of farmers in Italy suggested increased risk of NHL and CLL with DDT exposure [34]. NHL was not associated with serum leveis of DD'T in a prospective cohort study from the U.S. [35], but NHL was associated with the DDT-metabolite p, p'DDE, as well as chlordane and heptachior-related compounds (oxychiordane, heptachior epoxidc) and dicidrin, in a study with exposure measured in human adipose tissue samples [36]. In a Danish cohort, a higher risk of NHL was associated with higher prediagnostic adipose levels of DDT, cis-nonachior, and oxychiordane [37]. In a Canadian study, analytes from six insecticides/insecticide metabolites (beta-hexachlorocyciohexane, p, p'-dichioro-DDE, hexachlorobenzene (HCB), mircx, oxychlordanc and transnonachior) were linked with a significant increased risk with NHL [38]. However, in an analysis of plasma samples from a case-control study in France, Germany and Spain, the risk of NHL did not increase with plasma levels of hexachlorobenzene, betahexachlorobenzene or DDE [39]. In this analysis, NHL was significantly associated with reported use of DDT, but not with the other organochlorine insecticides studied (i.c., aidrin, chlordane, dieldrin, heptachlor, toxaphene). Our findings add further support for an association between DDT and total NHL and our results on SLL/CLLL/MCL are novel and should be further explored.

Permethrin is a broad-spectrum synthetic pyrethroid pesticide widely used in agricuiture and in home and garden use as an insecticide and acaricide, as an insect repcliant, and as a treatment to eradicate parasites such as head lice or mites responsible for scabies [40]. This synthetic pyrethroid was first registered for use in the United States in 1979 [40]. The U.S. Environmentai Protection Agency ciassified permethrin as "likely to be carcinogenic to humans" largely based on the observed increase incidence of benign lung tumors in female mice, liver tumors in rats and liver tumors in male and female mice [41]. Permethrin was not associated with NHL overall in our study, nor in pooled casecontrol studies of NHL from the U.S (the NHL definition in use at the time of the study did not include MM, [42]. In our analysis, however, the risk of MM increased significantiy with lifetime-days of exposure to permethrin, as had been noted in an carlier analysis of AHS data [43]. We are unaware of other studies that have found this association

Terbufos is an organophosphate insecticide and nematicide first registered in 1974 [44]. The EPA classifies terbufos as Group E, i.e., "Evidence of Non-Carcinogenicity for Humans" [44]. We found some evidence for an association between terbufos use and NHL, particularly for the SLL/CLL/MCL subtype. NHL was not associated with terbufos in the pooled case-control studics from the
U.S. [42] but there was a non-significant association between terbufos and small cell lymphocytic lymphoma [10].

Diazinon is an organophosphate insecticide registered for a variety of uses on plants and animals in agriculture [45]. It was commonly used in household insecticide products until the EPA phased out all residential product registrations for diazinon in December 2004 [45.46]. In an carlier evaluation of diazinon in the AHS, a significant exposure-response association was observed for leukemia risk with lifetime exposure-days [47]. While there was no link between diazinon and NHL overall in this analysis, there was a statistically significant exposure-response association between diazinon and the follicular lymphoma subtype and an association with the SLL/CLL/MCL subtype that was not statistically significant. Diazinon was previously associated with NHL in pooled case-control studies from the U.S. and particularly with SLL [10].
Several other insecticides, fungicides and fumigants cited in recent reviews of the pesticide-cancer literature suggested etiological associations with total NHL \([8,9]\), these include: oxychlordane, trans-nonachlor, and cis-nonachlor which are metabolites of chlordane; and dieldrin and toxaphene among NHL cases with \(t(14,18)\) translocations. We did not find a significant association between chlordane and total NHL nor with any NHL subtype, but we did not have information about chlordane metabolites to make a more direct comparison. Similarly we did not observe a significant association between dieldrin nor toxaphene and total NHL nor with any NHL subtypes. Mirex (1,3-cyclopentadiene), an insecticide, and hexachlorobenzene, a fungicide, were also associated with NHL risk \([8,9]\) but we did not examine these compounds in the AHS.
This study has a number of strengths. It is a large population of farmers and commercial pesticide applicators who can provide reliable information regarding their pesticide use history [48]. Information on pesticide use and application practices was obtained prior to onset of cancer. An algorithm that incorporated several exposure determinants which predicted urinary pesticide levels was used to develop an intensity-wcighted exposure metric in our study [20]. Exposure was ascertained prior to diagnosis of disease, which should eliminate the possibility of case-response bias [14]. Because of the detailed information available on pesticide use, we were able to assess the impact for the use of multiple pesticidcs. For example, we evaluated total pesticide use-days, and specific pesticides found to be associated with NHL or its subtypes in the AHS. We found no meaningful change in the associations with DDT, lindane, permethrin, diazinon and terbufos from such adjustments. Information on many potential NHL risk factors was available and could be controlled in the analysis.

Most epidemiological investigations of NHL prior to 2007 [17] did not include CLL and MM as part of the definition. 'These two subtypes made up \(37 \%(193 / 523)\) of the NHL cases in this analysis. This is a strength of our study in that the definition of NHL used here is based on the most recent classification system [16,17\(]\) and will be relevant for comparisons with future studies. On the other hand, the inclusion of MM and CLL in the recent definition of NHL makes comparisons of our findings with earlier literature challenging, because the NHL subtypes may have different etiologies. For example, DDT was not significantly associated with NHL using the older definition, but was significantly associated with the NHL using the most recent definition of NHL because of its association with the SLL/CLL/ MCL subtype (Table S1 in File S1). On the other hand, carbaryl and diazinon were associated with the old definition of NHL (although non-significantly) but not with the new definition. Lindane, however, was associated with both definitions of NHL.

Lindane was significantly associated with the follicular lymphoma subtype and this subtype was included in the older and newer definition of NHL. No other pesticides were significantly associated with NHL under the old definition (Table S3 in Filc S1).

Although this is a large prospective study, limitations should be acknowledged. A small number of cases exposed to some specific pesticides could lead to false positive or negative findings. We also had reduced statistical power to evaluate some pesticides for total days of use and intensity-weighted days of use because some participants did not complete the phase one take-home questionnaire and the tests of homogeneity between specific pesticides and specific NHL subtypes were underpowered. Some chance associations could occur because of multiple testing, i.c., a number of pesticides, several NHL subtypes, and more than one exposure metric. Despitc the generally high quality of the information on pesticide use provided by AHS participants [48,50], misclassification of pesticide exposures can occur and can have a sizeable impact on estimates of relative risk, which in a prospective cohort design would tend to produce false negative results [49].

\section*{Conclusion}

Our results showed pesticides from different chemical and functional classes were associated with an excess risk of NHL and NHL subtypes, but not all members of any single class of pesticides were associated with an clevated risk of NHL or NHL subtypes, nor were all chemicals of a class included on our questionnaire. Significant pesticide associations were between total NHL and reported use of lindane and DDT. Links between DDT and terbufos and SLL/CLL/MCL, lindane and diazinon and follicular lymphoma, and permethrin and MM, although based on relatively small numbers of exposed cases, deserve further evaluation. The epidemiologic literature on NHL and these pesticides is inconsistent and although the findings from this large, prospective cohort add important information, additional studies that focus on NHL and its subtypes and specific pesticides are needed. The findings from this large, prospective cohort add important new information regarding the involvement of pesticides in the development of NHL. It provides additional information regarding specific pesticides and NHL overall and some new leads regarding possible links with NHL subtypes that deserve cvaluation in future studies.

\section*{Supporting Information}

File S1 This file contains Table S1, Table S2, and Table S3. Table S1, Frequency of NHL in Agricultural Health Study applicators using New (Interlymph hierarchical classification of lymphoid neoplasms) and Older Definitions (ICD-O-3). Table S2, Pesticides included in the Agricultural Health Study questionnaires by Chemical/Functional Class. Table S3, Pesticide exposure (lifctime-days) and adjusted risks of total NHL incidence (Older definition [ICD-O-3]).
(DOC)

\section*{Acknowledgments}

Disclaimer: The findings and conclusions in this report are those of the author(s) and do not necessarily represent the views of the National Institutc for Occupational Safety and Health. The United States Environmental Protection Agency through its Office of Research and Development partially funded and collaborated in the research described here under Contracts 68-D99-011 and 68-D99-012, and through Interagency Agreement DW-75-93912801-0. It has been subjected to Agency review and approved for publication.
This work was supported by the Intramural Rescarch Program of the NIH, National Cancer Institute, Division of Cancer Epidemiology and

Genetics (Z01CP0101 i9) and the National Institutes of Environmental Health Science (Z0iESO49030). The authors have no conflicts of intercst in connection with this manuscript.
Ms. Marsha Dunn and Ms. Kate Torres, (cmploycd by Wcstat, Inc. Rockville, Maryland) arc gratefully acknowledged for study coordination. The ongoing participation of the Agricultural Health Study participants is indispensable and sincerely appreciated.

\section*{References}
3. Milhan S (1971) Leakemia and multiple myeloma in fanmers. Am J Epidemioi 94: 507-510.
2. Cantor KP (1982) Farming and mortality from non-Hodgkin's lymphoma: a case-control study. Int J Cancer 29: 239-247.
3. Blair A, Malker H, Cantor KP, Burmeister L, Wiklund K (1985) Cancer among farmers: A review. Scand J Work Environ Health 11: 397-407.
4. Pearce NE, Smith AH, Fischer DO (1985) Malignant lymphoma and multiple myeloma linked with agricultural occupation in a New Zealand cancer registration-base-study. Am J Epidemiol 121: 235-237.
5. Baris D, Silverman DT, Brown LM, Swanson GM, Hayes RB, et al. (2004) Occupation, pesticide exposure and risk of multiple myeloma. Scand J Work Environ Health 30(3): 215-222.
6. Beane Freeman LE, DeRoos AJ, Koutros S, Blair A, Ward MH, ct al. (2012) Poultry and livestock exposure and cancer risk among farmers in the agricultural health study. Cancer Causes Control 23: 663-670.
7. Cordes DH, Rea DF (1991) Farming: A Hazardous Occupation. In: Health Hazards of Fasming. Occupational Medicine: Statc of the Art Reviews. Volf(3). Hanley \& Belfus, Inc., Philadelphià, PA.
8. Alavanja M, Bonner M (2012) Occupational pesticide exposure and cancer risk. A Review. J. Toxicol Environ Health B Critic Review. 1594: 238-263.
Q. Alavanja MCR, Ross MK, Bonner MR (2013) Increased cancer burden among pesticide applicators and others due to pesticide exposure. CA, Cancer J Clin; 63(2): 120-142.
10. Waddell BL, Zahm SH, Baris D, Weisenburger DD, Holmes F, et al. (2001), Agricultural use of organophosphate pesticides and the risk of non-Hodgkin's lymphoma among male farmers (United States), Cancer Causes and Control 12: 509-517.
11. Merhi M, Raynal H, Cahuzac E, Vinson F, Cravedi JP, et al. (2007) Occupational exposure to pesticides and risk of hematopoietic cancers: metaanalysis of case-control studies. Cancer Causes Control. 18; 1209-1226.
12. TARC (1991) Intemational Agency for Research on Cancer (IARC). Oscupational Exposures in Insecticide applications and some pesticides. Lyon, France: IARC, 1991. Monographs on the Evaluation of Carcinogenic Risk to Humans, volume 53.
3. Morton LM, Slager SL, Cerhan JR, Wang SS, Vajdic CM, ct al. (2014) Etiologic Heterogeneity Among NHL Subtypes: The InterLymph NHL Subtypes Project. J Natl Cancer Institute 48: 130-144.
14. Alavanja MCR, Sandler DP, McMaster SB, Zahm SH, McDonnell CJ, et al. (1996) The Agricultural Health Study. Environ Health Perspect 104: 362-369.
15. Alavanja MC, Samanic C, Dosemeci M, Labin J, Tarone R, et 2l. (2003) Use of agricultural pesticides and prostate cancer risk in the Agricultural Health Study Cohort. Am J Epidemial 157(9): 800-814.
16. SEER Program, National Cancer Institute. Available: http://seer.cancer.gov/ tymphomarecode Accessed September 15, 2013.
17. Morton LM, Tumer IJ, Cerhan JR, Linet MS, Treseler PA, et al (2007) Proposed classifciation of tymphoid neoplasns for epiciemiologic research from the Pathology Working Group of the Internarional Lymphoma Epidemioiogy Consortium (InterLymph). Biond 110(2): 695-705.
18. Percy \(C\), Frizz A, Ries L (2001) Conversion of neoplasms by topography and mophology from the Intemational Ciassincation of Disease for Orcology, second edition, to International Classification of Diseases for Oncology, \(3^{\text {rd }} \mathrm{ed}\). Cancer Statistics Branch, DCCPS, SEER Program, National Cancer Institute; 2001.
19. Heltshe SL, Lubin JH, Koutros S, Coble JB, Ji B-T, et al. (2012) Using maltiple imputation to assign pesticiae use for non-respondents in the follow-up questionnaire in the Agticalturai Health Study J. Exp Sci Environ Epidemiol 22(4): 40e-416.
20. Coble J: Thomas KW, Hines CJ, Hoppin JA, Dosemeci M, et al, (201) An upcated algorithm for estimation of pesticicie exposure intersity in the Agricultural Health Study. Int J Enviren Res Public Heaith. 9(12): 4608-4622.
21. ATSDR (2005) Agency For Toxic Substances anci Disease Registry. Toxicoicgical profile for Alpha-, Beta-, Gamma- and Delta- Hexachicrcyciohexane, August, 2005. Available: http//iwwwatsćr.cde.gov/Toxprofics/tp43.pdr. Accessed 2013 Sep \(: 5\).
22. EPA (2006a) US Environmentai Irotection Agercy (2006). Lindane; Cancellatien Order December 13, 2006. Fedaral Register'Vol 71, number 239, pege 74905.
23. Steckholm Convertion Report (2005) Report of the conference of the Partics of the Stockholm Convention on Persistent Organie Pohutants on the wark of its fourth meeting. Convertion on Persistent Organic Pcllutants. Fourth Mecting, Geneva, 4-8 May 2009. Available: htop; / chm pops.int/Pcrtals/0/Repository COP4/UNEP-POPS-COP. -38 .Engisn.per.

\section*{Author Contributions}

Conceived and designed the experiments: MCA DPS AB. Performed the experiments: MCA CFL KT CJH. Analyzed the data: MCA JNH CFL CJH KHB JB DWB KT DPS JAH SK GA JHL AB LEB. Contributed reagents/materiais/analysis tools: MCA JB DWB CFL. Wrote the paper: MCA LEBF JNH CFL CJH KT AB DWB JHL. Designed the software: JB DWB
24. IARC (1987) International Agency for Research on Cancer (IARC). Overall evaluation of carcinogenicity: an updating of IARC monographs volume 1 to 42. Lyon, France: IARC, 1987. Monographs on the Evaluation of Carcinogenic Risk to Humans, Supplement 7.
25. Piskac-Collier AL, Smith MA (2009) Lindane-induced generation of reactive oxygen species and depletion of glutathione do not result in necrosis in renal distal tube cells. J Toxicol and Environ Health, Part A. 72: 1160-1167.
26. Rupa DS, Reddy PP, Reddi OS (1989). Genotoxic effect of benzene hexachloride in cultured human lymphacytes. Hum Genct 83: 271-273.
27. Blair \(A\), Clantor KP, Zahm SH (1998) Non-Hodgkin's lymphoma and agricultural use of the insecticide lindane. Am J Ind Med 33: 82-87.
28. McDuffie HH, Pahwa P, Mclaughlin JR, Spinelli JJ, Fincham S, et al. (2001) Non-Hodgkin's lymphoma and specific pesticide exposures in Men: CrossCanada Study of Pesticides and Health, Cancer, Epidemiolngy, Biomarkers \& Prevention 10: 1155-116.3.
29. Purdue MP, Hoppin JA, Blair A, Dosemeci M, Alavanja MCR (2007) Occupational exposure to organochlorine insecticides and cancer incidence in the Agricultural Health Study. Int J Cancer. 120(3): 642-649.
30. EPA (2012) US Environmental Protection Agency 2012. DDT-A Brief History and Status. Available; http://www:epa.gov/pesticides/factshcets/chemicals/ ddt-brié̌history-status.htm. Accessed 2013 Sep 15.
31. NTP \{2011) National Toxicology Program, Report on Carcinogen- Twelfth Edition. Available: http://ntp.niehs.nih.gov/go/rocl2. Accessed 2013 Sep \({ }^{15}\).
32. Baris D, Zahm SH, Cantor KP, Blair A (1998). Agricultural use of DDT and the risk of non-Hodgkin's lymphoma: pooled analysis of three case-control studies in the United States, Occup Environ Med 55: 522-527.
33. Cocco P, Satta G, Dubois S, Pilli C, Pillieri M, ct al. (2013) Lymphoma risk and occupational exposure to pesticides: results of the Epilymph study. Occupational Environ Med 70(2): 91-98.
34. Nanni O, Amadori D, Lugaresi C, Falcini F, Scarpi E, et al. (1996) Chronic lymphocytic leukaemia and non-Hodgkin's lymphomas by histological type in farming-animal brecding workers: a population case-control study based on a priori exposure matrics Occup Environ Mcd \(53(10)\) : 652-657.
35. Rothman N, Cantor KP, Blair A, Bush D, Brock JW, et al. (1997) A nested casecontrol study of non-Hodgkin lymphoma and serum organochlorine residues. The Lance 350: 240-244.
36. Quintana PJE, Delfino RJ, Korrick S, Ziogas A, Kutz FW, e: : \(\mathbf{l}\) (2004) Adipose tissue levels of organochlorine pesticides and chlorinated biphenyls and the risk of non-Hodgkin's lymphoma. Environ Health Perspect 112: 854-861.
37. Brauner EV, Sorensen MA, Gaudreau E, LeBlanc A, Erikson KT, et al. (2012) A prospective study of organochlorines in adiposc tissuc and risk of non-Hodgkin lymphoma. Environ Health Perspect. 120(1): 105-111,
38. Spinelli JJ, \(\mathrm{Ng}_{\mathrm{g}} \mathrm{CH}\), Weber JP, Cornors JM, Gascoyne RD, et ai. (2007) Organochlorines ard risk of non-Hodgkin lymphoma. Int J Cancer. 121(12): 2767-2775.
39. Cocco P, Breman P, Ibba A, de Sanjose Liongueraz S (2008) Piasma polychlorobiphenyl and orgarochinine pesticice levei and risk of major lymphema subtypes, Occup Envicon Med 55: 132-140.
40. EPA 2006(b). U.S. Environmental Protection Agency. 2006. Re-registration: Elighäity Decision for Permethrin: Avalable: http:/'www,epa-gov/appsrral/ REDs/permethrin_red.pdf. Aczesseci 2013 Sep 15.
41. NPIC (2012). National Pesticide Irfomation Center, Chemicals Evaluated for Carcinogenic Potential. Oüice of Pesticide Programs. U.S. Environmental Protection Agency. November 2012. Avaihable: http://npic.orst.edu/chemicals_ evahatedmdf. Accessed 2013 Sep 15.
42. De Roos AJ, Zahrs SH, Cantor KP, Weisenburger DD, Holmes FF, tat. (z003) Integrative assessment of miltiple pesticides as :isk factors for non-Hodgkin's lymphoma amons mer. Occup Eiviron Med 60: E11.
43. RusicckiJA, Pate! R, Koutros S, Beane Freeman LE, Landgren O, et ait (2009) Cancer inciderce among pestide applicators exposed to permethrin in the Agricultural Heaith Stucy, Environ Heaith Perspect 117: 582-586.
44. EPA 2006(b). U.S. Fnvironmental Protection Agency. 200e. Re-registration Eligbibity Decision for Terbufos: Avaizable: http://www-epa.gov/resticides/ reregistraticn/REDs/terbuios_redpdr Accessed 2013 Noy 18.
45. Envircnmental Protection Agency, 2004. Interim registration eligibility decision: diazinor. Avalable: http:/www,epa.gov/pesticides/reregistration/REDs/ diazinon_red.pdr. Aecessed 2013 Nov is.
46. Domaison D, Kieley T, Grabe A (2002) Pesticiàe industry sales and usage: 1998 and 1999 market estimates. Washington, DC.: US Environmertal Protection Agency, 2002 (EPA-733-R-02-003).
47. Beane Freeman LE, Bonner MR, Blair A, Hoppin JA, Sandler DP, et al. (2005). Cancer incidence among male pesticide applicators in the Agricultural Health Study cohort exposed to diazinon. Am J Epidemiol. 162: 1070-1079.
48. Blair A. Tarmen R, Sandler D, Lynch CF, Rowland A, et al. (2002) Reliability of reporting on life-style and agricultural factors by a sample of participants in the Agricultural Health Study from Iowa. Epidemiology 13\{ (1): 94-99.
19. Blair A, Thomas HT, Coble J, Sandler DP, Hines CJ, et al. (2011). Impact of pesticide exposure on misclassification on estimates of relative risks in the Agricultural Health Study. Occup Environ Med 68: 537-541.
50. Thomas KW, Dosemeci M, Coble JB, Hoppin JA, Sheldon LS, et al. (2010) Assessment of a pesticide exposure intensity algorithm in the Agricultural Health Study. J Expo Sci Euviron Epidemiol 20(6): 5.59-569.```

[^0]: ${ }^{\text {i }}$ PubMed is a service of the US National Institutes of Health (NIH). On their website (https://www.nlm.nih.gov/pubs/factsheets/j sel faq.html) they explain that NIH uses a committee, the Literature Selection Technical Review Committee, to review and recommend which biomedical and health- related life science journals are included. Criteria include relevant subject matter as well as journals that meet PubMed Central's scientific quality standard, described as "scientific and editorial character and quality of a journal."

[^1]: ${ }^{i i}$ The follow-up period is the time that elapses between the start and the end of a study. Typically, participants are followed from the start date until 1) cancer diagnosis; 2) death; 3) study end; or 4) loss to follow-up (e.g. the study investigators cannot locate them or they drop out of the study), whichever comes first.

[^2]: ${ }^{\text {iii }}$ Studies of pesticide drift suggest the distance that pesticides travel depends upon several factors: first, the method of application, with air spraying by plane or helicopter (common due to its ease of use) leading to further drift than ground spraying, because the spraying occurs higher above crops; secondly, wind speed; and thirdly, pesticide droplet size, with smaller droplets travelling further. Estimates of pesticide drift vary from 74 meters in an area with low wind, up through >2400 meters under windy conditions. Studies of glyphosate pesticide drift suggest droplets can travel upwards of 800-1000 meters. According to the US EPA, spray drift has been reported to be a problem with glyphosate, as there have been multiple reports of damage from glyphosate to non-target crops.

[^3]: iv Rose argues that when a risk factor is ubiquitous in a population, it may strongly influence the population incidence of a disease, but may not identify high-risk individuals within a population. For example, in a society where everyone smokes, smoking will not identify high-risk individuals for lung cancer.

[^4]:

